半加器、全加器的电路设计实现
全加器与半加器原理及电路设计

全加器与半加器原理及电路设计全加器是一种电子逻辑电路,用于执行二进制加法。
它由三个输入端(A, B, Cin)和两个输出端(S, Cout)组成。
其中,输入端A和B是要相加的二进制位,Cin是前一位的进位,输出端S是和的结果,Cout是是否有进位。
全加器可以通过组合多个半加器来构建。
半加器是全加器的组成部分,它只有两个输入端(A, B)和两个输出端(S, Cout)。
半加器只能够完成一位二进制加法,不考虑进位情况。
其中,输入端A和B是要相加的二进制位,输出端S是和的结果,Cout是是否有进位。
半加器的电路设计相对简单,可以通过逻辑门实现。
接下来,我将详细介绍全加器和半加器的原理和电路设计。
1.半加器原理及电路设计:半加器的真值表如下:A ,B , S , Cout0,0,0,00,1,1,01,0,1,01,1,0,1可以看出,输出端S等于两个输入端A和B的异或结果,输出端Cout等于两个输入端A和B的与运算结果。
半加器的电路设计可以使用两个逻辑门实现。
一个逻辑门用于计算和的结果S,另一个逻辑门用于计算进位Cout。
S = A xor BCout = A and B逻辑门可以采用与门、或门和异或门实现。
常用的逻辑门包括与非门(NAND)和异或门(XOR)。
所以,半加器的电路设计可以使用两个与非门和一个异或门实现。
2.全加器原理及电路设计:全加器的真值表如下:A ,B , Cin , S , Cout0,0,0,0,00,0,1,1,00,1,0,1,00,1,1,0,11,0,0,1,01,0,1,0,11,1,0,0,11,1,1,1,1可以看出,输出端S等于三个输入端A、B和Cin的异或结果,输出端Cout等于输入端A、B和Cin的与运算结果和A和B的或运算结果的与运算结果。
全加器可以由两个半加器和一个或门组成。
其中,两个半加器用于计算S的低位和Cout的低位,而或门用于计算Cout的高位。
组合逻辑电路设计之全加器半加器

班级姓名学号实验二组合电路设计一、实验目的(1)验证组合逻辑电路的功能(2)掌握组合逻辑电路的分析方法(3)掌握用SSI小规模集成器件设计组合逻辑电路的方法(4)了解组合逻辑电路集中竞争冒险的分析和消除方法二、实验设备数字电路实验箱,数字万用表,74LS00, 74LS86三、实验原理1 •组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路的过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单的组合逻辑电路。
组合电路的输入信号和输出信号往往不只一个,其功能描述方法通常有函数表达式、真值表,卡诺图和逻辑图等几种。
实验中用到的74LS00和74LS86的引脚图如图所示。
00 四2输入与非门4B 4A 4Y 3B 3A 3Y1A 1B 1Y 2A 2B 2Y GND2•组合电路的分析方法。
组合逻辑电路分析的任务是:对给定的电路求其逻辑功能,即求出该电路的输出与输入之间的关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析一般分为(1)由逻辑图写出输出端的逻辑表达式,简历输入和输出之间的关系。
(2)列出真值表。
(3)根据对真值表的分析,确定电路功能。
3•组合逻辑电路的设计方法。
组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。
一般设计的逻辑电路的过程如图(1)通过对给定问题的分心,获得真值表。
在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量直接的逻辑关系问题,其输出变量之间是否存在约束关系,从而过得真值表或简化真值表。
(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。
(3)根据最简逻辑表达式得到逻辑电路图。
四•实验内容。
1•分析,测试半加器的逻辑功能。
实验五 半加器和全加器

