新能源技术介绍
新能源科技

新能源科技新能源科技是指利用可再生能源替代传统石化能源(如煤炭、石油和天然气)的一种技术。
随着环境问题日益严重,新能源科技越来越受到人们的关注和重视。
本文将重点介绍几种新能源科技,包括太阳能、风能和生物能。
太阳能是一种可再生能源,指的是直接利用太阳辐射能转化为电能或热能的技术。
太阳能光伏发电系统由光伏电池组成,可将太阳能转化为电能。
此外,太阳能热利用技术可以将太阳能转化为热能,用于供暖、热水等方面。
太阳能具有无污染、可再生等优点,因此在解决能源短缺和环境污染方面具有巨大潜力。
风能是指利用风能转动风机发电的一种技术。
风能的利用历史悠久,古代风车就是利用风能进行磨坊、提水等工作。
现代风力发电通常利用风机转动发电机,产生电能。
风能具有无污染、可再生、分布广泛等优点,可以有效减少温室气体排放,是一种十分环保和可持续的能源。
生物能是利用生物质能源转化为热能、电能或燃料的一种技术。
生物质能源通常包括农作物秸秆、木材废料、农畜禽粪便等可再生生物能源。
生物质能源利用可以通过燃烧、发酵等方式将生物质转化为热能或沼气。
此外,生物质能源还可以通过化学反应转化为生物燃料,如生物柴油、生物乙醇等。
生物质能源具有可再生、无污染、减少温室气体排放等优点,是一种具有巨大潜力的新能源。
新能源科技的发展对于解决能源问题、减少环境污染、应对气候变化等具有重要意义。
首先,新能源科技能够减少对传统化石能源的依赖,缓解能源短缺和能源安全问题。
其次,新能源科技能够减少温室气体排放,改善空气质量,减少环境污染。
第三,新能源科技能够创造就业机会,促进经济发展。
最后,新能源科技能够推动可持续发展,为子孙后代提供良好的生活环境。
然而,新能源科技也面临一些挑战。
首先,新能源科技的成本仍然较高,需要进一步降低成本才能大规模应用。
其次,新能源科技的技术不成熟和不稳定,需要进一步研发创新以提高效率和可靠性。
第三,新能源科技的规模化应用还面临一些政策和市场方面的障碍,需要加强政策支持和市场监管。
新能源技术在建筑领域中的应用

新能源技术在建筑领域中的应用近年来,新能源技术逐渐成为了建筑领域中重要的发展趋势。
不仅为建筑带来了更加绿色、环保的能源供应方式,同时也推动了建筑行业的创新与发展。
本文将从多角度探讨新能源技术在建筑领域中的应用。
一、新能源技术的介绍新能源技术是指基于可再生能源,采用新的科技手段将其转化成为一种可用能源的的技术体系。
其中,最常见的新能源技术包括太阳能、风能、地热能等。
由于其具有环保、可再生、永久等特点,新能源技术正在被广泛应用于不同领域,尤其是建筑领域,成为了其中的重要技术领域。
二、新能源技术在建筑领域中的应用1. 绿色建筑绿色建筑是一种利用环保、节能技术打造出的可持续发展的建筑空间。
其中,利用新能源技术,特别是太阳能和风能,是绿色建筑中必不可少的一环。
例如,在建筑屋顶上搭建太阳能板,可以将太阳能转化为电能,为建筑提供稳定的电源。
而在风能方面,则可以通过在建筑上安装风力发电设备,将风能转化为电能,为建筑提供更多的能源来源。
2. 建筑节能随着环保理念的越来越受到人们的重视,建筑节能已成为了一种主流趋势。
在这方面,新能源技术也发挥了重要作用。
太阳能和风能这两种新能源,可以为建筑提供可再生的能源源头,通过科学、高效的利用,降低了能源消耗的成本。
特别是在太阳能利用方面,通过利用太阳能板将太阳能转化为电能的方式,可以为建筑提供更加稳定、可靠的能源供应方式。
