力学性能整理

合集下载

安徽工业大学 工程材料力学性能复习提纲整理(1)

安徽工业大学 工程材料力学性能复习提纲整理(1)

1.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。

2.用低密度可动位错理论解释屈服现象产生的原因金属材料3.答:塑性变形的应变速率与可动位错密度、位错运动速率及柏氏矢量成正比欲提高v就需要有较高应力τ这就是我们在实验中看到的上屈服点。

一旦塑性形变产生,位错大量增值,ρ增加,则位错运动速率下降,相应的应力也就突然降低,从而产生了屈服现象。

(回答不完整,尤其是上屈服点产生的原因回答的不好)3.塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质。

强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。

韧性:表示材料在塑性变形和断裂过程中吸收能量的能力脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。

4.韧性断裂与脆性断裂的区别,为什么脆性断裂最危险?答:韧性断裂是材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量,韧性断裂的断裂面的断口呈纤维状,灰暗色。

脆性断裂是突然发生的断裂,断裂前基本不发生塑性变形,没有明显征兆,因而危害性极大,脆性断裂面的断口平齐而光亮,常呈放射状或结晶状。

5.试指出剪切断裂与解理断裂哪一个是穿晶断裂,哪一个是沿晶断裂?哪一个属于韧性断裂,哪一个属于脆性断裂?为什么?答:都是穿晶断裂,剪切断裂是材料在切应力作用下沿滑移面发生滑移分离而造成的断裂,断裂面为穿晶型,在断裂前会发生明显的塑性变形,为韧性断裂;而解理断裂是材料在正应力作用下沿一定的晶体学平面产生的断裂,也为穿晶断裂,但断裂面前无明显的塑性变形,为脆性断裂。

6.拉伸断口的三要素:纤维区、放射区、剪切唇7. 理论断裂强度的推导过程是否存在问题?为什么?为什么理论断裂强度与实际的断裂强度在数值上有数量级的差别?答:(1)虽然理论断裂强度与实际材料的断裂强度在数值上存在着数量级的差别,但是理论断裂强度的推导过程是没有问题的。

常用工程塑料的物理力学性能-知识归纳整理

常用工程塑料的物理力学性能-知识归纳整理

常用工程塑料的物理、力学性能(表一)性能指标塑料名称及代号聚氯乙烯,硬质聚氯乙烯,软质聚乙烯(高密度)聚乙烯(低密度)聚乙烯,超高分子量聚甲基丙烯酸甲酯(有机玻璃) PVC PVC HDPE LDPE UNMWPE PMMA密度/g·cm-3 1.30~1.58 1.16~1.350.941~0.9650.91~0.9250.94 1.17~1.20吸水率(%)0.07~0.40.5~1.0<0.01<0.01<0.010.20~0.40抗拉强度/MPa45~5010~2521~38 3.9~15.730~3450~77拉伸模量/GPa 3.3—0.4~1.030.12~0.240.68~0.95 2.4~3.5断后伸长率(%)20~40100~45020~100(断裂)90~800400~4802~7知识归纳整理抗压强度/MPa——18.6~24.5———抗弯强度/MPa80~90———35~3784~120冲击韧度悬臂梁,缺口/J·m-2简支梁,无缺口30~40kJ/m2—80~1067853.4简支梁,无缺口190~200kJ/m2未断14.7硬度洛氏/邵氏②/布氏HR/HBS②/HBS 14~17HBS50~75HSA60~70HSD41~50HSD10HRR50HRR10~18HBS成型收缩率(%)0.1~0.51~5 1.5~4.0 1.2~40 4.00.2~0.6无负荷最高使用温度66~7960~7979~12182~100—65~95求知若饥,虚心若愚。

/℃延续耐热温度/℃——85———(表二)性能指标塑料名称及代号聚丙烯聚苯乙烯甲基丙烯甲酯-丁二烯-苯乙烯丙烯腈-丁二烯-苯乙烯聚砜聚酰胺(尼龙)-6 PP PS MBS ABS PSU PA-6密度/g·cm-30.90~0.91 1.04~1.10 1.09~1.10 1.03~1.06 1.24~1.61 1.13~1.15吸水率(%)0.03~0.040.03~0.30—0.20~0.250.3 1.9~2.0抗拉强度/MPa35~4050~6042~55(屈服)21~6366~6851~78千里之行,始于足下。