实验五半加器和全加器实验五半加器和全加器一、实验目的1(掌握组合逻辑电路的分析和设计方法。
2(验证半加器、全加器、奇偶校验器的逻辑功能。
二、实验原理使用中、小规模集成门电路分析和设计组合逻辑电路是数字逻辑电路的任务之一。
本实验中有全加器的逻辑功能的测试,又有半加器、全加器的逻辑设计。
通过实验要求熟练掌握组合逻辑电路的分析和设计方法。
实验中使用的二输入端四异或门的电路型号为74LS86,四位二进制全加器的型号为74LS83A,其外引线排列及逻辑图如下:14 13 12 11 10 9 8VCC=1 =174LS86=1 =1GND1 2 3 4 5 6 774LS86引脚排列16 15 14 13 12 11 10 9C C GND B AΣ 44011 BΣ4174LS83AA 2A Σ AB V Σ B 4333CC221 2 3 4 5 6 7 874LS83引脚排列74LS83A是一个内部超前进位的高速四位二进制串行进位全加器,它接收两个四位二进制数(A~A,B~B),和一个进位输入(C),并对每一位产生二进制和14140 (Σ~Σ)输出,还有从最高有效位(第四位)产生的进位输出(C)。
该组件有144越过所有四个位产生内部超前进位的特点,提高了运算速度。
另外不需要对逻辑电平反相,就可以实现循环进位。
三、实验仪器和器件1(实验仪器(1)DZX-2B型电子学综合实验装置(2)万用表(MF47型)2(器件(1)74LS00(二输入端四与非门)(2)74LS86(二输入端四异或门)(3)74LS83(四位二进制全加器)(4)74LS54(双二双三输入端与或非门)四、实验内容1(设计用纯与非门组成的半加器,分析、验证其逻辑功能;解:?根据设计任务列出真值表输入输出A B Y C0 0 0 00 1 1 01 0 1 01 1 0 1?根据真值表写出逻辑表达式C=AB Y,AB,AB?对逻辑表达式进行化简Y =A?B C=AB?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B= C=AB,AB AAB,BAB?根据整理后的逻辑表达式画出逻辑图? Y2 & 接A 逻=AB Y? 辑1& & YY 1 接电Y=A AB 电2平 ? B 平& Y=B AB ?3 Y3 显Y=A?B 示 ? & C=AB C图5-1 半加器设计参考图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-1’(验证) 表5-1(分析)输入输出输入逐级输出Y B C B A B Y C A B YYYY C 1 2 3A 0 1 A 0 1 0 0 0 0 0 0 1 1 1 0 00 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 01 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 01 1 0 1 1 1 0 1 1 0 1 卡诺图Y= A?B C=AB 2(设计用异或门组成半加器,并测试其逻辑功能; 解:???步骤同上?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B C= AB,AB?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-2输入输出接接=1 A Y ? 逻电A B Y C 辑平显电0 0 0 0 平示 B ? C ? & & 0 1 1 0 图5-2测量由异或门组成的半加器的逻辑功能 1 0 1 01 1 0 12(设计用74LS54、74LS86、74LS00组成全加器,并测试其逻辑功能;解:?根据设计任务列出真值表输入输出 ?根据真值表写出逻辑表达式 Y C A B C 00 0 0 0 0 Y,ABC,ABC,ABC,ABC00000 1 0 1 0C,ABC,ABC,ABC,ABC00001 0 0 1 01 1 0 0 1 ?对逻辑表达式进行化简0 0 1 1 0,,,,,,,,Y,AB,ABC,AB,ABC,A,BC,A,BC0 1 1 0 1 00001 0 1 0 1 ,,,,,,,A,BC,A,BC,A,B,C0001 1 1 1 1,,,,,,C,ABC,C,AB,ABC,AB,A,BC0000?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式,, Y,A,B,C0,, C,AB,A,BC0?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-3接电平显示 C 输入输出 Y A B CY C 074LS00 & 0 0 0 0 0 ? 0 1 0 1 0 ?1 0 0 1 0 ?1 =1 =11 1 0 0 1 & & & & 0 0 1 1 0 1/2 74LS860 1 1 0 1 ? ? ? ? ? ? ? 1 0 1 0 1 ? A B C0 1 1 1 1 1 74LS54 接逻辑电平图5-34(分析四位二进制全加器74LS83A的逻辑功能;接电平显示Σ Σ Σ Σ 4321接接电“0” CC4 0 FAFAFAFA4 3 2 1 平或显“1” ? ? 示 ? ?74LS83A A/AA/AB/BB/B24 13 24 24接逻辑电平图5-4 分析四位二进制全加器74LS83A的逻辑功能表5-4输出输入C=0 C=1 00B/BA/A B/B A/A ΣΣΣΣCΣΣΣΣC24 2413131 2 3 4 4 1 2 3 4 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 10 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 11 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 00 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 01 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1*5(用加法器74LS83A实现BCD码和余三码之间的相互转换。
实验2 半加器全加器的电路设计实现