此外,在建筑隔热、采暖等方面,新能源技术也发挥了巨大作用,帮助建筑实现高效节能。
3. 可持续发展随着人们环保意识的不断提高,建筑领域也逐渐朝着可持续发展的方向前进。
在这方面,新能源技术也是其中的重要支撑。
以电动汽车充电站为例,通过在建筑上安装太阳能板,可以将太阳能转化为电能,为电动汽车充电提供稳定、可靠的能源支持。
这样可以将建筑与交通相结合,实现更加智能、高效的城市运营方式,推动城市可持续发展。
三、新能源技术在建筑领域中的优势1. 环保:新能源技术是一种纯净无污染、无放射性的能源形式,可有效降低能源消耗对环境的污染影响。
新能源技术

新能源技术新能源技术是指利用可再生资源或无污染资源进行能源转换和利用的技术。
随着全球能源需求的增长和环境问题的日益严峻,新能源技术逐渐成为了解决能源问题和保护环境的重要手段。
本文将介绍一些重要的新能源技术,并探讨其在实际应用中的前景和挑战。
第一种新能源技术是太阳能技术。
太阳能是一种广泛可利用的可再生能源,通过太阳能电池板将太阳光转化为电能,可以为我们的生活和工业生产提供电力。
太阳能技术具有可再生、无污染和广泛分布等特点,可以作为一种替代传统能源的可行选择。
然而,太阳能技术在实际应用中面临着高成本和不稳定性的挑战,需要进一步研发和改进。
第二种新能源技术是风能技术。
风能是利用风力转化为电力的技术,通过风力发电机将风能转化为机械能,再将机械能转化为电能。
风能技术具有广泛分布、风力稳定等特点,被广泛应用于风电场建设。
然而,风能技术也存在一些挑战,如风速不稳定、风能利用效率不高等问题,需要进一步研究和改进。
第三种新能源技术是生物能技术。
生物能是利用生物质资源进行能源转化和利用的技术,可以通过发酵、燃烧等过程将生物质转化为燃料。
生物能技术具有可再生、无污染等特点,可以作为一种替代传统能源的选择。
然而,生物能技术在实际应用中面临着资源供给和生产成本的限制,需要进一步研究和发展。
第四种新能源技术是地热能技术。
地热能是利用地球内部热能进行能源转化和利用的技术,可以通过地热发电站将地热能转化为电能。
地热能技术具有稳定可靠、无污染等特点,可以作为一种可行的替代能源。
然而,地热能技术在实际应用中面临着地热资源分布不均匀和开采成本较高的挑战,需要进一步开发和改进。
总之,新能源技术在解决能源问题和保护环境方面具有重要作用。
随着科技的进步和社会需求的增长,新能源技术将不断发展和改进,并逐渐取代传统能源,成为人类社会可持续发展的重要支撑。
然而,新能源技术的发展面临着许多挑战,如成本问题、技术改进等,需要政府、企业和社会各界共同努力,推动新能源技术的发展和应用。
新能源发电技术及其优势

新能源发电技术及其优势随着全球对环境保护的关注不断增强,新能源发电技术的发展备受瞩目。
本文将介绍几种常见的新能源发电技术,以及它们相比传统能源的优势。
一、太阳能发电技术太阳能是一种取之不尽、用之不竭的能源,通过光伏发电技术,可以将太阳能转化为电能。
太阳能发电技术的优势在于:1. 环保节能:太阳能发电过程中无需燃烧化石燃料,不会产生空气污染物和温室气体,对减少全球暖化起到积极作用。
2. 持续稳定:太阳能是可再生能源,太阳光无时无刻不在,因此太阳能发电具有持续稳定的特点。
3. 分布广泛:太阳光普遍存在于地球各个地区,可以在全球范围内进行太阳能发电,降低了能源供应的集中风险。
二、风能发电技术风能是一种可再生的清洁能源,通过风力发电机转换风能为电能。
风能发电技术的优势在于:1. 环保低碳:风能发电不需要燃烧燃料,不会产生二氧化碳等温室气体和空气污染物,有助于改善空气质量。