安徽工业大学材料力学性能复习总结资料

安徽工业大学材料力学性能复习总结资料

安徽工业大学材料力学性能13周总复习资料整理人:料085 季承玺注:题后标注的(重要)或(必考)悉丁汉林老师所划,全题加粗表明重要。

第一章1、 解释下列名词。

1.弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加应变的现象称为滞弹性,也就是应变落后于应力的现象。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后在同向加载,规定残余应力增加;反向加载,规定残余应力降低的现象。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂的能力。

脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。

答:E 弹性模量G 切变模量r σ规定残余伸长率2.0σ屈服强度3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

组织虽然改变了,原子的本性和晶格类型为发生改变,故弹性模量对组织不敏感。

4、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?(必考)答:见丁汉林老师班级课堂笔记5、决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

6、试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?(重要)答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

材料物理性能复习资料整理

材料物理性能复习资料整理

材料在外力作用下发生形状和尺寸的变化,称为形变。

材料承受外力作用、抵抗变形的能力及其破坏规律,称为材料的力学性能或机械性能。

材料在单位面积上所受的附加内力称为应力。

法向应力导致材料伸长或缩短,而剪切应力引起材料的切向畸变。

应变是用来表征材料在受力时内部各质点之间的相对位移。

对于各向同性材料,有三种基本类型的应变:拉伸应变ε,剪切应变γ和压缩应变Δ。

若材料受力前的面积为A0,则σ0=F/A0称为名义应力。

若材料受力后面积为A,则σT=F/A称为真实应力。

对于理想的弹性材料,在应力作用下会发生弹性形变,其应力与应变关系服从胡克(Hook)定律(σ=Eε)。

E是弹性模量,又称为弹性刚度。

弹性模量是材料发生单位应变时的应力,它表征材料抵抗形变能力(即刚度)的大小。

E越大,越不容易变形,表示材料刚度越大。

弹性模量是原子间结合强度的标志之一。

泊松比:在拉伸试验时,材料横向单位面积的减少与纵向单位长度的增加之比值。

粘性形变是指粘性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间增加而增大。

材料在外应力去除后仍保持部分应变的特性称为塑性。

材料发生塑性形变而不发生断裂的能力称为延展性。

在足够大的剪切应力τ作用下或温度T较高时,材料中的晶体部分会沿着最易滑移的系统在晶粒内部发生位错滑移,宏观上表现为材料的塑性形变。

滑移和孪晶:晶体塑性形变两种基本形式。

蠕变是在恒定的应力σ作用下材料的应变ε随时间增加而逐渐增大的现象。

位错蠕变理论:在低温下受到阻碍而难以发生运动的位错,在高温下由于热运动增大了原子的能量,使得位错能克服阻碍发生运动而导致材料的蠕变。

扩散蠕变理论:材料在高温下的蠕变现象与晶体中的扩散现象类似,蠕变过程是在应力作用下空位沿应力作用方向(或晶粒沿相反方向)扩散的一种形式。

晶界蠕变理论:多晶陶瓷材料由于存在大量晶界,当晶界位相差大时,可把晶界看成是非晶体,在温度较高时,晶界粘度迅速下降,应力使得晶界发生粘性流动而导致蠕变。

工程材料力学性能

工程材料力学性能

工程材料力学性能1. 引言工程材料力学性能是指材料在外力作用下的力学行为和性能特征。

能够准确评估材料的力学性能对于工程设计和材料选择具有重要意义。

本文将介绍一些常见的工程材料力学性能参数及其测试方法。

