技术专家手把手教你计算放大器噪声系数
模拟技术知识课堂-噪声系数的计算及测量方法三

模拟技术知识课堂:噪声系数的计算及测量方法三于上面的式子。
根据噪声系数定义,F=Tn/290+1,F 是噪声因数(NF=10*log(F)),因而Y=ENR/F+1。
在这个公式中,所有变量均是线性关系,从这个式子可得到上面的噪声系数公式。
我们再次使用MAX2700 作为例子演示如何使用Y 因数法测量噪声系数。
装置图见图3。
连接HP346AENR 到RF 的输入。
连接28V 直流电压到噪声源头。
我们可以在频谱仪上监视输出噪声功率谱密度。
开/关直流电源,噪声谱密度从-90dBm/Hz 变到-87dBm/Hz。
所以Y=3dB。
为了获得稳定和准确的噪声功率谱密度读数,RBW/VBW 设置为0.3。
从表2 得到,在2GHz 时ENR=5.28dB,因而我们可以计算NF 的值为5.3dB。
以上讨论了测量射频器件噪声系数的三种方法。
每种方法都有其优缺点,适用于特定的应用。
表3 是三种方法优缺点的总结。
理论上,同一个射频器件的测量结果应该一样,但是由于射频设备的限制(可用性、精度、频率范围、噪声基底等),必须选择最佳的方法以获得正确的结果。
<CENTER style=“WORD-SPACING: 0px; FONT: 14px/25px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(0,0,0); TEXT-INDENT: 0px; WHITE- SPACE: normal; LETTER-SPACING: normal; Btips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
放大电路噪声指标

放大电路噪声指标
放大器的由于放大器本身就有噪声,输出端的信噪比和输入端信噪比是不一样的,为此,使用噪声系数来衡量放大器本身的噪声水平
公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。
该系数表征放大器的噪声性能恶化程度的一个参量,并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反映了器件或者信道特性的不理想。
在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。
放大电路不仅把输入端的噪声放大,而且放大电路本身也存在噪声。
所以,其输出端的信噪比必小于输入端信噪比。
在放大器中,内部噪声与外部噪声愈小愈好。
放大电路本身噪声越大,它的输出端信噪比越小于输入端信噪比,NF就越大。
当NF用分贝表示时
NF(dB)=10 lg(Po/ApPi)
Po表示输出端的总噪声功率,Pi表示信号源输入端噪声功率,Ap表示功率增益。
[1]噪声系数与噪声温度的关系为:T=(NF-1)T0或NF=T/T0+1 其中:T0-绝对温度(290K)。
2减小噪声的措施
(1)首选低噪放(2)引入负反馈来抑制噪声。
噪声系数

级联放大器噪声系数首先说下噪声系数的定义:一个放大器的噪声系数定义为输入端的信噪比与输出端的信噪比之比,//si niF so noP P N P P =,其中P 代表功率,S 代表信号,N 代表噪声,i 代表输入端,o 代表输出端。
书中有一句话很重要,也很容易被大家忽视:“N F 数值的大小一方面取决于被研究网络本身的噪声电平,另一方面也与采用的噪声源很有关系,这就容易造成同一网络因采用不同的噪声源而具有不同的数值,从而给实用带来了困难。
所以规定噪声源是很重要的。
一般是将信号源内阻的热噪声作为标准噪声源,此时,P ni 就是取自信号源内阻的热噪声功率。
” 大家应该有些概念了吧,一个网络的噪声系数定义为输入端的信噪比与输出端的信噪比之比,还应该加上一个限定条件就是每一个网络的P ni 都应该是同一个固定的值,记为P nref (这个是推级联网络噪声系数公式的重点)。
以下推导级联网络噪声系数公式: 以最简单的两级级联系统为例: 如图所示,令输入第一级系统的噪声功率为P nref (信号源内阻的热噪声功率),则根据噪声系数的定义为111//si nref F so no P P N P P =,级联系统的噪声系数为//si nref F so noP P N P P =,但是注意222//si ni F so noP P N P P ≠,(因为噪声系数的定义中要求输入噪声必须为P nref )注:第一级网络的输出信号及噪声功率与第二级网络的输入信号及噪声功率相同。
即P so1= P si2,P no1= P ni2。
一个放大器对输入信号及噪声产生的作用就是将其分别放大G 倍后,再在输出端引入放大器本身产生的噪声,这个噪声与放大器的增益G 无关。
所以放大器的噪声系数还可以表示为:'2'22//()si nrefF sinref P P N P G P G 2δ=⋅⋅+,解得222(1nref F P G N )δ=⋅−111//()si nrefF si nref P P N PG P G 1δ=⋅⋅+,解得111(1nref F P G N )δ=⋅−注:从以上两个式子并不能认为δ与放大器的增益有关11221///si nrefso no si ni F P P P P P P N ==,2212122221221122/()si so si so no ni no nref P G P G P G G P P P G P G P G G δδδ⋅⋅⋅⋅===δ⋅+⋅+⋅+⋅+将12,δδ代入上式,并考虑到//si nref F so noP P N P P =,即可得到级联放大器的噪声系数公式:2111F F F N N NG −=+。
放大器的噪声分析