2. 资源丰富:地球上的风资源分布广泛,无论是海洋还是陆地上,都可以利用风能进行发电。
3. 经济性:一旦建立了风力发电站,其运营成本相对较低,并且风能是免费的,可以降低能源的长期供应成本。
三、水力发电技术水力发电是利用水流的动能将能量转化为电能的一种技术。
水力发电技术的优势在于:1. 绿色环保:水力发电不会产生污染物,无烟尘和温室气体的排放,对环境友好。
2. 稳定可靠:水流是自然界中常见的能源,相比其他新能源发电技术,水力发电具有更高的可靠性和稳定性。
3. 多功能性:水电站不仅能发电,还能灌溉农田、调节河流水位等,对于水资源的综合利用具有重要意义。
四、生物质能发电技术生物质能发电是指利用生物质作为燃料,通过发电设备将其转化为电能的技术。
生物质能发电技术的优势在于:1. 再生性能源:生物质主要来自植物和废弃物等可再生资源,其再生速度较快,不会耗尽。
2. CO2减排:生物质能发电过程中释放的二氧化碳与植物吸收的二氧化碳基本相等,减少了温室气体的排放。
新能源关键技术及应用

新能源关键技术及应用随着科技的发展和环保意识的增强,新能源已经成为了一个非常热门的话题。
这个领域涉及到了许多不同的技术,它的应用也非常广泛。
在本文中,我们将探讨新能源关键技术及其应用。
一、太阳能太阳能是新能源中最为重要和广泛应用的一种能源。
在太阳能的利用中,太阳能电池是最主要的技术。
太阳能电池利用半导体材料的特殊性质,将太阳光转换成电能。
这种技术可以广泛应用于发电、供电、汽车等领域。
二、风能风能是一种非常稳定和可靠的新能源。
它的利用主要是通过大型风力发电机。
风力发电机利用风能的动能,通过旋转的转子驱动发电机来产生电能。
这种技术主要应用于发电和供电领域。
三、地热能地热能是一种发展中的新能源。
利用地下深处的高温热水和热岩石层中的热能来发电是地热能的核心技术。
地热能可以广泛应用于供热、发电等领域。
四、水力能水力能是一种非常常见的新能源。
通过水力发电机利用水的动能来产生电能是其主要的技术。
这种技术可以广泛应用于发电和供电等领域。
五、生物质能生物质能是指利用可再生植物生物质来发电和供暖的能源。
例如生物柴油、发酵后的生物质气体等。
这种技术主要应用于生产能源和供热领域。
六、潮汐能潮汐能是指利用海洋潮汐能来发电的能源。
这种技术主要应用于环境保护和发电等领域。
七、氢能氢能是一种非常纯净和环保的新能源。
它的利用主要是通过水电解制氢。
这种技术主要应用于替代燃油和发电等领域。
总之,新能源是未来发展的趋势,其应用前景非常广泛。
以上介绍的技术都是新能源领域的核心技术,各领域应根据实际情况来选择适合自己的技术来保护环境,创造更好的生活。
新能源技术资料

新能源技术资料随着全球能源需求的不断增长以及对环境保护意识的提高,新能源技术正逐渐成为人们关注的焦点。
本文将介绍几种主要的新能源技术,包括太阳能、风能、生物质能以及地热能,并分析它们在解决能源问题和环境保护方面的应用前景。
一、太阳能太阳能是一种取之不尽、用之不竭的清洁能源,具有广阔的应用前景。
太阳能光伏发电技术是目前应用最广泛的太阳能利用方式之一。
通过将太阳能转化为电能,可以为家庭和企业提供可靠的电力供应。
此外,太阳能热利用技术也在供暖、热水和空调方面发挥着重要作用。
太阳能技术的发展不仅可以减少对传统能源的依赖,还可以降低温室气体的排放,对缓解气候变化具有积极意义。
二、风能风能是一种广泛分布并且可再生的能源,具有巨大的潜力。
