最新8图像增强-直方图
第4讲 直方图 图像增强

原图像的直方图
规定的直方图
规定化后图像的直方图
?
若在原图像一行上连续8个像素的灰度值分别为:0、1、 2、3、4、5、6、7,则规定化后,他们的灰度值为多少? 利用直方图规定化方法进行图像增强的主要困难在于 要构成有意义的直方图。图像经直方图规定化,其增强效 果要有利于人的视觉判读或便于机器识别。
r0→s0=1/7
790
0.19
0.25 0.21
z0=0
z1=1/7 z2=2/7
0.00
0.00 0.00
0.00
0.00 0.00
z0
z1 z2
0
0 0
0.00
0.00 0.00
r1→s1=3/7 1023 r2→s2=5/7 850
r3→s3=6/7
r4→s3=6/7 r5→s4=1 r6→s4=1 r7→s4=1 448 0.11 985 0.24
(a)
(b)
(c)
1 s0 , 7 6 s4 , 7
3 s1 , 7 s5 1,
5 s2 , 7 s6 1,
6 s3 7 s7 1
直方图均衡化示例
Lena图像
及 直方图
经直方图均衡化后的Lena图像及直方图
算法: 1. 对于L个灰度级(一般256)大小为M×N的图像,创建一个长为
②按照希望得到的图像的灰度概率密度函数 pz(z),求得变换函数G(z); ③用步骤①得到的灰度级s作逆变换z= G-1(s)。
规定化示例
采用与直方图均衡相同的原始图像数据(64×64像素 且具有8级灰度)
原图像的直方图
规定化直方图
rj →sk
nk
ps(sk)
第8章_图像增强

32
一、空间域图像增强(29)
对角线方向边缘增强示意图
33
一、空间域图像增强(30)
单方向一阶微分算子图像增强效果
34
一、空间域图像增强(31)
Roberts交叉微分算子
g x, y f x 1, y 1 f x, y f x 1, y f x, y 1
f
G x x
f
f
G
y
y
27
一、空间域图像增强(24)
一阶微分算子
单方向微分算子
(1)水平方向微分算子
Dlevel
1 2 1
0 0 0
1 2 1
g ( x, y ) [ f x 1, y 1 f x 1, y 1] 2[ f x 1, y f x 1, y ]
遥感数字图像处理
第8章
图像增强
背景知识
图像增强是通过一定手段对原图像进行变换或附加一些信息
,有选择地突出图像中感兴趣的特征或者抑制图像中某些不
需要的特征,使图像与视觉响应特性相匹配,从而加强图像
判读和识别效果,以满足某些特殊分析的需要。
目的:改善图像的视觉效果,帮助我们更好地发现或识别图
像中的某些特征。
作用:调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改
善图像融合和图像镶嵌效果。
14
一、空间域图像增强(12)
直方图匹配的思想:
原图像中的任意一个灰度值ai 都可
以在参考图像上找到一个与之对应
的灰度值bi ,使得原图的灰度概率
基于直方图的图像增强算法

基于直⽅图的图像增强算法1 对⽐度和直⽅图均衡HE“对⽐度contrast ratio”这⼀概念,类似于“动态范围dynamic range”,衡量的是图像中亮区与暗区的⽐例。
对⽐度实际上没有统⼀的测量标准,参见:维基百科但我们知道,对⽐度是影响图像视觉效果的重要因素。
对⽐度⼩的图像,其⾊彩层次少,看起来要么太亮,要么太暗。
如下图:利⽤MATLAB内置的histeq函数,可以得到对⽐度增强的图⽚:img=imread('View.jpg');rimg=img(:,:,1);gimg=img(:,:,2);bimg=img(:,:,3);resultr=histeq(rimg);resultg=histeq(gimg);resultb=histeq(bimg);result=cat(3,resultr,resultg,resultb);subplot(1,2,1)plot(img);title('原图');subplot(1,2,2)plot(result);title('histeq均衡后图');直⽅图均衡的本质是灰度值映射。
⽽映射函数可以由分布曲线(累积直⽅图)得到:D B =D maxA 0D A ∑i =0H i其中 A 0 是像素总数(图像⾯积),D max 是最⼤灰度值,D A 、D B 分别是转换前、后的灰度值,H i 是第 i 级灰度的像素个数。
例如原直⽅图为:灰度值0到120,累积像素个数都为0,因此灰度值0到120都映射到灰度值0;此后⿊线开始上升,其纵坐标就是映射到的灰度值(当然还有系数 D maxA 0 )。
灰度值200左右,⿊线饱和,因此其后的灰度值都映射到最⼤灰度值255。
经过均衡后的直⽅图为:综上,HE后的直⽅图实际上是原直⽅图的拉伸,只是左右拉伸程度是变化的,取决于原直⽅图的幅度变化。
2 HE的问题以上是直⽅图均衡Histogram Equalization的简单应⽤。
图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)

