待定系数法巧求数列的通项公式
待定系数法求数列通项公式

待定系数法求数列通项公式例題h在数列0}中,O, - 1,--兀+1,试求其通项金弍,分折*显然,这不是等差豉等比数列,但如果在。
杠=2务+ 1的两迪同对工I上1,整理为+ 1 =2(^+1).此时,把%"1和4+1看f乍1个整体#或者换元F令如!=%W,那么毎F +打即b^ = 2b ar E"]+l = 2・因此,数列{耳+1}或何}就是以2为首项,以2为公土的筈土散列5 + 1-二或者阮".进一步求出a… = 2H-K启示;在送个何鬆中,容易看出空左苔两边帕上1就枸或了新的等比数歹[0十那不谢看出在左右两边该忙4后枸成新的等比数列时,该怎么办呢?其实,已知%]=加”十1,可变形为十2 = 2(比-心的形式.慝后履幵括号、移项后再与=2%亠1拒比较,利用待定系数法可得昭= L t这榕对于形如片七(其中严彳为羔蛻且驹*0屮*1〉的逵推数列,先变为心:+ —庶斗十心比形式,展开“移匝利弔行定系晝注有3」1)口・2=宀P-1菲七)p -1 P —1匹数列鼻+—M首项为町旦座比为卩的笔比数见I 戶―p-1那么.芝g 变为/(«),/(«)是关于川非零多项弍时.该怎么办呢?是否也能运冃待定系数法呢?二 a” [Jpa 尸十qn+r (pg*O ・Ep#l)型例題2.在数列Q}中,a=l,^:= 2厲+ 3卄1,试求其通项公式。
分析,按照例题1的思路,左两边既妄切上某一常数同时也妾加上n 的倍数,才能便新 的数列有一致的形式C 先变为弘.:+弘十1)一2 = 2(6十如十1,畏开比较得2 = 3•即ai + 3(M + l) = 2g+3n)+4进一步a”i + 3(n +1) + 4 = 2(a w — 3n + 4)则数列匕十3—4}是a :十3x1-4 =8苣坝为色十3x1 + 4 = 8公比为2的等比数列,所以同样,形如二叫十驴+ r 的违推数列,设+x{n+l)+y- pia^xn^y)展开.移项、整理,比较对应系数胡尊,歹[岀方程[9;叹・?X N ---解得 <P 」x +尸 q rv- - 2~y -+ - r P-i (P-ir P -I即 4心1 + g («+o + ?宀 +r= q 幺 +z (p-ir P 丿 L的等比数列,于是就可以进一步求出{q }的通项•因此.形如巧="严这—类型的数列.都可以利用待定系数法来求解.则数列"Q+畀厂話是以鳥严二为首项,以卩为公比5 g jp_l (p — L)・ p —l-叵理,若= 其中/(“)是关于n的多项弍时,也可以构造新的等乂数列,利用待定系数法求岀其通项。
用待定系数法巧解数列的通项公式

易得 口 一~4 . 所 以
a 一 一4 ×3 一 +4 咒 +3 .
l 6 一
al 1一
a2
Z 1一 2
下 面 用数学 归纳 法证 明这 一定 理 :
例 2 在数列 ( 以 } 中, 已知 a -3 , 对丸 ∈
, a + 1 =2 a +5 ×3 ” , 求a . 解 设
第3 4卷第 1 期
2 0 1 5 年 1月
数 学教 学研究
6 3
用待 定 系数 法巧 解 数列 的 通项 公 式
汪 科
7 4 3 0 0 0 ) ( 甘肃省定西市安定 区福台 中学
在高中数学教 学 中, 求解数列的通项公 式是一个棘手的问题 , 许多学生因为其 推理 难度大 , 总掌握不好 , 为 了解决这一 问题 , 经 过归纳, 我总结出用待定 系数法 求几类 常见 题型数列 的通项公式 的方法 , 希 望能给正在
n 一口 硝~ +6 z 2 一 .