第25页/共31页
设放大器在输入端和信号源是功率匹配的,
即Rs=Ri,
在输出端和负载也是功率匹配的:Ro=RL
放大器的功率增益为APH。 信号源的内阻Rs产生的热噪声电压均方值为:
En2s 4KTRsf
而放大器的输入噪声功率则为:Pni
En2s 4Rs
KTf
该噪声功率放大后为:Pni Ap APH KTf
或: NF
1
Pn Pni Ap
放大器产生的噪声功率 1 源电阻产生的输出噪声功率
它们分别从不同的角度说明了噪声系数 的含义,是完全等效的。
第19页/共31页
在计算具体电路的噪声系数时,用后面两 式比较方便。
应该指出,噪声系数的概念仅仅适用于线 性电路(线性放大器),因此可以用功率 增益来描述。
T(NF 1)
Ti就称为放大器的噪声温度。 当Ti=0时,NF=1表示放大器本身不产生噪声,是理
想的无噪声放大器;
当本Ti=身T时所(产=生29的0K噪)声则和NF信=2号(源NF所=3输dB入)的,噪表声示相放等大。器
第27页/共31页
在功率匹配情况下,放大器的总的输出噪声 功率:
Pn0 APH KTf APH KTi f APH K (T Ti )f
对于非线性电路而言,不仅得不到线性放 大,而且信号和噪声、噪声和噪声之间会 相互作用,即使电路本身不产生噪声,在 输出端的信噪比和输入端的也不相同。 因此噪声系数的概念就不能适用。
第20页/共31页
§2.4 最佳源电阻Ropt与最小噪声系数NFmin
根据前面导出的噪声系数表达式
NF
En2s
En2
第9页/共31页
等效输入噪声曲线
射频级联噪声系数nf计算公式

射频级联噪声系数nf计算公式
射频级联噪声系数(NF)是衡量射频系统噪声性能的重要指标,它表示了整个射频系统中噪声的增益。
NF的计算公式如下:
NF = 10 log10( F1 + (F2-1)/G1 + (F3-1)/(G1G2) + ... + (Fn-1)/(G1G2...Gn-1) )。
其中,F1, F2, ..., Fn 分别代表每个级联元件的噪声系数,
G1, G2, ..., Gn-1 分别代表每个级联元件的增益。
这个公式是根
据级联放大器的噪声性能计算得出的。
在实际应用中,需要根据具
体的电路结构和元件参数来进行计算。
另外,有时候也会用噪声温度来表示系统的噪声性能。
噪声温
度和NF 之间的关系是通过以下公式计算的:
NF = 10 log10(1 + (T/NF0))。
其中,T 代表系统的总噪声温度,NF0 代表参考噪声系数(通
常为1dB)。
这个公式用于将噪声温度转换为噪声系数,便于进行
系统噪声性能的分析和比较。
总的来说,NF的计算公式是根据级联元件的噪声系数和增益来计算的,它是评估射频系统噪声性能的重要参数之一。
在实际应用中,需要根据具体的电路结构和元件参数来进行准确的计算。
噪声系数测量