风力发电技术是目前应用最成熟的风能利用方式。
通过风力发电机将风能转化为电能,可以为城市和农村地区提供清洁的电力。
风力发电具有环保、经济、可持续等优势,且不受燃料价格波动的影响。
随着技术的不断发展,风力发电的成本逐渐降低,其在能源结构调整和碳减排方面的作用将越来越重要。
三、生物质能生物质能是指利用植物和动物的有机物质来产生能量的一种方式。
生物质能技术包括生物质发电、生物质燃料和生物质气化等。
生物质能具有可再生、清洁、低碳等特点,且在农村地区具有广泛的应用前景。
通过生物质能技术,可以将农作物秸秆、农畜废弃物等转化为能源,既减少了农业废弃物的污染,又提供了可持续的能源供应。
四、地热能地热能是指利用地球内部储存的热能来产生能源的一种方式。
地热能技术主要包括地热发电和地源热泵。
地热发电利用地下的高温热水或蒸汽来驱动发电机,具有稳定可靠、环保无污染等优势。
地源热泵则利用地下的稳定温度来进行供暖和制冷,具有节能、环保的特点。
地热能技术的应用可以减少对传统能源的依赖,同时减少温室气体的排放。
综上所述,新能源技术的发展对于解决能源问题和保护环境具有重要意义。
太阳能、风能、生物质能和地热能等新能源技术在能源领域的应用前景广阔,可以为人们提供清洁、可持续的能源供应。
新能源技术包括

新能源技术包括新能源技术包括太阳能、风能、水能、地热能等多种形式,是应对气候变化和能源危机的重要途径。
新能源技术的发展不仅能够减少对传统化石燃料资源的依赖,还能够降低二氧化碳等温室气体的排放,从而保护环境,推动可持续发展。
太阳能是一种非常干净的能源,利用太阳能发电具有无污染、资源丰富等特点。
目前,太阳能光伏技术已经取得了长足的进步,发电成本逐渐下降,并且在一些地区已经和传统能源的价格竞争。
此外,太阳能热能利用也十分广泛,通过太阳能热水器可以为家庭提供热水,减少对传统燃气的需求。
风能是一种广泛分布且取之不尽的资源,通过风力发电可以为城市和农村地区提供清洁电力。
风力发电技术越来越成熟,风电场规模不断扩大,成为国家能源战略的重要组成部分。
同时,风能也可以用于给水泵、发电等设施提供动力,实现资源的高效利用。
水能作为一种可再生能源,在水电站中得到了广泛应用。
水能发电不仅可以满足城市和农村的用电需求,还可以解决一些地区的用水问题。
此外,水能还可以用于海水淡化和污水处理等领域,为人们提供更多清洁水资源。
地热能是一种利用地球内部热量产生热能的技术,广泛应用于供暖、发电等领域。
地热资源分布广泛,潜力巨大,是一种清洁、可持续的能源选择。
通过地热能的利用,不仅可以减少对化石燃料的依赖,还可以降低温室气体的排放,对环境友好。
总的来说,新能源技术的发展对于解决能源和环境问题具有重要意义。
政府、企业和个人应该共同努力,促进新能源技术的创新与应用,推动能源结构转型,实现可持续发展的目标。
只有不断探索和推广新能源技术,才能更好地应对能源危机和气候变化,建设一个更加清洁、美丽的世界。
新能源科技的知识点

新能源科技的知识点新能源科技是指利用可再生能源和清洁能源来替代传统能源的科技领域。
随着全球对环境保护和可持续发展的重视,新能源科技在近年来得到了迅速发展和广泛应用。
本文将介绍几个关于新能源科技的重要知识点。
一、太阳能太阳能是指利用太阳辐射能转化为其他形式能量的技术。
太阳能电池板是太阳能利用的主要设备,它可以将太阳光直接转化为电能。
太阳能电池板的主要材料是硅,通过光伏效应将光能转化为电能。
太阳能电池板广泛应用于家庭光伏发电、太阳能热水器等领域。