又当 咒 一1 时, 口 0 =n +6 +c , 从而
一
一 卫
— — —
r — -q - pr —
‘
收 稿 日期 : 2 0 1 4 — 0 9 - 3 0
6 4
数 学教 学研 究
第 3 4卷第 1 期
2 0 1 5年 1月
q 为已知常数, 7 z ∈ ) , 若关 于 的方程 X
I 【 , 一 =垡 二
( 1 - p) 。’
+户 +口 一O 存在不等实数根 和 z z , 则存 在唯一实数 a , b y 使得 a 一n +6 _ 。 . 证明 假设存在实数 以 , 6 , 使得
n - - - 2 ” 一 0 +3 ” 一b ,
用待定系数法求解递推数列的通项公式

用待定系数法求解递推数列的通项公式
1待定系数法概述
待定系数法(待实例后,又称勒让德法)是一种求解递推数列通项公式的数学方法。
它以建立恰当的通项公式和找出隐含其中的待定系数为任务来处理数学问题。
因此,它属于一种推广了线性代数知识的计算方法,能够解决较为复杂的数列序列求解问题。
2基本步骤
第一步:准备递推数列,也就是给足够的项,然后依此保持一定的规律,确定n的范围,比如n的取值从0开始,一直到n-1;
第二步:将所有系数都放回到等式左边,将等号右边的数字转化为系数,并写作公式的右边:
第三步:用矩阵解法求解。
假设A=(aij),B=(bi)是m方系数矩阵和m向量,其中i、j可取从1到m,那么求解相应线性代数方程组AX=B,则X=AB-1;
第四步:最后将得到的X中所有的数给出,即得出该递推数列的通项公式。
3示例及应用
以下例子来说明如何使用待定系数法求解递推数列的通项公式:例如:求数列an的通项公式
由给定的递推关系an=an-1-1,可得a0=1
根据待定系数法求解,设an=a0xn:
a0xn=a0x(n-1)-1
化简成:xn-xn-1=-1
可以得出答案:an=a0(xn+1)=a0[(1/2)(-1)n+1]
它最简之形式便是an=1+[(-1/2)n]
待定系数法广泛用于建模和求解相关数列问题,也可用于研究不同类型的递推关系,如定组成规律、数值递推关系、数学表达式和函数表达式等。
有时可以用来解决具有特殊条件的复杂系统,比如比较整数组的格局,或者计算连续随机变量的概率分布等。
待定系数法求特殊数列的通项公式

待定系数法求特殊数列的通项公式其基本原理是递推关系两边加上相同的数或相同性质的量,构造数列的每一项都加上相同的数或相同性质的量,使之成为等差或等比数列。
第一类别:a n =Aa n -1+B例1:设x 1=2,且x n =5x 1-n +7.求数列的通项公式 解:所给的递推公式可变形为x n +m=5x 1-n +7+m=5(x 1-n +557m +),令m=557m +.则m=47 于是x n +47 =5(x 1-n +47),{ x n +47}是等比数列,其首项为x 1+47=415,公比为q=5.于是x n +47=415·51-n所以,x n =415·51-n -47例2:设x 1=1,且 x n =52311+--n n x x (n=2,3,4,…)求数列{x n }的通项公式解:所给的递推公式可变为:323511+=-n n x x )53521(3511mx m x n n ++=+-,令m=5352m +,则m=1 于是)11(35111+=+-n n x x 。
{11+n x }是等比数列,其首项是111+x =2,公比是q=35于是11+n x =2(35)n -1 。
所求的x n =1113523----∙n n n第二类别:a n =Aa n -1+Ba n -2例3:设x 1=1,x 2=5,x n =13x n -1-22x n -2,(n=3,4,…)求数列{x n }的通项公式 解:所给的递推公式可变为x n +mx n -1=(m+13)x n -1-22x n -2=(m+13)(x n -1-1322+m x n -2)令m=-1322+m ,则m=-2,或m=-11于是x n -2x n -1=11(x n -1-x n -2),x n -11x n -1=2(x n -1-x n -2){x n -2x n -1},{x n -11x n -1}都是等比数列,其首项与公比分别为x 2-2x 1=3,q=11。