2 =1
7486N
1 3
&
2
7400N
4
6
5 =1
7486N
4
6
5&
7400N
Si
9
Ci
10 & 8
7400N
全加器逻辑功能测试
输入
A
B
C
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0Байду номын сангаас
1
0
1
1
1
0
1
1
1
输出
Si
Ci
3.3 半加器电路设计
(1)用与非门实现逻辑电路图。 (2)自拟表格验证。
Si AAB B AB
C AB
3.4 16位算术/逻辑运算电路设计
设计要求:(1)运算位数:16位 (2)进行算术和逻辑运算。
精品课件!
精品课件!
4、作业
1.完成实验总结报告。 2.预习实验3编码器、译码器和数据选择器 的应用。 3.设计电路并搭制电路。
S A B C AB
S A
=1
B
7486N 300 Ω
C
&
7400N 7404N 300 Ω
输入 AB 00 01 10 11
输出 SC
3.1半加器功能测试
3.2 全加器逻辑功能测试
Si Ai Bi Ci1 Ci ( Ai Bi )Ci1 Ai Bi
1
A
3
B
1、实验目的
1 掌握组合逻辑电路的功能测试。 2 用与非门、或非门设计实现半加器 和全加器。
组合逻辑电路设计之全加器、半加器

班级姓名学号实验二组合电路设计一、实验目的(1)验证组合逻辑电路的功能(2)掌握组合逻辑电路的分析方法(3)掌握用SSI小规模集成器件设计组合逻辑电路的方法(4)了解组合逻辑电路集中竞争冒险的分析和消除方法二、实验设备数字电路实验箱,数字万用表,74LS00,74LS86三、实验原理1.组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路的过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单的组合逻辑电路。
组合电路的输入信号和输出信号往往不只一个,其功能描述方法通常有函数表达式、真值表,卡诺图和逻辑图等几种。
实验中用到的74LS00和74LS86的引脚图如图所示。
00 四2输入与非门Vcc4B4A4Y3B3A3Y Array 1A1B1Y2A2B2Y GND2.组合电路的分析方法。
组合逻辑电路分析的任务是:对给定的电路求其逻辑功能,即求出该电路的输出与输入之间的关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析一般分为一下几个步骤:(1)由逻辑图写出输出端的逻辑表达式,简历输入和输出之间的关系。
(2)列出真值表。
(3)根据对真值表的分析,确定电路功能。
3.组合逻辑电路的设计方法。
组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。
一般设计的逻辑电路的过程如图:(1)通过对给定问题的分心,获得真值表。
在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量直接的逻辑关系问题,其输出变量之间是否存在约束关系,从而过得真值表或简化真值表。
(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。
(3)根据最简逻辑表达式得到逻辑电路图。
四.实验内容。
1.分析,测试半加器的逻辑功能。
半加器全加器的工作原理和设计方法实验报告

半加器全加器的工作原理和设计方法实验报告
一、实验目的
1、了解数字电路的基本运算电路,如半加器和全加器。
二、实验器材
集成电路IC:74LS86、74LS83A、定时器CD4017
三、实验原理
1、半加器
半加器的功能是对两个二进制位的加法进行部分运算,即进行逐位相加,得到次位的进位信号和本位的和信号,半加器的运算法则如下:
• 0+0=0,S=0,C=0
其中,S为和信号,C为进位信号。
半加器的逻辑电路图如图1所示:
其中,传输门XOR gate为异或门,SUM为和信号输出端,CARRY为进位信号输出端。
2、全加器
图2. 全加器逻辑电路图
四、实验内容
将集成电路74LS86的引脚定义为X1、X2、不连、SUM、CARRY,输入进位信号CARRY 为不连,依次连接如图3所示,将本位输入信号接到X1和X2引脚上,再将SUM和CARRY 引脚接到示波器上,调节示波器显示参数,观察和进位信号输出情况。
将全加器的电路图按照原理图进行布线,如图4所示:
五、实验结果
将X1和X2输入信号分别输入1和0,观察示波器上和进位信号输出情况如图5所示:
图5. 半加器实验结果
该结果表明,1+0=1,和信号S=1,进位信号C=0,符合半加器的逻辑运算法则。
3、实验验证了半加器和全加器的逻辑运算法则和逻辑电路设计方法。
组合逻辑电路(半加器全加器及逻辑运算)