二、风能风能是指利用风的动力来转化为电能的技术。
风能发电机是风能利用的主要设备,它通过风轮转动带动发电机发电。
风能发电机的关键技术是风轮的设计和控制系统的优化。
风能发电广泛应用于风电场,成为清洁能源的重要来源。
三、水能水能是指利用水的动力来转化为电能的技术。
水力发电是水能利用的主要方式,通过水轮机转动发电机发电。
水力发电的关键是选择合适的水力资源和设计高效的水轮机。
水能发电广泛应用于水电站,是一种可再生、清洁的能源形式。
四、地热能地热能是指利用地壳内部的热能来转化为电能或供热的技术。
地热发电是地热能利用的主要方式,通过地热发电机将地热能转化为电能。
地热能的开发利用需要选择适宜的地热资源和合理的开采方式。
地热能广泛应用于供热和发电领域。
五、生物质能生物质能是指利用植物和动物的有机物质来转化为能源的技术。
生物质能利用的主要方式包括生物质发电、生物质燃料和生物质液化等。
生物质能的开发利用需要选择合适的生物质资源和高效的转化技术。
生物质能广泛应用于农业、能源和化工等领域。
六、储能技术储能技术是指将能量转化为其他形式储存起来,在需要时再转化为能量供应的技术。
储能技术是新能源科技的重要支撑,可以解决可再生能源的间歇性和不稳定性问题。
目前常用的储能技术包括电池储能、压缩空气储能和水泵储能等。
七、智能电网智能电网是指利用信息通信技术来优化电力系统的运行和管理的技术。
智能电网可以实现电力系统的高效、安全和可靠运行,提高能源利用效率和供电质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
电极组合件
北京世纪富原燃料电池有限公司开发 出横板涂敷法 北京太阳能新技术公司研制出陶瓷型 无机复合材料厚膜电极
3
质子交换膜
清华大学研制出聚偏氟乙烯接枝聚苯 乙烯磺酸P E M
4
双极板
天津电源研究所研制出实用新型 双极板
5
电解质
吉林大学研制出固体复合电解质
丰田氢燃料FV2概念车充电3 分钟可续航500千米,并且行
超导技术是当前唯一可以解决发电 机过大过重的技术。超导体的零电 阻特性不仅解决了散热问题,而且 由于电流密度较传统电机提高数倍 乃至数十倍,功率密度将会大幅提 升。因此,同样功率条件下,超导
可燃冰
N ATU R AL G AS H Y D R ATE
1999 年
据估算,我国可燃冰 总资源量约为84万亿立方 米,其中东海、南海海域 分别约为3.4万亿立方米和 65万亿立方米,陆地上青 藏高原、东北冻土带分别 为12.5万亿立方米和2.8万 亿立方米。
我 国 可 燃 冰 发 展 状 况
中国地质勘查局科技人员首次在南海西沙海槽发现了显示天然气水合
产品 质量
分子结构较 为完整 薄片不容易 与SiC分离 分子结构较 容易被破坏 结构完整、 质量较好
制造 成本
较低 较高 较低 较高
是否适合 产业化
否 小规模生 产 适合规模 生产 适合规模 生产
石墨烯
G R AP H E N E
全球石墨烯技术专利地区分布图
中国石墨烯薄膜专利分布图
中国在石墨烯研究处于世界领先位置。根据中华人民共和 国知识产权局、Wind数据库资料,2015年中国专利申请数 量达7925个,居全球第一。而从专利布局来看,企业和学 校总占比达80%以上,公司占比低于学校,但产业化进程提 速有限。
超导
超导是指某些物质在一定温度条件下电阻降为零的 性质。
超导 风机
超导风机就是在风力发电机中用高温超导体来代替
普通电机的铜线圈作为电机励磁绕组的电机。