用待定系数法求数列的通项公式

用待定系数法求数列的通项公式给出数列的递推公式求数列通项公式,常用到待定系数法,就是设法在原递推式中增添适当的项,进而把它转化为一个等比数列的递推公式,这种方法应用广泛,易于掌握。
现举例说明。
(其中,,,p q r s 为常数)题型一:1n n a pa q +=+型例1 在数列}{n a 中,11=a ,831+=+n n a a ,求数列的通项公式。
分析:为使原递推式两端项数相同,并能满足同一对应关系,可知应在左端添加常数项,故需设待定系数x ,将原递推式恒等变形。
解:∵831+=+n n a a ∴ x a x a n n ++=++831 ∴)38(31x a x a n n ++=++,应使1n a x ++与83n x a ++满足同一函数()n f n a λ=+的对应关系,以便化为等比数列求解。
可令83x x +=,所以4x =,∴143(4)n n a a ++=+。
∴数列{4}n a +是首项145a +=,公比为3的等比数列。
故1453n n a -+=⋅ ∴1534n n a -=⋅+。
掌握了这个基本思想,我们就可以用同样的方法做下面的几个例题。
题型二:1n n a pa rn s +=++型 与11n n n a pa r q s ++=+⋅+型。
例2.在数列}{n a 中,已知1117,5234n n n a a a ++==+⋅-,求数列}{n a 的通项公式。
分析:为使原递推式两端的项数相同,并满足同一种对应关系,在左端应添加含23n +的项和常数项,故需设两个待定系数,x y ,将原式恒等变形。
解:115234n n n a a ++=+⋅- ∴2121352334n n n n n a x y a x y ++++++=+⋅++- 即:211(23)435[3]55n n n n x y a x y a ++++-++=+⋅+,应使该等式两侧满足同一函数1()3n n f n a λμ+=+⋅+的对应关系,以便求解,可令(23)4,55x y x y +-==,∴1,1x y ==,∴211315(31)n n n n a a +++++=++,于是数列1{31}n n a ++-是首项为15,公比为5的等比数列。
求数列的通项公式(教师版)

求数列的通项公式(教师版)1、数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.2、数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1或a n +1的关系式表示(如a n =2a n -1+1),则这个关系式就称为数列的递推公式.3、由数列的递推公式求数列的通项公式的常见方法(1)待定系数法:①形如a n +1=ka n +b 的数列求通项;②形如a n +1=ka n +r ∙b n 的数列求通项;(2)倒数法:形如a n +1=pa nqa n +r的数列求通项可用倒数法;(3)累加法:形如a n +1-a n =f (n )的数列求通项可用累加法;(4)累乘法:形如a n +1a n=f (n )的数列求通项可用累乘法;(5) “S n ”法:数列的通项a n 与前n 项和S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.;S n 与a n 的混合关系式有两个思路:①消去S n ,转化为a n 的递推关系式,再求a n ;②消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .考向一 待定系数法例1—1 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式。
解:设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t )即a n +1=2a n -t ⇒t =-3.故递推公式为a n +1+3=2(a n+3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列,则b n =4×2n -1=2n +1,所以a n =2n +1-3.例1—2 在数列{a n }中,a 1=-1,a n +1=2a n +4·3n ,数列{a n }的通项公式。
