传热学课件第三章稳态导热

合集下载

最新[传热学]第三章-非稳态导热-1PPT课件

最新[传热学]第三章-非稳态导热-1PPT课件

0
x
远大于平板内的导热热阻 /, 即 1/h /
从曲线上看,物体内部的温度几乎是均匀的,这也就说物 体的温度场仅仅是时间的函数,而与空间坐标无关。我们 称这样的非稳态导热系统为集总参数系统(一个等温系统 或物体)。
曲线(a)表示平板外环境的换热热阻 1/ h
远大于平板内的导热热阻 / , 即
1/h /
下图表示一个大平板的加热过程,并画出在某一时刻的三 种不同边界情况的温度分布曲线(a)、(b)、(c)
(b) (c) t t∞
(a)
x
0
x
此图的实质,是表明在第三类边界条
(b) (c) t
件下可能的三种温度分布。
t∞
按照传热关系式 qttw twt (a)
1h
可作一近似的分析。
曲线(a)表示平板外环境的换热热阻1/ h x
这里, Fov 是傅立叶数。
考察指数项
hA cV
BViFoV
hl l
Bi
1h
= 物体内部导热热阻 物体表面对流换热热阻
无量纲 热阻
换 热 时 间
无量纲
F o l2a 边 界 热 扰 动 扩 散 到 l2 面 积 上 所 需 的 时 间 时间
Biv越小,表示内部热阻小或外部热阻大,则内部温度就
非稳态导热可分为
周期性非稳态导热 非周期性非稳态导热(瞬态导热)
周期性非稳态导热:在周期性变化边界条件下发生的导热过
程,物体温度按一定的周期发生变化。在周期性非稳态导热 的物体中,一方面,物体内各处的温度按一定的振幅随时间 周期性地波动;另一方面,同一时刻物体内的温度分布也是 周期性波动。
非周期性非稳态导热:在瞬间变化的边界条件下发生的导热

传热学课件第三章稳态导热

传热学课件第三章稳态导热

重点与难点
重点: 平壁、圆筒壁的一维稳态导热 难点: 肋片的导热
内容精粹
§1 通过平壁的导热
§2 通过圆筒壁 的导热
§3 通过球壁的导热
§4 接触热阻
§5 通过肋片的导热
第一节
通过平壁的导热
一、第一类边界条件下的平壁导热
当平壁的两表面分别维持均匀恒定 的温度时,平壁的导热为一维稳态导热。
1. 单层平壁的稳态导热
圆球型导热仪示意图
在导热过程达到稳态后,通过被测材料层的
热流量Ф 就等于电加热功率P,忽略球壳的导热
热阻,被测材料层的内、外径即为内球壳外径d1 和外球壳内径d2,内外两侧的温度分别等于内、 外球壁的平均壁温tw1、tw2
。则所测材料在tw1~
tw2温度范围内的平均热导率为:
(d 2 d1) m 2d1d( 2 t w1 t w 2)
2. 多层平壁的稳态导热
多层平壁由多层不同材料组成,当两表面分别维 持均匀恒定的温度时,其导热也是一维稳态导热。 以三层平壁为例,假设 (1)各层厚度分别为1、2、3, 各层材料的导热系数分别为1、2、 3 , 且分别为常数; (2)各层之间接触紧密, 相互 接触的表面具有相同的温度; (3)平壁两侧外表面分别保持 均匀恒定的温度tw1、tw4。 显然,通过此三层平壁的导热为 稳态导热, 各层的热流量相同。
tw1 tw 4 l Rl1 Rl2 Rl3 tw1 tw 4 d3 1 d2 1 1 d4 ln ln ln 21 d1 22 d 2 23 d3
对于 n层不同材料组成的多层圆筒壁的稳态导热 , 单位 长度的热流量为
l
tw1 tw n 1
三层平壁稳态导热的总导热热阻为各层导热热阻 之和,由单层平壁稳态导热的计算公式可得 tw1 tw 4 tw1 tw 4 3 1 2 R1 R 2 R 3 A1 A2 A3