特点
发电效率高、体积小、重量轻
超导风机
S U P E R CO N TE CTI N G WI N D TU R B I NE
永磁发电机带领风 电行业成功走向了 5MW级别,但兆瓦级 双馈式和直驱永磁
的高效率、低风险方法。
环境影响难以预料
一旦可燃冰大量开采,必然释放大量甲烷
行业壁垒
资金需求巨大,企业进入门槛高。企业前 期需要投入大量人力物力和财力,不是一 般企业可以承受的,目前只有几家国有企 业在进行投资。
气体,可能造成全球温室效应加剧。同时,
海底可燃冰的分解会导致海洋斜坡稳定性 降低,破坏海洋生态平衡。
原理:轻原子核(例如氘和氚)结合成较重原子核(例如氦)时放出巨大能量。
第一代:氘 氚聚变反应
第二代:氘 和氦3 聚变反 应
第三代:氦3 和氦3 聚变反 应
核聚变反应
N U CLE AR FU S I O N R E ACTI ON
核聚变释放的能量比核裂变更大
优 劣 势
无高端核废料,可不对环境构成大的污染
燃 料 电 池 汽 车
上汽集团展示的第四代氢燃料950插
驶时排放物只有水,实现了
二氧化碳污染物零排放。
奥迪与德国燃料电池Sunfire合 作生产车用新型燃料“e-燃油”, 它由水、二氧化碳和氢气制成。 2 008 年至今,车载燃料电池系统的成本下降 和汽油这类化石燃料不同,奥迪 的这种合成燃料不会增加任何碳 排放,因为原料来自大气中现成
AF C 35~ 105 0. 5 H2 O2 45~6 0 几分钟 5 0~2 00 太空、军事
P AF C 100~22 0 0. 1 天然气、甲醇 空气 35~6 0 2~4h 18 0~22 0 分布式发电
M CF C 3 0~4 0 0. 2 天然气 空气 45~6 0 ≧10h 6 00~7 00 大型发电厂
其他特性
非极性溶剂中表现出良好的溶解性;具有超疏水性和 超亲油性;具有芳烃的性质;
应用
储氢材料 超高灵敏 度传感器 大功率太赫 激光元器件 柔性晶体 管 接触面板用透 明导电薄膜 有机太阳能 电池用材料
石 墨 烯 材 料 的 一 些 应 用
1nm 100nm 10μ m
单电子晶 体管
1m m
锂电池等 负极材料
10cm 10m
输电线路
尺寸 1km 100km 10000km
两极性晶 体管
运动器材 超级电容器 电极材料 显示器及太 阳能电池窗 口电极 汽车/ 飞机的 构造体等
太空电梯
石墨烯
G R AP H E N E
生产 方法
微机械剥离法 外延生长法 氧化石墨还原法 气相沉积法
产品 尺寸
中小 尺寸 大尺 寸 大尺 寸 大尺 寸
质能方程的提出揭示了质量与 能量的关系,为核能源奠定了 理论基础。
1千克物质全部转化为能量,大约产
生25 0亿度电
01
2 016 年,我国发电总量6 万亿度,理 论上只需要24 0公斤物质就能满足我
国一年的用电需求。
02
核裂变中大约1‰、核聚变中大约
7‰的物质变成了能量。
03
核聚变反应
N U CLE AR FU S I O N R E ACTI ON
01
布的地理位置,也导致了开采的困 难。如果不能满足低温高压的条件,
02
温度
一般要求温度低于0℃~10℃
可燃冰就会分解
资源
丰富的天然气和适量的水
03
CH4·8H2O
加压或降温
CH4+8H2O
可燃冰
N ATU R AL G AS H Y D R ATE
1m 3 可燃冰相当于3 口之家 能量高 半年的天然气使用需求。 海洋中可燃冰储藏的碳含
2018
新能源技术