巧用待定系数法求an +1 =pan +q 型递推数列通项公式

纵观近年的高考试题可以发现,求形如a n+1=pan+q()p≠0,q≠1的递推数列的通项公式问题出现的频率越来越高,这类题目恰恰是很多同学常常丢分的题目.而待定系数法是解答此类问题的有力“武器”.本文将结合实例来探讨一下用待定系数法求a n+1=pan+q型递推数列的通项公式的思路.用待定系数法求形如a n+1=pa n+q()p≠0,q≠1递推数列的通项公式,需先引入一个待定系数k,使an+1+k=p()a n+k,将其化简可得a n+1=pa n+()p-1k,然后将这个式子与原数列递推式对比可以求得k=qp-1,于是便构造出一个形如{}an+qp-1的等比数列.通过计算可求得该数列的首项为a1+q p-1,公比为p.那么我们就可以运用等比数列的通项公式来求出{}an+qp-1的通项公式,进而得到原数列的通项公式a n=æèçöø÷a1+q p-1p n-1-q p-1.例1.已知数列{}a n中a1=2,a n+1=(2-1)(a n+2),n∈N.求数列的通项公式.解:设a n+1+t=()2-1()a n+t,将其展开可得()2-2t=2()2-1,由a n+1=()2-1()a n+2得t=-2,则a n+1-2=()2-1()a n-2,所以数列{}an-2是首项为2-2,公比为2-1的等比数列,故a n-2=2()2-1n,所以a n=2()2-1n+2,即{}a n的通项公式为a n=2éëêùûú()2-1n+1.通过引入待定系数t,便构造出首项为2-2,公比为2-1的等比数列,根据等比数列的通项公式便可求出原数列的通项公式.例2.在数列{}a n中,a1=3,a n+1=2a2n()n∈N*,求数列{}a n的通项公式.解:在a n+1=2a2n的两边取对数可得lg a n+1=lg2a2n,即lg a n+1=2lg a n+lg2.令b n=lg a n,则b n+1=2b n+lg2.设b n+1+t=2()b n+t,则t=lg2,可得b n+1+lg2=2()b n+lg2,所以数列{}b n+lg2是首项为lg3+lg2,公比为2的等比数列,所以b n+lg2=()lg3+lg22n-1,即b n=()lg6∙2n-1-lg2,所以lg an=lg62n-1-lg2=lg62n-12,即a n=62n-12.由a n+1=Aa m n()A>0,an>0,m为常数递推式求数列的通项公式,我们需先将递推式变形,即在递推式两边取对数,以便将指数m消去,把递推式转化为an+1=pa n+q的形式,再引入一个待定系数,将其构造成一个新的等比数列的通项,借助等比数列的通项公式求得结果.例3.在数列{}a n中,a1=2,a n=4a n-1+2n,求数列{}a n的通项公式.解:在a n=4a n-1+2n的两边同除以2n,可得an2n=2a n-12n-1+1,令b n=2b n-1+1,则b n+1+1=2()b n-1+1,则{}b n+1是以b1+1=a12+1=2为首项,以2为公比的等比数列.所以b n+1=2∙2n-1=2n,所以b n=2n-1,即a n2n=2n-1,所以a n=4n-2n.对于形如a n+1=pa n+q n()p≠1,q≠0的数列递推式,在求其通项公式时,我们需将q n转化,可以在等式两边同时除以q n,再令b n=a n+1q n,这样便构造出等比数列{}b n+1,求得数列{}b n+1的通项公式,便能快速求得数列{}a n的通项公式.用待定系数法求a n+1=pa n+q型递推数列的通项公式的关键是通过引入待定系数,构造出等比数列.当出现较为复杂的数列递推式时,我们要先将递推式进行适当的变形,如取对数、取倒数等,将其转化为an+1=pa n+q的形式,然后用待定系数法来解题.(作者单位:江苏省无锡市第三高级中学)巧用待定系数法求a n+1=pa n+q孙成成学考方略50Copyright©博看网 . All Rights Reserved.。