传热学第三章稳态导热2011

传热学第三章稳态导热2011

图 2-14
图 2-15
§3-4 接触热阻

实际固体表面不是理想平整的,所以两固体表面直接接触的 界面容易出现点接触,或者只是部分的而不是完全的和平整 的面接触 —— 给导热带来额外的热阻 —— 接触热阻 (Thermal contact resistance)

当界面上的空隙中充满导热系 数远小于固体的气体时,接触 热阻的影响更突出
几点说明:
(1) 上述推导中忽略了肋端的散热(认为肋端绝热)。 对于一般工程计算,尤其高而薄的肋片,足够精确。若 必须考虑肋端散热,取:Hc=H + /2 (2)上述分析近似认为肋片温度场为一维。 当Bi=h/ 0.05 时,误差小于1%。对于短而厚的肋片,
二维温度场,上述算式不适用;实际上,肋片表面上表面传
r
线性分布
t w2 t w1 t q t ( A )
R A

(m2.K/W)单位导热热阻
(K/W)导热热阻
热阻分析法适用于一维、稳态、无内热源的情况
2 多层平壁的导热

t
t1t1
λ1
t2
多层平壁:由几层不同材料组成 例:房屋的墙壁 — 白灰内层、水泥 沙浆层、红砖(青砖)主体层等组成 假设各层之间接触良好,可以近似地认 为接合面上各处的温度相等
(a)
r r1时 t t w1 第一类边界条件: r r2时 t t w2
对上述方程(a)积分两次:
第一次积分
第二次积分 应用边界条件
dt r c1 t c1 ln r c2 dr
t w1 c1 ln r1 c2 ; t w2 c1 ln r2 c2

传热学第3章非稳态导热PPT课件

传热学第3章非稳态导热PPT课件

x x h Bi
2)毕渥数Bi对温度分布的影响
O( / Bi, 0)
2)毕渥数Bi对温度分布的影响
§3.2 集中参数法分析导热问题
当物体内部导热热阻远小于其表面的换热热阻, 也就是物体内部温度分布几乎趋于一致,可以近似 认为物体内部在同一瞬间均处于同一温度下。 此时 Bi h 0
对于任意形状的物体当Bi<0.1, 0.95 物体内部的过余温度与其表面的过m 余温度之比为 0.95。其内部热阻就可忽略,从而采用集中参数 法。
物体的温度随时间的变化关系是一条负 自然指数曲线,或者无因次温度的对数
0
与时间的关系是一条负斜率直线。
e
A cV
e
(V
A
)•(VaA
)2
e Bi •Fo
0
其中V/A具有长度的量纲,称为特征长度。
(2)导热量的计算
cV hA 称为系统的时间常数,记为s。
时间常数是反应物体对流体温度变动响应快慢的指标。它 取决于自身的热容量ρcv及表面换热条件hA。热容量越大, 温度变化得越慢;表面换热条件越好单位时间内传递的热 量越多,则越能使物体自身温度迅速接近流体温度。
突然把两侧介质温度降低 为 t并保持不变;壁表 面与介质之间的表面传热 系数为h。
两侧冷却情况相同、温度 分布对称。中心为原点。
3.3 无限大平壁非稳态导热
导热微分方程:
t 2t
a x2
初始条件: 0, t t 0
边界条件: (第三类)
x 0, t x 0
x
,
- t
x
h(t
t )
对于圆柱体和球体在第三类边界条件下的一维非
稳态导热问题,也可以求得温度分布的分析解。

