常用数值分析方法3插值法与曲线拟合

合集下载

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。

- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。

2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。

- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。

3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。

- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。

4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。

- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。

综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。

曲线拟合和插值运算原理和方法

曲线拟合和插值运算原理和方法

实验10 曲线拟合和插值运算一. 实验目的学会MATLAB 软件中软件拟合与插值运算的方法。

二. 实验内容与要求在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。

根据测量数据的类型有如下两种处理观测数据的方法。

(1) 测量值是准确的,没有误差,一般用插值。

(2) 测量值与真实值有误差,一般用曲线拟合。

MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。

1.曲线拟合已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。

最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i ii f x y =-∑ 最小的f(x).格式:p=polyfit(x,Y ,n).说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。

[例 1.9]>>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值>>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值>>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数>>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值>>y1=polyval(p,1x ); %求出f(x)在1x 的值>>plot(x,y,‟*r ‟, 11,x y ‟-b ‟) %比较拟合曲线效果计算结果为:p=0.5614 0.8287 1.1560即用f(x)=0.56142x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。

计算方法教学配套课件刘师少第五章插值与曲线拟合

计算方法教学配套课件刘师少第五章插值与曲线拟合

Tel:86613747E-mail:*************授课: 68学分:45.1 问题的提出– 函数解析式未知,通过实验观测得到的一组数据, 即在某个区间[a, b]上给出一系列点的函数值y i = f(x i )– 或者给出函数表x x 0x 1x 2……x n yy 0y 1y 2……y n第五章插值与曲线拟合5.2 插值法的基本原理设函数y=f (x )定义在区间[a, b ]上,是[a, b ]上取定的n+1个互异节点,且在这些点处的函数值 为已知 ,即若存在一个f(x)的近似函数 ,满足则称为f (x )的一个插值函数, f (x )为被插函数, 点x i 为插值节点, 称(5.1)式为插值条件, 而误差函数R(x)= 称为插值余项, 区间[a, b ]称为插值区间, 插值点在插值区间内的称为内插, 否则称外插n x x x ,,,10 )(,),(),(10n x f x f x f )(i i x f y =)(x ϕ),,2,1()()(n i x f x i i ==ϕ)(x ϕ(5.1))()(x x f ϕ-插值函数 在n+1个互异插值节点(i=0,1,…,n )处与 相等,在其它点x 就用的值作为f (x )的近似值。

这一过程称为插值,点x 称为插值点。

换句话说, 插值就是根据被插函数给出的函数表“插出”所 要点的函数值。

用的值作为f (x )的近似值,不仅希望能较好地逼近f (x ),而且还希望它计算简单。

由于代数多项式具有数值计算和理论分析方便的优点。

所 以本章主要介绍代数插值。

即求一个次数不超过n 次的多项式。

)(x ϕi x )(i x f )(x ϕ)(x ϕ)(x ϕ0111)(a x a xa x a x P n n n n ++++=--111)(a x a xa x a x P n n n n ++++=-- 满足),,2,1,0()()(n i x f x P i i ==则称P(x)为f(x)的n次插值多项式。

差值与拟合 3讲解

差值与拟合 3讲解

插值的维数
• interp1: 一维插值; • interp2: 二维插值; • interp3: 三维插值; • interpn: n维插值;
matlab中插值的函数
• 拉格朗日多项式插值 Matlab中没有现成的Lagrange插值函数,必须编写
一个M文件实现Lagrange插值 • 牛顿插值(实际中比较少运用) • Hermite插值
插值与拟合
数学建模工作室 杨高飞
2019/5/8
插值与拟合
• 插值和拟合的定义 • 常用插值方法 • 拟合的原理 • matlab中的拟合 • matlab拟合工具箱使用
35
35
30
30
25
25
20
20
15
15
10
10
5
1
2
3
4
5
6
7
5
1
2
3
4
5
6
7
插值法:求过已知有限个数据点的近似函数。
拟合法:已知有限个数据点,求近似函数,不要求过已知
试根据上面的数据建立y和t之间的经验公式y=f(t),也就是, 要找出一个能使上述数据大体适合上述数据的函数关系 y=f(t)。
最小二乘法
首先,要确定f(t)的类型。 做散点图,从图可以看出,这些点的
连线大致接近于一条直线。于是,就 可以认为y=f(t)是线性函数,并设 f(t)=at+b 其中a 和b是待定常数 a 和b如何确定?
2.数据的选取
3关闭Data对话框,生成一数据组的散点分布图 。
4.曲线拟合(幂函数power)
5.拟合得到的曲线
6.拟合后的结果信息
• 在result中有 • General model Power2: • f(x) = a*x^b+c • Coefficients (with 95% confidence bounds): • a = 1.665 (-1.187, 4.516) • b = 0.7187 (0.1406, 1.297) • c = 1.372 (-2.352, 5.097)