《求数列通项公式的“待定系数法”和“特征方程法”》的说明

《求数列通项公式的“待定系数法”和“特征方程法”》的说明以下例题是讨论“待定系数法”和“特征方程法”,有些例题涉及其他解题方法,这边不作讨论。
一、待定系数法(一)关于“待定系数法”应用条件。
适用于形如)(1n f qa a n n +=+表达式,应注意以下几点: 1、1+n a 的系数必须为“1”,若不为“1”必须化为“1”;2、n a 的系数1≠q ,若为“1”则不能用“待定系数法”,而是视情况可用“累加法”等求通项公式。
注意:n a 的系数q 必须是1+n a 的系数化为“1”后确定的系数。
(二)关于)(n f 的说明。
)(n f 是函数型表达式))((R x x f ∈的一个特殊函数,)(n f 的定义域+∈N n ,x 是连续型变量,n 是离散型变量。
)(n f 可以是常数型、一次函数型、二次函数型、指数函数型等等1、)(n f 可以是常数,如d n f =)(;2、)(n f 可以是一次函数型,如rn n f c rn n f =+=)(,)(;3、)(n f 可以是二次函数型,如2222)(,)(,)(,)(rn n f d rn n f cn rn n f d cn rn n f =+=+=++=;4、)(n f 可以是指数函数型,如n qr n f =)(;等等。
其中rn n f =)(是不完整一次函数型表达式,完整的一次函数型表达式是c rn n f +=)(;222)(,)(,)(rn n f d rn n f cn rn n f =+=+=是不完整的二次函数型表达式,完整的二次函数型表达式是dcn rn n f ++=2)(。
(三)关于要转化为形如)(1n f qa a n n +=+标准形式的说明。
是指: ①)1(1--n f qa a n n +=,设1+=n n 代入化为)(1n f qa a n n +=+; ②)1(1++=n f qa a n n -,设1+=n n 代入化为)2(1++=+n f qa a n n ; ③)(21n f qa a n n +=--,设2+=n n 代入化为)2(1++=+n f qa a n n ; ④)1(21++=n f qa a n n --,设2+=n n 代入化为)3(1++=+n f qa a n n ; ⑤)2(21---n f qa a n n +=,设2+=n n 代入化为)(1n f qa a n n +=+;⑥标准式或化为标准式后,左边1+n a 有系数,如)0)((1≠+=⋅+r n f qa a r n n ,要把1+n a 的系数化为“1”,即要把表达式)0)((1≠+=⋅+r n f qa a r n n 化为“)0()(1≠+=+r rn f a rqa n n ”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
待定系数法巧求数列的通项公式
作者:陈立强
作者单位:河北省迁安一中
刊名:
高中数理化
英文刊名:GAOZHONG SHU-LI-HUA
年,卷(期):2009(10)
1.王颂文.周丽待定系数法的妙用[期刊论文]-高中数理化(高一)2008(7)
2.苏辉浅谈待定系数法在数学解题中的应用[期刊论文]-当代人(下半月)2008(11)
3.王静.Jing Wang待定系数法在圆锥曲线中的应用[期刊论文]-河北理科教学研究2010(1)
4.丁长钦浅谈初中数学中的待定系数法[期刊论文]-成才之路2011(16)
5.黄辉例析待定系数法求递推数列通项公式[期刊论文]-中学数学研究2009(6)
6.侯小华.范永顺.白峰待定系数法求一类函数的最小值[期刊论文]-中学数学杂志(高中版)2008(1)
7.许鹤翎用构造法求数列的通项公式[期刊论文]-考试周刊2010(21)
8.齐相国数列中的"待定系数法"[期刊论文]-高中数理化(高二)2008(7)
9.刘志乐"待定系数法"在解证不等式问题中的应用[期刊论文]-中学数学研究2011(4)
10.杨正荣巧用待定系数法解题[期刊论文]-南北桥2008(3)
引用本文格式:陈立强待定系数法巧求数列的通项公式[期刊论文]-高中数理化 2009(10)。