传热学-第3章-稳态导热的计算与分析

传热学-第3章-稳态导热的计算与分析

15
3.1.3 第一类边界条件下变物性、无内热源的平壁
d dt 0
dx dx
0 1 bt
分离变量积分并利用边界条件,得到平壁内的温度分布:
0
t
b 2
t2
m
tw2
tw1
x
0
t
w1
b 2
t 2 w1
式中:
m
0
1
tw1
tw2 2
b
为平壁平均温度下的导热系数
16
3.1.3 第一类边界条件下变物性、无内热源的平壁
0
t
b 2
t2
m
tw2 tw1
x
0
t
w1
b 2
t 2w1
这表明,当材料的导热系数随温度呈线性规律变化时,
平壁内的温度分布是二次曲线方程,该二次曲线的凹凸性
主要由温度系数b的正负决定。
利用傅里叶定律分析表明:
——b>0时,温度分布曲线的开口向下;
——b<0时曲线开口向上
17
3.1.3 第一类边界条件下变物性、无内热源的平壁
需要用平壁算术平均温度下的导热系数λm代替
19
3.1.3 第一类边界条件下变物性、无内热源的平壁 ❖ 由于热流密度为常数,仍可采用对傅立叶定律分离变量
积分的分析方法得到平壁内的温度分布 ❖ 作为练习,请大家自行推导
20
3.1.4 第三类边界条件下的常物性、无内热源的平壁
❖ 当平壁左、右两侧面分别与温度为tf1和tf2(tf1>tf2) 的流体进行对流传热时,平壁两侧均处于第三类 边界条件
态 稳态的特征:物体内各位置处的温度不随时间变化,可
以去掉方程中的非稳态项

传热学第三章稳态导热

传热学第三章稳态导热

传热学第三章稳态导热
11
根据热阻串联的叠加原则,通过三 层壁的热流密度计算式为:
q
tw1 tw4
1 2 3
1 2 3
W/m2

qA
1
tw1 tw4
2 3
W
1A 2A 3A
2021/2/12
传热学第三章稳态导热
12

q
t
可得各层接触面上的温度分别为 :
tw2
、tw1
q1 1

tw3
பைடு நூலகம்
tw4
W/m2
可见,通过平壁稳态导热的热流密度 取决于导热系数、壁厚及两侧面的温差。
稳态下平壁内与热流相垂直的各截面 上的热流密度为常量。
2021/2/12
传热学第三章稳态导热
6
通过整个平壁的热流量为:
AqAt
W
当λ=λ0(1+bt) 时,在温差(t1-t2 ) 下的导热量仍可用常物性导热计算式来 计算,只需用平均温度t=(t1+t2)/2 下的平 均导热系数计算即可。

rh2
传热学第三章稳态导热
返回 15
第二节 通过圆筒壁的导热
一、第一类边界条件下的圆筒壁导热 二、第三类边界条件下的圆筒壁导热 三、临界热绝缘直径
2021/2/12
传热学第三章稳态导热
16
一、第一类边界条件下的圆筒壁导热
1.单层圆筒壁
已知:长圆筒壁 r1、r2、 l ;
λ=const
r=r1 ,t=tw1; r=r2 ,t=tw2 求: (1) Φ=?
第三章 稳态导热
§3-1 通过平壁的导热 §3-2 通过圆筒壁的导热 §3-3 通过球壁的导热 §3-4 接触热阻 §3-5 通过肋片的导热

传热学_3

传热学_3
内壁面温度为:
o o o R T1 T1 Q 20 C (69.2W)(0. 08333 C/W) 14.2 C conv,1
Beijing Jiaotong University
Heat Transfer
3-2 接触热阻
Tint erface
h AT Q c int erface
[W / m 2 o C ]
单位面积接触热阻
1 Tint erface Rc hc Q A [m 2 o C / W ]
接触热阻
Rc
A
Tint erface 1 hc A Q
[ oC / W ]
Tw1 Tw 2 Tw1 Tw 2 L1 L L 1 L2 Rc 2 k1 k2 k1 k 2
Heat Transfer
传热过程&
1 L 1 Rtotal Rconv,1 Rwall Rconv, 2 ( oC / W ) h1 A kA h2 A 1 Q UA(T1 T 2 ) UAT ( ) AT (W ) 1 L 1 h1 k h2 U: 总传热系数 (W/m2.K)
Rwall: 热阻 [OC/W] or [K/W]
cond,wall q
T1 T2 T1 T2 L RA,wall k
RA,wall: 单位热阻 [m2.OC/W]
Beijing Jiaotong University
Heat Transfer
等效热路图