Fsys
?
Pgen KT0 B
பைடு நூலகம்GPg ? GN IN ? N ? 2GN IN ? 2N
GPg ? GN IN ? N
F ? GN IN ? N GN IN
F ? GPg ? Pg GN IN N IN
代入
信号源
F ? Pg KT0 B
DUT 功率计
? (ENR ? F ) 1 ? ENR ? 1 FF
Y ? 1 ? ENR F
F ? ENR Y ?1
测出Y,已知ENR就算出噪声系数F。 NF=10LogF。
Y=N2/N1
未加电 : N1=GKT0B+Na
加电: N2=GTHNaKB+N a
N2=YN1=Y(GKT0B+Na)
GTHKB+N a=Y(GKT0B+Na)
0
ENR/(Y-I)
4.信号发生器测量法
当被测系统噪声系数较大时,可采用信号发生器测量方法。
在被测系统输入端加入负载(环境温度约290K),测量输出噪声
功率P1。然后在输入端加入信号发生器,使信号发生器输出频率在
测量范围内。调整信号发生器输出功率,使被测系统输出功率P2比
P1高3dB。可得出噪声系数:
测试结果
频谱分 析仪
-50dBm -70dBm
RBW=100KHz
噪声密度PND=-70dBm-10Log(100000Hz)=-120dBm 计算结果:NF=-120dBm+174-(-50dBm-(-100dBm)=4dB
(3) Y因子法
图 5-5Y 因子法测试噪声系数
超噪比 : ENR ? TH ? 290 290
运算放大器的电阻噪声与计算示例

例 3.4:计算总峰值对峰值输出噪声
本文总结与下文内容简介 在噪声系列文章中,本部分全面介绍了简单运算放大器电路噪声的演算过程。采用 上述峰值的输出噪声。对示例 中电路的配置情况而言,我们估算出的峰值对峰值输出噪声为 1.94mVpp。我们在 随后几篇文章中还将参考上述示例,并测定本文通过测量与 SPICE 分析所得的输 出噪声估算值确实是准确的。
电子发烧友 电子技术论坛
运算放大器电路固有噪声的分析与测量 第三部分:电阻噪声与计算示例
作者:TI 高级应用工程师 Art Kay
在第二部分中,我们给出了将产品说明书上噪声频谱密度曲线转换为运算放大器噪 声源模型的方法。在本部分中,我们将了解如何用该模型计算简单运算放大器电路 的总输出噪声。总噪声参考输入 (RTI) 包含运算放大器电压源的噪声、运算放大器 电流源的噪声以及电阻噪声等。上述噪声源相加,再乘以运算放大器的噪声增益, 即可得出输出噪声。图 3.1 显示了不同噪声源及各噪声源相加再乘以噪声增益后的 情况。
方程式 3.4 与 3.5:简单运算放大器电路的热噪声 RTI
电子发烧友 电子技术论坛
图 3.4:简单运算放大器电路的热噪声 RTI(等效电路) 计算噪声的最后一步就是将所有噪声源相结合,再乘以噪声增益,从而计算出输出 噪声。该均方根噪声乘以 6 通常用于估算峰值对峰值噪声。我们记得,在第一部分 中,瞬时噪声测量结果小于均方根噪声乘以 6 的概率达 99.7%。根据方程式 3.6、 3.7 及 3.8, 即可计算出输出噪声。
噪声系数 噪声参数