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。

它们在数据分析、模型构建和预测等领域发挥着重要作用。

本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。

插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。

它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。

原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。

常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。

应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。

主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。

•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。

•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。

曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。

它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。

原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。

然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。

应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。

主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。

•曲线拟合可以选择不同的函数形式和参数,灵活性较高。

•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。

《数值分析》第5章 曲线拟合与函数插值

《数值分析》第5章 曲线拟合与函数插值

例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为

数学建模插值法与曲线拟合讲课

数学建模插值法与曲线拟合讲课

插值法的matlab实现—一维插值
命令:interp1(x0,y0,x,’method’) 其中:x0:插值节点;
y0:插值节点处的函数值; x:要计算函数值的点;
method:
l i n e a r :分段线性插值; c u b i c :分段三次埃尔米特插值; s p l i n e :三次样条插值。
z4
8
686
8
8
x 157.5 107.5 77 81 162 162 117.5
y -6.5 -81 3 56.5 -66.5 84 -33.5
z9
9
88
94
9
水深和流速的问题
在水文数据测量中,不同水深的流速是不同的. 水文数据的测量 时天天进行的,为了减少测量的工作,希望得到确定的水深和水 流之间的关系. 为此测量了一系列不同水深和流速值. 下表给出了 对某河流的测量数据,其中水深和流速根据适当的单位进行了规 范化,共10个值.
插值与拟合的不同点
插值: 过节点; ; 拟合: 不过点, 整体近似;
插值法
拉格朗日插值 牛顿插值 三次埃尔米特插值法 分段线性插值 分段三次埃尔米特插值法 三次样条插值
1、 拉格朗日插值公式
(1)定义
对给定的n+1个节点x0 , x1,x2,…,xn及对应的函数值y0 , y1,y2,…,yn, 构造一个n次插值多项式:
f(x)=1/(1+x2) , 但对于3.63≤∣x∣≤1的x,Pn(x)严重发散。 用图形分析问题。
for n=10:2:20
%从10等份到20等份
x0=[-5:10/n:5]; %插值节点
y0=1./(1+x0.^2); %插值节点处的精确函数值