图像增强算法(直⽅图均衡化、拉普拉斯、Log、伽马变换)⼀、图像增强算法原理图像增强算法常见于对图像的亮度、对⽐度、饱和度、⾊调等进⾏调节,增加其清晰度,减少噪点等。
图像增强往往经过多个算法的组合,完成上述功能,⽐如图像去燥等同于低通滤波器,增加清晰度则为⾼通滤波器,当然增强⼀副图像是为最后获取图像有⽤信息服务为主。
⼀般的算法流程可为:图像去燥、增加清晰度(对⽐度)、灰度化或者获取图像边缘特征或者对图像进⾏卷积、⼆值化等,上述四个步骤往往可以通过不同的步骤进⾏实现,后续将针对此⽅⾯内容进⾏专题实验,列举其应⽤场景和处理特点。
本⽂章是⼀篇综合性⽂章,算是⼀篇抛砖引⽟的⽂章,有均衡化、提⾼对⽐度、降低对⽐度的算法。
1.1 基于直⽅图均衡化的图像增强图像对⽐度增强的⽅法可以分为两种:直接对⽐度增强⽅法,间接对⽐度增强⽅法。
直⽅图拉伸和直⽅图均衡化是常见的间接对⽐度增强⽅法。
直⽅图拉伸是利⽤对⽐度拉伸对直⽅图进⾏调整,扩⼤前景和背景灰度的差别,这种⽅法可以通过线性和⾮线性的⽅法来实现,其中ps中就是利⽤此⽅法提⾼对⽐度;直⽅图均衡化则是利⽤累积函数对灰度值进⾏调整,实现对⽐度的增强。
直⽅图均衡化处理原理:将原始图像的灰度图从⽐较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的⾮线性拉伸,重新分配图像像素值。
算法应⽤场景:1、算法的本质是重新分布图像的像素值,增加了许多局部的对⽐度,整体的对⽐度没有进⾏太⼤改变,所以应⽤图像为图像有⽤数据的对⽐度相近是,例如:X光图像,可以将曝光过度或曝光不⾜照⽚进⾏更好的显⽰,或者是背景及前景太亮或太暗的图像⾮常有⽤。
2、算法当然也有缺点,具体表现为:变换后的图像灰度级减少,某些细节减少;某些图像有⾼峰值,则处理后对⽐度不⾃然的过分增强。
算法实现特点:1、均衡化过程:直⽅图均衡化保证在图像像素映射过程中原来的⼤⼩关系保持不变,即较亮的区域依旧较亮,较暗的依旧较暗,只是对⽐度增加,不能明暗颠倒;保证像素映射函数的值域在0和255之间。
自-直方图图像增强(实验报告)

数字图像处理作业——直方图图像增强【摘要】ﻩ在自然界中很多图像可能都不符合人的视觉特点,因此有必要根据图像的特点采用一定的方法增强图像的视觉感知效果。
本次作业通过直方图来增强图像,主要是对直方图进行修正来达到视觉转换。
具体方法为直方图均衡、直方图匹配以及图像分割技术。
其中,直方图均衡是调整图像的对比度使其增强;直方图匹配是将所要处理图像的直方图与已知直方图进行类似匹配的方法;而图像分割是将一副图像的前景与背景区别开来的技术。
1. 把附件图像的直方图画出:【注】:由于源图像中的附图均是以索引图的形式给出,因此在画直方图之前需要将其转换成灰度图。
如果调色板缺失,需要先将调色板中缺失的色彩信息补全之后,再用matlab 工具箱提供的图像类型转换函数(G =ind 2gray (A,map)% 将索引图转换成灰度图)进行类型转换。
利用MA TLAB 工具箱,我们可以直接通过函数imh ist( )来画出图像的直方图。
处理结果如下:0100020003000citywall.bmp 的原直方图1002000citywall1.bmp 的直方图1002000citywall2.bmp 的直方图100200elain.bmp的原直方图0100200elain1.bmp的直方图0100200elain2.bmp的直方图01002004elain3.bmp的直方图0100200 0lena.bmp的原直方图01002004lena1.bmp的直方图0100200 0lena2.bmp的直方图010020050001000015000lena4.bmp的直方图01002002. 把所有图像进行直方图均衡;输出均衡后的图像和源图像进行比对;分析改善内容;【分析】:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
该方法通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
第3章 空间域图像增强1——点、直方图处理

