不动点法求数列通项
用不动点法求数列的通项公式

用不动点法求数列的通项公式
不动点法求数列的通项公式,属于数学当中的经典问题。
在数列
求解中,通项公式是根据一系列给定的数据,推导出整个数列通项的
一个重要方法,常用于数学教学中。
不动点法就是一种特殊的求解数
列通项公式的方法,也称为四平方定理,它是以π(取3.14)为精
度来进行计算的。
不动点法求数列的通项公式是基于一个给定数列,建立一个满足
条件的多项式,其本质上是一个多项式合成问题,通过证明不动点法
的公式有解,从而得到了一个关于数列的通项的求解公式。
不动点法的求解步骤:
1、首先将给定的数列表示为:x0, x1, x2,..., xn。
2、接着求出其差分序列,即:y0 = x1 - x0, y1 = x2 - x1,… yn-
1=xn - xn-1。
3、对差分序列求出n-1阶伴随矩阵:A = (aij)n-1 * (n-1),其系
数aij满足:aij(i≥j) = yi + 1 - yj,aij(i < j) = -(yi - yj)。
4、解半平方定理,即:det(A)= B^2 - 4AC = 0, 求出参数A,B,C,
其中A为半平方定理中的A,B为半平方定理中的B,C为半平方定理
中的C。
5、由A,B,C,求出数列的通项公式:an = x0 + nb + cn(n-1)/2。
总结一下,不动点法求数列的通项公式主要步骤:首先表示数列
为x0, x1, x2 ... xn;接着求出差分序列;依据差分序列求出伴随矩阵;然后解得半平方定理;最后根据参数求出数列的通项公式,即an
= x0 + nb + cn(n-1)/2。
不动点法解决数列通项公式的适用条件

不动点法解决数列通项公式的适用条件
要使用不动点法解决数列通项公式,首先需要确定数列的递推关系式。
数列的递推关系式
描述了数列中每一项与前一项之间的关系,通常用一个公式来表示。
例如,Fibonacci数
列的递推关系式为:$F(n) = F(n-1) + F(n-2)$,其中$F(n)$表示第n个Fibonacci数。
在确定了数列的递推关系式之后,我们可以构造一个基于该递推关系式的函数。
这个函数
通常会包含一个参数,表示数列中的项数。
例如,对于Fibonacci数列,我们可以定义一
个函数$f(n) = f(n-1) + f(n-2)$,其中$f(n)$表示第n个Fibonacci数。
接下来,我们需要找到这个函数的不动点。
不动点就是满足$f(x) = x$的点,即在这个点上
函数的值不会发生变化。
通过迭代的方式,我们可以逼近这个不动点,从而得到数列的通
项公式。
不动点法的适用条件主要取决于数列的递推关系式和函数的性质。
在一般情况下,不动点
法适用于具有良好递推性质的数列,即数列中的每一项都能够通过前一项和前两项来计算。
此外,函数的性质也会影响不动点法的适用性,例如函数的连续性、单调性等。
总的来说,不动点法是一种有效的求解数列通项公式的方法。
通过寻找函数的不动点,我
们可以得到数列的解析表达式,从而更好地理解数列的性质和规律。
在实际应用中,不动
点法可以用于解决各种数学问题,如概率论、统计学等领域的数列求解。
不动点求数列通项原理

不动点求数列通项原理,也叫做“不动点法”,是数学中一种重要的递推方法。
它可以帮助我们求出任意一个等差数列的通项公式。
不动点求数列通项原理的基本思想是:假如一个等差数列的前两项分别为a1和a2,那么它的通项公式可以写为a1+n(a2-a1),其中n是从1开始的正整数。
换句话说,不动点求数列通项原理是根据一个等差数列的前两项,以及它们之间的差值,求出它的通项公式。
接下来,我们来看一个具体的例子:假设我们要求一个等差数列的通项公式,它的前两项分别为a1=2,a2=4。
显然,它们之间的差值为a2-a1=2。
根据不动点求数列通项原理,它的通项公式可以写为a1+n(a2-a1)=2+n(2)=2+2n。
以上就是不动点求数列通项原理的基本原理,它可以帮助我们快速求出任意一个等差数列的通项公式。
此外,不动点求数列通项原理也可以应用于求解其他类型的数列,例如等比数列和等比数列。
例如,假设我们要求一个等比数列的通项公式,它的前两项分别为a1=2,a2=4。
那么它的公比为a2/a1=2,根据不动点求数列通项原理,它的通项公式可以写为a1r^(n-1)=22^(n-1)。
综上所述,不动点求数列通项原理是一种非常有用的递推方法,它可以帮助我们快速求出任意一个等差数列、等比数列及其他类型的数列的通项公式。
不动点法求数列的通项公式