2. 抗拉强度抗拉强度是衡量材料抗拉能力的指标,通常用Mpa(兆帕)表示。

该值表示材料能够承受的最大拉伸力。

一般情况下,抗拉强度越高,材料的抗拉性能越好。

抗拉强度的测试可以通过拉伸试验来完成。

在拉伸试验中,标准试样会受到均匀的拉力,直到发生材料破裂。

通过测量试样的最大载荷和横截面积,可以计算出抗拉强度。

3. 弹性模量弹性模量是衡量材料刚性和变形能力的指标,通常用Gpa (千兆帕)表示。

弹性模量越大,材料的刚性越好,变形能力越小,即材料在外力作用下不容易发生变形。

弹性模量的测试可以通过弹性试验来完成。

在弹性试验中,标准试样会受到一定的载荷,然后释放。

通过测量载荷-变形关系的斜率,即应力-应变的比值,可以计算出弹性模量。

4. 屈服强度屈服强度是材料在拉伸过程中突破弹性极限后的抗拉能力,通常用Mpa表示。

屈服强度代表了材料的韧性和延展性。

材料的屈服强度越高,其抗变形性能越好。

屈服强度的测试可以通过拉伸试验或压缩试验来完成。

在拉伸试验中,标准试样会受到逐渐增加的拉力,直到发生塑性变形。

通过测量试样的屈服点和横截面积,可以计算出屈服强度。

5. 硬度硬度是衡量材料抗外界划痕和压痕能力的指标。

常见的硬度测试方法包括布氏硬度(HB)、维氏硬度(HV)、洛氏硬度(HRC)等。

硬度测试方法根据材料的硬度特性进行选择。

例如,布氏硬度适用于较软的金属材料,而维氏硬度适用于硬度较高的金属材料。

硬度的测试结果通常以单位压力下形成的压痕直径或者硬度值表示。

6. 断裂韧性断裂韧性是衡量材料抵抗破裂扩展的能力以及吸收塑性能力的指标。

常用的断裂韧性测试包括冲击试验和拉伸试验。

冲击试验通常用于低温下材料的断裂韧性测试。

在冲击试验中,冲击试样受到快速施加的冲击载荷,通过测量试样的断裂能量和断口形貌,可以评估材料的断裂韧性。

A铝合金力学性能标准整理分析

A铝合金力学性能标准整理分析

(一)GB —2008 铝合金建筑型材第1部分:基材6005,6005A供货状态:T5、T6
室温力学性能要求(取样部位的公称壁厚小于时,不测断后伸长率。

):
a 硬度仅供参考。

(二)GB/T 6892—2006 一般工业用铝及铝合金挤压型材车辆型材指适用于铁道、地铁、轻轨等轨道车辆车体结构及其他车辆车体结构的型材。

6005,6005A供应状态:T6
型材的室温纵向拉伸力学性能:
a 表示原始标距(L0)为S0的断后伸长率。

b 壁厚不大于的型材不要求伸长率。

(三)GB/T 10623—2008 金属材料力学性能试验术语A 伸长率:原始标距L0的伸长与原始标距之比的百分率。

Rp 规定非比例延伸强度:非比例延伸率等于引伸计标距(L e)规定百分率时的应力。

注:使用的符号应附以下脚标注说明所规定的百分率,例如:。

(四)GB/T 3191—2010 铝及铝合金挤压棒材
6005,6005A供货状态T5、T6
棒材的室温纵向拉伸力学性能:
(五)GB/ 铝及铝合金热挤压管第2部分:有缝管6005,6005A供货状态T5
管材的纵向室温力学性能:
(六)GB/T 26494—2011 轨道列车车辆结构用铝合金挤压型材6005,6005A供货状态T6
室温纵向拉伸力学性能:。

材料力学性能总复习-知识归纳整理

材料力学性能总复习-知识归纳整理

知识归纳整理《材料力学性能》课程期末总复习一、名词解释刚度、形变强化、弹性极限、应力腐蚀开裂、韧性、等温强度、缺口效应、磨损、腐蚀疲劳、脆性断裂、等强温度、应力松弛、Bauschinger效应、粘着磨损、缺口敏感度、冲击韧度、滞弹性、韧脆转变温度、应力腐蚀、抗拉强度、蠕变、高温疲劳、低应力脆断、氢脆、弹性变形、应力状态软性系数、应力幅、应力场强度因子、变动载荷、抗热震性、弹性比功、残余应力、比强度、高周疲劳、约比温度、滑移、应变时效、内耗、断面收缩率、腐蚀磨损二、挑选题1、Bauschinger效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限()的现象。

A.升高B.降低C.不变D.无规律可循2、橡胶在室温下处于:()A.硬玻璃态B.软玻璃态C.高弹态D.粘流态3、下列金属中,拉伸曲线上有明显屈服平台的是:()A.低碳钢B.高碳钢C.白口铸铁D.陶瓷4、HBS所用压头为()。