3插值曲线拟合

3插值曲线拟合
y01 = 0.639700000000000 y02 = 0.693100000000000 y03 = 0.641818996851421 y04 = 0.641831200000000
例4 对 y
性插值和三次样条插值, 用m=21 x=-5:10/(m-1):5 y=1./(1+x.^2) z=0*x x0=-5:10/(n-1):5 y0=1./(1+x0.^2) y1=interp1(x0,y0,x) y2=interp1(x0,y0,x,'spline') [x' y' y1' y2'] plot(x,z,'r',x,y,'k:',x,y1,'b',x,y2,'g') gtext('Piece.linear.'),gtext('Spline'),gtext('y=1/(1+x^2)')
例 6 在飞机的机翼加工时, 由于机翼尺寸很大, 通常在图 纸上只能标出部分关键点的数据. 某型号飞机的机翼上缘 轮廓线的部分数据如下:
x=[0 4.74 9.05 19 38 57 76 95 114 133 152 171 190] y=[0 5.23 8.1 11.97 16.15 17.1 16.34 14.63 12.16 9.69 7.03 3.99 0] xi=[0:0.001:190] yi=interp1(x,y,xi,'spline') plot(xi,yi)
MATLAB对已知数据集外部点上函数值的预测都返回NaN, 但可通过为interp1函数添加‘extrap’参数指明也用于外插。 MATLAB的外插结果偏差较大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8/37
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
(1)构造插值基函数
n
Aj(x)
i1
xxi xj xi
xnx1
xnx1
查Q值表得出标准值Q0.90;
返回(1)
可疑值判断
重算
Q≥Q0.90 Q < Q0.90
错误数据 数据合理
剔出 保留。
(5)用标准形式表示统计处理结果
xx2
21:39 07.02.2021
3/37
X.Z.Lin
3.2 插值法( Interpolation )
3.2.1 概述
函数常被用来描述客观事物变化的内在规律——数量关系, 如宇宙中天体的运行,地球上某地区平均气温的变化等等, 但在生产和科研实践中碰到的大量的函数中,不仅仅是用解 析表达式表示的函数,还经常用数表和图形来表示函数,其 中函数的数表形式在实际问题中应用广泛,主要原因是有相 当一部分函数是通过实验或观测得到的一些数据,这些数据 只是某些离散点 xi 上的值(包括函数值f (xi),导数值 f(xi) 等,i = 1,2,…,n),虽然其函数关系是客观存在的,但却不知道 具体的解析表达式,因此不便于分析研究这类数表函数的性 质,也不能直接得出其它未列出点的函数值,我们希望能对 这样的函数用比较简单的表达式近似地给出整体的描述。
算法 拉格朗日(Lagrange)法
➢ 两点插值(线性插值) ➢ 一元三点插值(抛物线插值) ➢ 一元多点插值(插值公式的一般形式) ➢ 分段插值
其他:牛顿(Newton)插值法、 Hermite插值法、
样条函数插值法等。
21:39 07.02.2021
7/37
X.Z.Lin
3.2.2 线性插值
已知:两点( x1 , y1)、( x2, y2 ) 求:两点间任意 x 对应的 y 值。
实际曲线 近似抛物线
理论函数:y=f(x) 插值函数:y=p2(x)
(x1, y1) x
图6.3 抛物线插值示意图
插值基函数: A1(x)((xx1 xx22))((xx1xx33))
插值多项式
A2(x)((xx2 xx1 1))
(xx3) (x2x3)
P 2 ( x ) A 1 ( x ) y 1 A 2 ( x ) y 2 A 3 ( x ) y 3
算,并且使之离散化能上机计算求出积分I,都要用到
插值逼近。
21:39 07.02.2021
5/37
X.Z.Lin
解决上述问题的方法有两类:一类是对于一组离散 点(xi,f (xi)) (i = 1, 2, …,n),选定一个便于计算的函数形
式(x),如多项式,分段线性函数,有理式,三角函数 等,要求(x)通过点(xi)=f (xi) (i = 1, 2,…,n),由此确定 函数(x)作为f (x)的近似。这就是插值法。这里的 g(x)
y y=f(x)
(x2, y2)
实际曲线
理论函数:y=f(x)
y=p(x)
近似直线
插值函数:y=p1(x)
(x1, y1)
x 图6.2 线性插值示意图
直线方程:
p 1 (x ) A 1 (x )y 1 A 2 (x )y 2 (插值多项式)
21:39 07.02.2021
特点: A1(x1)=1,A1(x2)=0 A2(x1)=0,A2(x2)=1
21:39 07.02.2021
4/37
X.Z.Lin
另一方面,有些函数,虽然有解析表达式,但因
其过于复杂,不便于计算和分析,同样希望构造一个
既能反映函数的特性又便于计算的简单函数,近似代
替原来的函数。

如在积分
I f (x)dx a
中,当f (x)很复杂,要
计算积分 I 是很困难的,构造近似函数使积分容易计
X.Z.Lin
归纳一下:
问题
已知:一系列离散的(互不相同的)点xi , yi(i = 1,2,…n)
求:给定点 x 对应的函数值 y 或近似函数表达式。
要求: 已知点满足该函数
思路
构造函数 y=p(x)
插值函数
代数多项式 :
p m (x ) a 0 a 1 x a 2 x 2 a m x m (m n )
10
当 xxj时 当 xxj时
ij
(2)插值多项式
n
pn(x) Aj(x)yj
§3 插值法与曲线拟合
3.1 实验数据统计处理
平行试验数据处理,误差分析。
3.2 插值法(Lagrange插值法)
根据实验测定的离散数据,求未测的某点数据。
3.3 曲线拟合(最小二乘法)
根据实验测定的离散数据,拟合曲线,分析数 据规律,求函数表达式。
21:39 07.02.2021
1/37
X.Z.Lin
称为f(x) 的插值函数。最常用的插值函数是 …多?项式
f(x)
g(x) f(x)
x1
x2
x3
x
x4
x5
另一类方法在选定近似函数的形式后,不要求近似函数过已 知样点,只要求在某种意义下它在这些点上的总偏差最小。这类
方法称为曲线(数据)拟合法,将在下一节介绍。
21:39 07.02.2021
6/37
相关文档
最新文档