a 一1一 P a— c
a 一1一 P
a— cp
+
.— d+ cp
—
。
a 一1一 P a— c
又 P为方 程 cz + (d-a)x-b=0的 唯一 解 .则
将 = 代入 上式可 得
点 来求 解通 项. 定理 3 若上 述 函数 ,(z)一 ax  ̄+ b有 两 个 不 同
1 常数消去法回顾
{口 )满 足递 推 关 系 口 一厂(口 一 ),即 口 一
.
设平移替换an:Cn+ ,则有c 一爱
给定 初始 值 n ≠厂(n ).接 下 去 我们 就 可 以利 用 函数
一
等
.
厂(z)的不动 点来 求解数 列 {n )的通项公 式 . 下 面求 函数 厂(z)的不动 点.
形 数 ”①之 间的 关系.
数 学 的教 与学离 不 开 问题 和 问题 解 决.如何 充 分
发 挥 问题和 问题解 决 的功 能 ,应 该 成为 数 学教 育 研 究
第 3类 :T(8)一36.
的重要 课题 .本 文主 旨在 于为 拓 展传 统 的问题 解 决模
所 以 ,本 题 答案 为 120+84+36—240(个 ).
1万照例 1的 解 法 ,可 以 得 到 每 一 类 中三 位 数 的 个数 .
第 1类 :T(1)+ T(2)+… +丁(7)+T(8)一120; 第 2类 :T(1)+ T(2)+… +T(7)一84;
∑ k +T( )一2∑ T(忌).
k一 1
= 1
这一 等式 的意 义在 于沟通 了“三角 形 数 ”与 “正 方
证 明 :一 =
一
不动点法求数列通项公式

不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.下面结合不动点法求通项的各种方法看几个具体的例子吧.◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.【说明:这题是“相异不动点”的例子.】先求不动点∵a[n+1]=2/(a[n]+1)∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)=(2-a[n]-1)/(2+2a[n]+2)=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项.【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2) b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2).b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项.【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些.】∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]。
数列不动点

用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: Θk x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b Θ11 21x x0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n。
数列-不动点法求通项公式