串联:
并联:
Rtotal Ri
其中
Tsurr T
2
hcombined hconv hrad (W / m K )

传热学第三章

传热学第三章

第三章 稳态导热
第一节 一维稳态导热
※简化假设: (1)导热体为几何形状简单、均质各向同性材料; (2)常物性、无内热源、壁面温度均匀一致; (3)一维稳态导热。 ※一维稳态导热计算公式的导出途径: (1)
导热微分方程 边界条件 Fourier定律 边界条件 Fourier定律 边界条件
①温度分布 t t ( x)或 t t (r ) 和q ② ③R 和r 若定积分,则可以不求解温度场而直接求得
( e) (f )
( g)
r r 1 , t t w1 r r2 , t t w2
同样的计算公式:
求解上述方程,经过整理可以得出和第一种求解方法 温度分布①、热流量或线热流量②、热阻③。
第三章 稳态导热
第一节 一维稳态导热
(3)对傅里叶定律表达式分离变量,并进行定积分:
tw 2 dr dt t w1 2l r
t w1 t w3 q 解:本题为多层平壁的导热问题,应有 1 2
把所有的已知数据代入,有
1
2
1300 30 0.02 t w1 t w3 1 ) 0.35 0.238 m 2 ( ) 2 ( 1830 1.3 q 1
第三章 稳态导热
流量Φ为常量,但热流密度 q
※工程计算中,一般采用热流量或线热流量。 线热流量:是指单位长度圆筒壁的导热热流量,即
却是变量。
l l
第三章 稳态导热
第一节 一维稳态导热
将温度分布代入傅里叶定律,可求出其热流量或线热流量为:
dt dt 2l (t w1 t w2 ) 2l (t w1 t w2 ) A (2rl ) r d dr dr ln 2 ln 2 r1 d1 l 2 (t w1 t w 2 ) 2 (t w1 t w 2 ) r2 d2 l ln ln r1 d1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点与难点
重点: 平壁、圆筒壁的一维稳态导热 难点: 肋片的导热
内容精粹
§1 通过平壁的导热
§2 通过圆筒壁 的导热
§3 通过球壁的导热
§4 接触热阻
§5 通过肋片的导热
第一节
通过平壁的导热
一、第一类边界条件下的平壁导热
当平壁的两表面分别维持均匀恒定 的温度时,平壁的导热为一维稳态导热。
1. 单层平壁的稳态导热
第三章 稳态导热
例 题 赏 析
内 容 精 粹
重 点 难 点
基 本 要 求
基本要求
1.了解确定物体温度场及其导热量的方法。 2. 能熟练进行平壁、圆筒壁常物性一维稳态导 热问题的分析计算。 3. 掌握等截面直肋导热的简化计算法。了解肋
片的作用和减小套管式温度计测量误差的措
施。 4. 了解接触热阻对实际导热过程的影响。
tw1 tw 2 1 dt q dr ln r2 r1 r
热流密度是r的函数。
对于稳态导热, 通过整个圆筒壁的热流量是不变的,
tw1 tw 2 tw1 tw 2 t t w1 w2 2πrlq 1 r2 1 d2 R ln ln 2 l r1 2 l d1
圆筒壁内的温度分布为对数曲线。代入边界条件,可得
温度沿r 方向的变化率为
ln r r1 t tw1 tw1 tw2 ln r2 r1
tw1 tw 2 1 dt dr ln r2 r1 r
其绝对值沿r 方向逐渐减小。 根据傅立叶定律 , 沿圆筒壁 r 方 向的热流密度为
三层平壁稳态导热的总导热热阻为各层导热热阻 之和,由单层平壁稳态导热的计算公式可得 tw1 tw 4 tw1 tw 4 3 1 2 R1 R 2 R 3 A1 A2 A3
三层平壁稳态导热可以由三个相互串联的热阻网络表示。
对于n层平壁的稳态导热,