A.硬质合金球B.淬火钢球C.正四棱金刚石锥D.金刚石圆锥体5、对称循环交变应力的应力比r为()。

A.-1 B.0 C.-∞D.+∞6、Griffith强度理论适用于()。

A.金属B.陶瓷C.有机高分子D.晶须7、疲劳裂纹最易在材料的什么部位产生()。

A.表面B.次表面C.内部D.不一定8、⊿Kth表示材料的()。

A.断裂韧性B.疲劳裂纹扩展门槛值求知若饥,虚心若愚。

C.应力腐蚀破碎门槛值D.应力场强度因子9、拉伸试样的直径一定,标距越长则测出的断面收缩率会()。

A.越高B.越低C.不变D.无规律可循10、下述断口哪一种是延性断口()。

A.穿晶断口B.沿晶断口C.河流花样D.韧窝断口11、与维氏硬度可以相互比较的是()。

A.布氏硬度B.洛氏硬度C.莫氏硬度D.肖氏硬度12、为提高材料的疲劳寿命可采取如下措施()。

A.引入表面拉应力B.引入表面压应力C.引入内部压应力D.引入内部拉应力13、材料的断裂韧性随板材厚度或构件截面尺寸的增加而()。

6005A铝合金力学性能标准整理分析

6005A铝合金力学性能标准整理分析

(一)GB 5237.1—2008 铝合金建筑型材第1部分:基材6005,6005A供货状态:T5、T6
室温力学性能要求(取样部位的公称壁厚小于1.20mm时,不测断后伸长率。

):
a 硬度仅供参考。

(二)GB/T 6892—2006 一般工业用铝及铝合金挤压型材车辆型材指适用于铁道、地铁、轻轨等轨道车辆车体结构及其他车辆车体结构的型材。

6005,6005A供应状态:T6
型材的室温纵向拉伸力学性能:
a A5.65表示原始标距(L0)为5.65S0的断后伸长率。

b 壁厚不大于1.6mm的型材不要求伸长率。

(三)GB/T 10623—2008 金属材料力学性能试验术语A 伸长率:原始标距L0的伸长与原始标距之比的百分率。

Rp 规定非比例延伸强度:非比例延伸率等于引伸计标距(L e)规定百分率时的应力。

注:使用的符号应附以下脚标注说明所规定的百分率,例如:R p0.2。

(四)GB/T 3191—2010 铝及铝合金挤压棒材
6005,6005A供货状态T5、T6
棒材的室温纵向拉伸力学性能:
(五)GB/T4437.2-2003 铝及铝合金热挤压管第2部分:有缝管6005,6005A供货状态T5
管材的纵向室温力学性能:
(六)GB/T 26494—2011 轨道列车车辆结构用铝合金挤压型材6005,6005A供货状态T6
室温纵向拉伸力学性能:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章弹性比功——材料吸收弹性变形功的能力滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象滞弹性的影响因素(1)材料的成分、组织 材料组织越不均匀,滞弹性越明显。

(2)试验条件:a) 温度T↑→滞弹性速率和滞弹性应变↑b) 切应力愈大,滞弹性越明显。

消除办法: 采用长期回火回火的作用是使间隙原子到位错空位和晶界去,自身变得比较稳定。

金属的内耗 加载时消耗于金属的变形功大于卸载时金属放出的变形功,因而有一部分变形 功为金属所吸收,这部分吸收的功就称为金属的内耗。

循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗,表示材料吸收不可逆变形的能力,亦称消振性。

循环韧性的意义是:材料循环韧性愈高,则机件依靠材料自身的消振能力愈好。

包申格(Bauschinger )效应 金属材料经过预先加载产生少量塑性变形(残余应变小于1-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

消除方法(1)预先经受较大的塑性变形(2)在第二次反向受力前使金属材料于回复或再结晶温度下退火金属材料常见的塑性变形方式主要为滑移和孪生屈服现象是金属材料开始产生宏观塑性变形时的标志。

屈服点σs :材料的在拉伸过程中试验力不增加(保持恒定)仍能 继续伸长时的应力。

σs =Fs/ A0上屈服点σsu : 试样发生屈服而试验力首次下降前的最大应力。

σsu =Fsu/A0下屈服点σsl : 当不计初始瞬时效应(指在屈服过程中试验力第一次发生下降)时的屈服阶段的最小应力。

σsl =FsL/ A0影响屈服强度的因素(一) 影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同,单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。

派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。

)2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动 →产生宏观塑性变形 。

晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。

屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) 3.溶质元素加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动 →使位错受阻→提高屈服强度 (固溶强化) 。