用不动点法求递推数列d t c b t a t n n n +⋅+⋅=+1(a 2+c 2≠0)的通项 1.通项的求法 为了求出递推数列dt c b t a t n n n +⋅+⋅=+1的通项,我们先给出如下两个定义: 定义1:若数列{n t }满足)(1n n t f t =+,则称)(x f 为数列{n t }的特征函数. 定义2:方程)(x f =x 称为函数)(x f 的不动点方程,其根称为函数)(x f 的不动点. 下面分两种情况给出递推数列d t c b t a t n n n +⋅+⋅=+1通项的求解通法. (1)当c=0,时, 由d t c b t a t n n n +⋅+⋅=+1d b t d a t n n +⋅=⇒+1, 记k d a =,c db =,则有c t k t n n +⋅=+1〔k ≠0〕, ∴数列{n t }的特征函数为)(x f =kx+c,由kx+c=x ⇒x=k c -1,则c t k t n n +⋅=+1⇒)1(11k c t k k c t n n --=--+ ∴数列}1{kc t n --是公比为k 的等比数列, ∴11)1(1-⋅--=--n n k k c t k c t ⇒11)1(1-⋅--+-=n n k kc t k c t . (2)当c ≠0时,数列{n t }的特征函数为:)(x f =dx c b x a +⋅+⋅ 由x dx c b x a =+⋅+⋅0)(2=--+⇒b x a d cx 设方程0)(2=--+b x a d cx 的两根为x 1,x 2,则有:0)(121=--+b x a d cx ,0)(222=--+b x a d cx ∴12)(1x a d cx b -+= (1)222)(x a d cx b -+=……(2) 又设212111x t x t k x t x t n n n n --⋅=--++(其中,n ∈N *,k 为待定常数). 由212111x t x t k x t x t n n n n --⋅=--++⇒2121x t x t k x dt c b t a x d t c b t a n n n n n n --⋅=-+⋅+⋅-+⋅+⋅ ⇒212211x t x t k dx t cx b at dx t cx b at n n n n n n --⋅=--+--+……(3) 将(1)、〔2〕式代入(3)式得:2122221121x t x t k ax t cx cx at ax t cx cx at n n n n n n --⋅=--+--+ ⇒212211))(())((x t x t k x t cx a x t cx a n n n n --⋅=----⇒21cx a cx a k --= ∴数列{21x t x t n n --}是公比为21cx a cx a --(易证021≠--cx a cx a )的等比数列. ∴21x t x t n n --=1212111-⎪⎪⎭⎫ ⎝⎛--⋅--n cx a cx a x t x t ⇒12121111212111211--⎪⎪⎭⎫ ⎝⎛--⋅---⎪⎪⎭⎫ ⎝⎛--⋅--⋅-=n n n cx a cx a x t x t cx a cx a x t x t x x t .2.应用举例例1:已知数列{a n }中,a 1=2,3121+=+n n a a ,求{a n }的通项。
不动点法求数列的通项公式

)
8(an
1 7
)
an
1 7
8 7
8n1
即
an
8n 1 7
2.递推式形如
an1
Aan Can
B D
的数列
①当特征值 ,
是实数且不等时,
an an
为等比数列
②当特征值 ,
是实数且相等时,
an
1
为等差数列
③当特征值 , 是复数时,个别数列 an 具有周期性
练习2.
附录22 不动点法求数列的通项公式
一、有关概念
1.不动点 2.特征方程与特征值
二、常见题型
1.递推式形如 Aan1 Ban C 0 的数列
2.递推式形如
an1
Aan Can
B D
的数列
3.递推式形如 Aan2 Ban1 Can 0 的数列
1.不动点:方程 f (x) x 的根称为函数 f (x) 的不动点 例1:函数 f (x) x2 2x 的不动点是__x___0__或__x___3_
x x 3 3x 1
其特征值为虚根,故 {an}为周期数列
a1 0
, a2
a1 3 3a1 1
3
, a3
a2 3a2
3 1
3
a4
a3 3 0 3a3 1
周期为3也,故 a20 a2 3
3.递推式形如 Aan2 Ban1 Can 0 的数列
①当特征值 , 是实数且不等时,
能否找到一个图形,当它的面积无限减小时,它的周长则无限增大
解:因 an1 3an 1
即
(an1
1 2
)
3(an
1 2
)
故
an
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征方程法求解递推关系中的数列通项考虑一个简单的线性递推问题.设已知数列}{n a 的项满足其中,1,0≠≠c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理 1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列?解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601i x a +-== 现在考虑一个分式递推问题(*).例3.已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 将这问题一般化,应用特征方程法求解,有下述结果.定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均a 1=ba n+1=ca n +d为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r h r q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n r h rd r p d d n n n λλ ② 将r p x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,r p ≠于是.0≠-r p λ ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④由λ是方程h rx q px x ++=的两个相同的根可以求得.2rh p -=λ ∴,122=++=---+=-+h p p h r r h p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以r p r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a n n n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第(2)部分如下: ∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ 故21111λλ--=+++n n n a a c ,将h ra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p h q a r p r p c n n n λλλλλλ ⑥ ∵特征方程h rx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--r p h q r p h q 将上两式代入⑥式得N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p r p 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,h ra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.现在求解前述例3的分类递推问题)(*. 解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-⋅--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a nn n 例4.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答.(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a(2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(11 51131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n n λ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.。