一种常见的实现方式是使 用异或门实现和S,使用 与门实现进位C。
半加器的性能分析
逻辑级数
半加器的逻辑级数通常较低,因 为它只涉及基本的逻辑运算。
可靠性
半加器的结构简单,因此具有较 高的可靠性。
延迟时间
由于逻辑级数较低,半加器的延 迟时间相对较短。
资源消耗
半加器使用的逻辑门数量相对较 少,因此在资源消耗方面较为经 济。
组合逻辑电路(半加器 全加器及逻辑运算)
• 组合逻辑电路概述 • 半加器原理与设计 • 全加器原理与设计 • 逻辑运算原理与设计 • 组合逻辑电路的分析与设计方法 • 组合逻辑电路在数字系统中的应用
目录
Part
01
组合逻辑电路概述
定义与特点
定义
无记忆性
组合逻辑电路是一种没有记忆功能的数字 电路,其输出仅取决于当前的输入信号, 而与电路过去的状态无关。
比较器
比较两个二进制数的大小关系,根 据比较结果输出相应的信号,可以 使用与门、或门和非门实现。
全加器
在半加器的基础上增加对进位的处理 ,使用与门、或门和异或门实现两个 一位二进制数带进位的加法运算。
多路选择器
根据选择信号的不同,从多个输 入信号中选择一个输出,可以使 用与门、或门和非门实现。
Part
用于实现控制系统的逻辑 控制、数据处理等功能。
Part
02
半加器原理与设计
半加器的基本原理
半加器是一种基本的组合 逻辑电路,用于实现两个 二进制数的加法运算。
它接收两个输入信号A和 B,并产生两个输出信号: 和S以及进位C。
半加器不考虑来自低位的进 位输入,因此只能处理两个 一位二进制数的加法。
组合逻辑电路的应用领域
(VHDL实验报告)一位半加器,全加器的设计教学总结

五、实验步骤
(一)半加器的设计
4、对设计文件进行仿真
1)选择File--New,在弹出的对话框中选择Vector Waveform File,点击OK按钮,打开进入一个空的波形编辑器窗口。
2)设置仿真结束时间,波形编辑器默认的仿真结束时间为 1µS, 根据仿真需要,可以自由设置仿真的结束时间(本次设置的为1ms)。 选择 QUARTUSII 软件的 Edit--End Time命令,弹出线路束时间对 话框,在 Time框办输入仿真结束时间,点击OK按钮完成设置。如下 图所示:
实验箱上拨动开关档位在下方时表示其输出为低电平,反之
输出市电平;当FPGA与其对应的端口为高电平时LED就会发光,反
之LED灯灭。其拨动开关与FPGA管脚的连接表以及LED灯与FPGA管
脚连接表如下两图所示:
五、实验步骤
(一)半加器的设计
1、建立工程文件
1)运行QUARTUSII 软件。
2)选择软件中的菜单 File>New Project Wizard,新建一个工 程。
3)加入输入、输出端口,在波形编辑器窗口左边的端口名列表 区点击鼠标右键,在弹出的右键菜单中选择 Insert Node or Bus… 命令,在弹出的 Insert Node or Bus 对话框界面中点击 Node Finder…按钮。在出现的 Node Finder 界面中的 Filter 列表中选 择 点击 List,在 Nodes Found 窗口出现所有信号的名称,点击中 间的按钮则 Selected Nodes 窗口下方出现被选择的端口名称。双击 OK按钮,完成设置,回到 Insert Node or Bus 对话框,双击OK按 钮,所有的输入、输出端口将会在端口名列表区内显示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4 16位算术/逻辑运算电路设计
设计要求:(1)运算位数:16位 (2)进行算术和逻辑运算。
4、作业
1.完成实验总结报告。 2.预习实验3编码器、译码器和数据选择器 的应用。 3.设计电路并搭制电路。
实验2 半加器、全加器的电路 设计实现
1、实验目的
1 掌握组合逻辑电路的功能测试。 2 用与非门、或非门设计实现半加器 和全加器。
2、实验设备及器件
数字万用表 数字电路实验箱 集成电路 74LS00 4-2输入与非门 74LS04 6非门 74LS86 4-2输入异或门 74LS381 集成算术/逻辑单元
1
A
3
B
2 =1
7486N
1 3
&
2
7400N
4
6
5 =1
7486N
4
6
5&
7400N
Si
9
Ci
10 & 8
7400N
全加器逻辑功能测试
输入
A
B
C
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
输出
Si
Ci
3.3 半加器电路设计
(1)用与非门实现逻辑电路图。 (2)自拟表格验证。
Si AAB B AB
3、实验内容
3.1 半加器功能测试
S A B C AB
S A
=1
B
7486N 300 Ω
C
&Байду номын сангаас
7400N 7404N 300 Ω
输入 AB 00 01 10 11
输出 SC
3.1半加器功能测试
3.2 全加器逻辑功能测试
Si Ai Bi Ci1 Ci ( Ai Bi )Ci1 Ai Bi