4.第二相(弥散强化,沉淀强化)1.第二相质点本身能否变形2.第二相的强化效果还与其尺寸、形状、数量、分布以及第二相与基体的强度、塑性和应变硬化特性、两相之间的晶体学配合和界面能等因素有关。

如:a) 第二相均为硬脆相,沿晶界网状分布→沿晶界不连续网状分布→弥散均匀分布于基体 脆性减小 b)片状珠光体比球状珠光体屈服强度高 原因:长形质点显著影响位错运动。

位错绕过第二相,按照这种方式,位错运动的阻力主要来自弯曲位错的线张力:如果再考虑到质点大小的影响,则位错线的运动绕过阻力为:由上式可知: 当r >b 时,随着L ↓→τ↑,即第二相质点数量越多,越分散,材料的屈服强度就越高。

随着绕过位错数量的增加,质点周围留下的位错越来越多,因而其相邻质点间距L 便越来越小,弯曲位错所需的切应力就越来越高,表现为形变强化现象,这是两相合金形变强化的原因之一。

(二) 影响屈服强度的外因素1.温度一般的规律是温度升高,屈服强度降低。

原因:派拉力属于短程力,对温度十分敏感。

2.应变速率应变速率大,强度增加。

σε,t = C 1(ε)m3.应力状态 切应力分量越大,越有利于塑性变形,屈服强度越低。

缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。

应变硬化——在金属整个变形过程中,当外力超过屈服强度之后,塑性变形并不是像屈服平台那样连续流变下去,而需要不断增加外力才能继续进行。

这表明金属材料有一种阻止塑b r L Gb ln=τL Gb=τ2/1y i k -+=ds σσ性变形的能力。

应变硬化指数在金属材料拉伸真应力-应变曲线上的均匀塑性变阶段,应力与应变之间符合Hollomon关系式:S = keⁿn—应变硬化指数,金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化能力的性能指标。

k—硬化系数,真应变等于1.0时的真实应力n=1 材料为完全理想的弹性体,S与e成正比关系。

n=0 s=k=常数,材料没有应变硬化能力。

应变硬化在生产实际中的意义*应变硬化可使金属零件具有抵抗偶然过载的能力,保证安全。

*应变硬化是工程上强化材料的重要手段。

如18-8型不锈钢,变形前σ0.2 =196MPa,经40%冷轧后,σ0.2 = 780~980MPa,屈服强度提高3~4倍。

*应变硬化性能可以保证某些冷成形工艺,如冷拔线材和深冲成形等顺利进行。

磨损、腐蚀和断裂是机件的三种失效形式断口三要素纤维区、放射区和剪切唇韧性断裂:中、低强度钢光滑圆柱试样在室温的静拉伸断裂就是典型的韧性断裂,其宏观断口呈杯锥状脆性断裂断裂前基本上不发生塑性变形。

脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状韧断的特征:a) 伴随塑性变形及能量吸收;b) 工件外形呈颈缩、弯曲及断面收缩;c) 断面一般平行于最大切应力并与主应力成45°。

脆断的特征:a) 断裂时构件承载的工作应力并不高,通常不超过σs,故又称为低应力脆断。

b) 脆断总是从构件内部存在的宏观裂纹作为“源”开始的。

c) 中、低强度钢脆断常在低温下发生,而高强钢则不一定。

d) 断口平整光亮,有金属光泽,且与正应力垂直,断面上有人字或放射花纹。

解理裂纹的形成位错塞积理论的要点:塑性变形→位错运动受阻→位错塞积→塞积头应力集中→如塞积头处最大拉应力σfmax≥理论断裂强度σm→产生裂纹解理断裂的微观断口特征1解理断裂:解理台阶、河流花样、舌状花样、鱼骨状花样(人字型花样、二次裂纹解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面--解理面,一般是低指数,表面能低的晶面。

微孔聚集断裂的微观特征微孔聚集的过程亦有两种形式,一种是相邻微孔成长至互相接触;另外是相距较大的微孔由于微孔之间的基体金属发生变形—颈缩而引起微孔的聚集。

韧窝的大小与深浅,决定于材料断裂时孔洞核心的数量、材料本身相对塑性和环境温度。

解理和准解理之间有联系共同点:都是穿晶断裂;有小解理刻面;有台阶或撕裂棱及河流花样。

区别:准解理小刻面不是晶体学解理面;真正的解理裂纹常源于晶界,而准解理裂纹则常源于晶内硬质点,形成从晶内某点发源的放射状河流花样E(G)弹性模量σb 抗拉强度σs 屈服强度σr 规定残余伸长应力σt 规定总伸长应力σ0.2拉服强度n —应变硬化指数第二章弯曲试验的特点金属杆状试样承受弯矩作用后,其内部应力主要为正应力。