噪声系数噪声参数
噪声系数是一种用来衡量电子设备或系统内部噪声对信号的影响的参数,通常用分贝(dB)表示。
它是输入信噪比与输出信噪比的比值,即:噪声系数N F =输入端信噪比/输出端信噪比。
在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。
放大电路不仅把输入端的噪声放大,而且放大电路本身也存在噪声。
所以,其输出端的信噪比必小于输入端信噪比。
在放大器中,内部噪声与外部噪声愈小愈好。
放大电路本身噪声越大,它的输出端信噪比越小于输入端信噪比,N F就越大。
如需获取更多关于“噪声系数”的信息,建议查阅相关文献或咨询物理学领域专家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。
关键词:噪声系数放大器
1. 引言
在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。
本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。
2. 放大器噪声指标
电子元件应用中,常见如下5 种噪声来源:
1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的)
2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的)
3. 闪烁噪声(flicker noise,1/f 噪声)
4. 突发噪声(burst noise,脉冲噪声)
5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声)
基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。
在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。
如下图:
Figure 1 输入电压噪声和电流噪声曲线图例
按噪声种类来分,其大致贡献在不同的频段如下:
Figure 2 噪声种类分布图
如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示:
Figure 3 放大器噪声分量分解
根据这个估计,可以得到如下电阻值的电压噪声:
在输出的噪声中,上图的各个分量其贡献如下:
输出的噪声是这些分量的均方和:
Figure 4 放大器电压噪声等效输出模型
同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:
Figure 5 放大器电流噪声等效输出模型
3. 信噪比计算
以上的计算还仅限于噪声谱密度的计算,在实际应用中其实主要要关注的是信噪比,这就要引入噪声计算中很重要的一点:带宽。
所以还需要考虑到带宽积分后的总噪声。
在得到一定带宽内的电压噪声密度后,需要把电压噪声换算成功率,才能进行积分计算,而不能直接把电压噪声直接积分,如下:假设我们已知一个放大器的电压噪声密度为5nV/rtHz,如果要计算10Hz 以内的积分噪声,则按如下方式计算:
Figure 6 通过噪声谱密度计算综合噪声
如我们上面所述,放大器的噪声分布是分区域的,如果再算上通道的滤波效应,计算积分噪声的步骤如下:
Figure 7 输入电压噪声及电流噪声谱密度频率分布图1. 1/f 噪声区域(en1/f)
Figure 8 1/f 噪声
Figure 9 平坦带噪声
以上的电路只是一个运放的通用模型,实际应用的场景下,运放的配置可能千差万别,可能可以是inverting 输入形式,也可能是non-inverting 输入的形式,还可能是全差分的运放形式。
且实际应用的时候,运放可能作为放大器,也可能作为ADC 驱动器,我们可能不仅关心运放等效输出的噪声有多大,同时也会关注运放这一级对整条链路的噪声恶化有多少,也就是运放的噪声系数。
下面我们就对三种形式的运放: inverting 输入运放,和Non-Inverting 输入运放进行分别的计算。
4. 放大器噪声系数计算
4.1 Inverting 输入运放噪声系数计算
假定:
计算出总的输出噪声如下:
4.2 Non-Inverting 输入运放噪声系数计算
同样的计算方法,假定一个Non-Inverting 电路如下:
Figure 13 Non-Inverting 放大器噪声模型
根据如下信噪比计算公式:
5. 案例分析
由附件里的计算工具可以得到:Rs=50 Ohm,
Rg=80 Ohm
Rf=2.4 KOhm
RM=133 Ohm
RT=116 Ohm
此时算上源阻抗后的信号增益是-15V/V,
由计算工具可以得到,此时的NF=4.6dB
更改配置为Non-inverting 输入,如下:
Figure 15 Non-inverting 放大器输入电路
Rs=50 Ohm,
RT=50 Ohm
Rg=25 Ohm
Rf=725Ohm
此时算上源阻抗,signal gain 为15V/V,得到NF 为6.11dB。
可以看出不同的配置下,即使增益相同,得到的噪声系数也是不同的。
在这种增益下,Inverting 配置得到的噪声系数要远比Non-Inverting 的好。
6. 总结
放大器的噪声计算需要考虑诸多因素,如放大器本身的噪声,外围匹配电阻带来的噪声,以及带后续滤波器宽带来的影响。
通过上面所给的公式,就可以把放大器对整条链路的影响计算清楚。