N ew E nergy Tech nol ogy
文 案 / 常 龙 / 汇 报 / 常 龙
提要
SYN O PSI S
“对新能源、新技术一概排斥,不重视,不愿意投入精力研究,
更不愿意以战略决心和优势资源投入,就会自己打败自己,自己封杀 自己的明天。”
“我们必须塑造华信新的能力,从原来资源、资本密集型公司,向
“知识技术密集型”企业升级。形成人人善于学习和思考的氛围,让
善于学习成为华信新的企业文化特征,成为“学习型组织”。”
目录
CO N TE N TS
01 02
核聚变反应 石墨烯 可燃冰 超导风机
04 05
03
燃料电池
地热能
06
核聚变反应
N U CLE AR FU S I O N R E ACTI ON
燃料电池的应用
燃料电池
R U E L CE LL
燃料电池通过氧与氢结合成水的简单化学反应而发电
AFC
PEMFC
PAFC
MCFC
SOFC
碱性燃料电池
质子交换膜燃料电池
磷酸燃料电池
熔融碳酸燃料电池
固态氧燃料电池
燃料电池
R U E L CE LL
燃料电池类型 比功率(W/kg) 单位面积功率(W/cm2) 燃料种类 氧化物种类 发电效率(%) 启动时间 反应温度(℃) 应用情况
可燃冰,分布于深海沉积物或陆域的永久冻土中,由天然气
与水在高压低温条件下形成的类冰状的结晶物质。其资源密
度高,全球分布广泛,具有极高的资源价值。科学家估计, 海底可燃冰的储量至少够人类使用1000年。
可燃冰
N ATU R AL G AS H Y D R ATE
高压
形成压力一般要高于10M p a
可燃冰的三个条件决定了可燃冰分
分布广
埋藏浅
量约为1. 2 万亿吨,陆地上 已探明储量约有0. 5 万亿吨, 相当于所有探明化石能源 碳总和的2 倍。海底可燃冰 分布约4 000万平方公里。
规模大
我国主要在东海、南海、
青藏高原以及东北冻土带。
可燃冰
N ATU R AL G AS H Y D R ATE
热激发开采法
对可燃冰层进行加热,使可燃冰分解成水 和天然气。但是这种方法尚未解决热能利 用率低下的问题,而且只能进行局部加热, 有待进一步完善。
2 013 年
油气当量。 中国海洋地质科技人员在广东沿海珠江口盆地东部海域首次钻获高纯
2 017 年
度天然气水合物样品,并通过钻探获得了可观的控制储量。 中国首次海域天然气水合物(可燃冰)试采成功
可燃冰
N ATU R AL G AS H Y D R ATE
开采技术上不成熟
开采技术层面尚未找到一个适合我国现状
声波核聚变。其中利用磁约束聚变装置中的 模块式仿星器已经接
近 商 业 堆 的 规 模 。 我 国 也 有 了 HT—7 、 E AS T 、 HL—2 A 、 J— 模块式仿星器 TE X T、S U N I S T等聚变装置。部分核聚变技术走在了世界前列。
可燃冰
N ATU R AL G AS H Y D R ATE
发 展
5 0% 以上,性能已能满足整车要求。2 014 年,
现代途胜燃料电池汽车和丰田新款燃料电池汽
电式混合动力轿车加氢3-5分钟,能
行驶400千米,时速可达160千米。
车M irai上市;2 015 年开始,本田、通用、福特、 的二氧化碳。 奔驰等都将在3 年内推出量产车型。
石墨烯
G R AP H E N E
减压开采法
01
02
利用降低压力促使可燃冰分解。这种方法 成本低,适合大面积开采,但是它对可燃 冰矿藏的性质有要求,只有在可燃冰藏于 温压平衡边界附近时,减压开采法才经济 可行。
化学试剂法