但杆截面上的应力分布不均匀,表面最大,中心为零,且应力方向发生变化。

1) 弯曲试验的试样形状简单,操作方便。

常用于测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别。

2) 弯曲试验时可用试样弯曲的挠度显示材料的塑性。

3) 弯曲试验时,试样的表面应力最大,可较灵敏地反映材料的表面缺陷。

常用来比较和鉴定渗碳层和表面淬火层等表面热处理机件的质量和性能。

试样在弹性范围内弯曲时,受拉侧表面的最大弯曲应力:M -最大弯矩: 三点弯曲 M=FLS/4四点弯曲 M=Fl/2 W -试样的抗弯截面系数: 圆形试样 矩形试样缺口效应1:引起应力集中,并改变缺口前方的应力状态。

对于脆性或低塑性材料,使其抗拉强度降低。

缺口效应2:使塑性材料强度增高,塑性降低缺口敏感度:金属材料对缺口的敏感性指标用缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb 的比值作为材料的缺口敏感性指标,称为缺口敏感度应力状态软性系数:最大切应力τmax 与最大正应力σmax 的比值表示它们的相对大小HR 洛氏硬度值HV 维氏硬度值HK 努氏硬度值HBW 布氏硬度值NSR 缺口敏感度σbb 抗弯强度σbn 缺口抗拉强度σbc 脆性材料的抗压强度W M =σ123d W π=62bh W =b bn e q σσ=)(2232131max max σσυσσσστα+--==第三章冲击吸收功Ak :式样变形和断裂所消耗的功,单位J Ak=GH 1-GH 2低温脆性当试验温度低于某一温度tk 时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这即低温脆性,转变温度tk 称为韧脆转变温度,亦称韧脆转变温度。

韧脆转变的物理本质断裂强度σc 随温度的变化较小,而屈服强度σs 对温度十分敏感,随温度降低,屈服强度升高,两者的交点tk 即为韧脆转变温度。

T >Tk σc >σs 韧性断裂T <Tk σc <σs 脆性断裂影响韧脆转变温度的冶金因素1、晶体结构:体心立方金属及合金存在低温脆性。

普通中低强度钢的基体都是体心立方点阵的铁素体2、化学成分的影响:1)间隙溶质元素↑→韧脆转变温度↑2) 置换型溶质元素一般也能提高韧脆转变温度,但Ni 和一定量Mn 例外。

3) 杂质元素S 、P 、As 、Sn 、Sb 等使钢的韧性下降3、晶粒尺寸:细化晶粒使材料韧性增加4、金相组织 1) 对低强度钢:按tk 由高到低的顺序:珠光体→上贝氏体→铁素体→下贝氏体→回火马氏体2) 对中碳合金钢且强度相同,tk :下贝氏体<回火马氏体;贝氏体马氏体混合组织>回火马氏体3) 低碳合金钢的韧性:贝氏体马氏体混合组织>单一马氏体或单一贝氏体4) 马氏体钢的韧性:奥氏体的存在将显著改善韧性钢中夹杂物、碳化物等第二相质点对钢的韧性有重要影响,影响的程度与第二相质点的大小、形状、分布、第二相的性质及其与基体的结合力等性质有关。

二、外界因素1、温度2、加载速率3、试样尺寸和形状AK 冲击吸收功AKVV 形缺口试样冲击功F ATT50-冲击试样断口中结晶区面积占整个断口面积50%时NDT 无塑性转变温度,以低阶能开始上升的温度定义的韧脆转变温度第四章应力强度因子KI :表示应力场的强弱程度。

断裂韧度Kic 的测试(式样的形状、尺寸及制备)试样的形状、尺寸及制备1、四种试样:三点弯曲,紧凑拉伸,C 型拉伸,圆形紧凑拉伸试样。

2、试样厚度、裂纹长度、韧带宽度有严格要求:预先估计KIC (类比法),再逼近。

3、试样材料、加工和热处理方法也要和实际工件相同;预制裂纹长度有一定要求,疲劳裂纹长度>2.5%W,且不小于1.5mm 。

相关文档
最新文档