2. 多层圆筒壁的稳态导热
运用热阻的概念,很容易分析 多层圆筒壁的稳态导热问题。 以三层圆筒壁为例,无内热源, 各层的热导率1、2、3分别为常数, 内、外壁面维持均匀恒定的温度 tw1 、 tw2 。这显然也是一维稳态导热问题。 通过各层圆筒壁的热流量相等,总 导热热阻等于各层导热热阻之和,
2. 多层平壁的稳态导热
多层平壁由多层不同材料组成,当两表面分别维 持均匀恒定的温度时,其导热也是一维稳态导热。 以三层平壁为例,假设 (1)各层厚度分别为1、2、3, 各层材料的导热系数分别为1、2、 3 , 且分别为常数; (2)各层之间接触紧密, 相互 接触的表面具有相同的温度; (3)平壁两侧外表面分别保持 均匀恒定的温度tw1、tw4。 显然,通过此三层平壁的导热为 稳态导热, 各层的热流量相同。
tw1 tw n 1
R
i 1
n
i
利用热阻的概念, 可以很容易求得通过多层平壁 稳态导热的热流量, 进而求出各层间接触面的温度。
第二节 通过圆筒壁的导热
主要讨论圆筒壁稳态导热过程中的壁内温度分布及导 热热流量。
1. 单层圆筒壁的稳态导热
假设: 内、外半径分别为 r1 、 r2 , 长度为 l, 为常数、无内热源,内 外壁温度tw1、tw2均匀恒定。
tw1 tw 4 l Rl1 Rl2 Rl3 tw1 tw 4 d3 1 d2 1 1 d4 ln ln ln 21 d1 22 d 2 23 d3
对于 n层不同材料组成的多层圆筒壁的稳态导热 , 单位 长度的热流量为
l
tw1 tw n 1
R为整个圆筒壁的导热热阻, 单位是K/W。 单位长度圆筒壁的热流量为
Rl为单位长度圆筒壁的导热热阻, 单位是m· K/W。
实际上,由于l为常数, 根据傅立叶定律, dt 将该式分离变量积分,同 l 2 r dr 样可求得上面的公式。
tw1 tw 2 tw1 tw 2 l 1 d2 l Rl ln 2 d1
d 2t 0 2 dx
2t 2t 2t 2 2 0 2 x y z
tw1 tw 2
dx
由傅立叶定律可得

w1

w2
通过整个平壁的热流量为
tw1 tw 2 dt q dx tw1 tw 2 Aq A

上式与绪论中给出的公式完全相同。
t w 2 t f 2 t w 2 tf 2 d 2lh2 tw 2 tf 2 1 Rh2 d 2lh2 在稳态情况下,上面三式中的 是相等的,于是可得 tf 1 tf 2 tf 1 tf 2 1 1 d2 1 Rh1 R Rh2 ln d1lh1 2l d1 d 2lh2
按上述条件,壁内温度只沿径 向变化,如果采用圆柱坐标 , 则圆 筒壁内的导热为一维稳态导热, d dt r 0 dr dr 数学模型 r = r1 : t = tw1 r = r2 : t = tw1
对导热微分方程式进行两次积分, 可得通解为
t C1 ln r C2
假设: 表面面积为 A、厚度为、为 常数、无内热源,两侧表面分别维持均 匀恒定的温度tw1、tw2,且tw1 > tw2 。 选取坐标轴 x与壁面垂直 ,如图所示。
数学模型:
x = 0 , t = tw1 求解结果: t ( x ) t w1 x x = , t = tw2 可见,当 为常数时 , 平壁内温度分布曲线为直线, 其斜率为 t t dt
R
i 1
n

tw1 tw n1 1
i
di 1 ln di i 1 2i
n
tf 1 tw1 tf 1 tw1 d1lh1 tf 1 tw1 1 Rh1 d1lh1
3. 通过圆筒壁的传热过程
tw1 tw 2 tw1 tw 2 1 d2 R ln 2 l d1
相关文档
最新文档