(a) (b) (c) (d)
图3.8 图像灰度切割
数字图像处理
色彩直方图
• 色彩直方图是高维直方图的特例,它统计色彩的出现频 率,即色彩的概率分布信息。 • 一般不直接在RGB色彩空间中统计,而是在将亮度分离 出来后,对代表色彩部分的信息进行统计,如在HSI空 间的HS子空间、YUV空间的UV子空间,以及其它反映 人类视觉特点的彩色空间表示中进行。 • 下图是统计肤色分布情况的例子。
j 0 j 0 k k
nj n
0 rk 1, k 0,1,...,l 1
• 均衡化后各像素的灰度值可直接由原图像的直方图算 出。
数字图像处理
直方图均衡化的计算步骤及实例
• 设64×64的灰度图像,共8个灰度级,其灰度 级分布见下表,现要求对其进行均衡化处理。
原始直方图数据
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 nk 790 1023 850 656 329 nk / n 0.19 0.25 0.21 0.16 0.08 rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7
– 依此类推可计算得:s2=0.65;s3=0.81;s4=0.89; s5=0.95;s6=0.98;s7=1。
• 对sk 进行舍入处理。
– 由于原图像的灰度级只有8级,因此上述各需用 1/7为量化单位进行舍入运算,得到如下结果: s0舍入=1/7 s1舍入=3/7 s2舍入=5/7 s3舍入=6/7 s4舍入=6/7 s5舍入=1 s6舍入=1 s7舍入=1
图像增强--直方图均衡化

程序课程设计报告2012年 7 月 9 日图像增强专业:*****班级:*****题目:图像增强小组成员: ***指导教师:***时间:2012年6月-7月摘要:图像增强是图像处理的一个重要分支, 它对图像整体或局部特征能有效地改善;直方图是图像处理中最重要的基本概念之一,它能有效地用于图像增强。
本文主要探讨了直方图的理论基础,直方图均衡化的概念及理论,同时用MATLAB语言加以实现, 给出标准的数字图像在各种处理前与处理后的对照图像及直方图。
实验结果表明, 用直方图均衡化的算法, 能有效改善灰度图像的对比度差和灰度动态范围,使处理后的图像视觉效果得以改善。
关键词:图像增强直方图均衡化Abstract: Image enhancement is an important branch of image processing, its image as a whole or partial characteristics can effectively improve. Histogram is one of the most important basic concepts of image processing, it can effectively be used for image enhancement. This paper mainly discusses the theoretical basis of the histogram, histogram equalization, the concepts and theories. We use the MATLAB language and give the standard digital images in various treatment and processing of the control image and histogram. The experimental results show that the histogram equalization algorithm can effectively improve the poor contrast and gray scale dynamic range of the grayscale image, the visual effects of the processed image can be improved. Keywords: Image enhancement Histogram Equalization1 引言图像增强是图像处理中的基本内容之一,在图像处理中占有非常重要的地位。
直方图均衡化图像增强与彩色图像处理算法分析

直方图均衡化图像增强与彩色图像处理算法分析2012.05.29目录1. 前言 (1)2. 理论分析 (2)2.1 直方图修正技术的基础 (2)2.2 直方图的均衡化 (3)2.3 直方图均衡化的算法步骤 (4)3. 仿真实验与结果 (6)3.1直方图均衡化Matlab程序 (6)3.2 彩色图形处理Matlab程序 (8)3.3 直方图均衡化仿真结果: (10)3.4 彩色图像处理仿真结果: (13)4. 结论 (14)参考文献 (15)1. 前言在实际应用中,无论采用何种输入装置采集的图像,由于光照、噪声等原因,图像的质量往往不能令人满意。
例如,检测对象物的边缘过于模糊;在比较满意的一幅图像上发现多了一些不知来源的黑点或白点;图像的失真、变形等等。
所以图像往往需要采取一些手段进行改善以求达到较好的效果。
图像增强技术正是在此基础上提出的。
图像增强是图像分析与处理的一个重要的预处理过程,其主要有两个目的:一是运用一系列技术手段改善图像的视觉效果,提高图像的清晰度;二是将图像转化成一种更适合于人或计算机进行分析处理的形式。
即改善图像质量是图像增强的根本目的。
图像增强的意义一般可以理解为:按需要进行适当的变换,对图像的某些特征,如边缘、轮廓、对比度进行强调或锐化,突出某些有用的信息,去除或削弱无用的信息以便于显示、观察或进一步分析和处理。
图像增强技术是一类基本的图像处理技术,是指有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,其目的是使处理后的图像更适合于人的视觉特性或机器的识别系统,包括图像的轮廓线或者纹理加强、图像去噪、对比度增强等。
因此图像增强处理是图像分析和图像理解的前提和基础。
在图像的获取过程中,特别是对于多媒体监控系统采集的图像,由于监控场景光线照射复杂、拍摄背景也比较复杂等环境因素的影响。
加之摄像设备、传感器等因素引入的噪声,使监控图像在一定程度上存在对比度差、灰度分布范围窄、图像分辨率下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直方图均衡化的Matlab实现
3500
3000
2500
2000
1500
1000
500
0
20
40
60
80 100 120
直方图均衡示意图
直方图均衡化的Matlab实现
1. imhist函数
功能 格式:imhist(I, n)
imhist(X, map) [counts, x]=imhist(…) 说明:imhist(I, n)计算和显示灰度图像I的直方图,n为 指定的灰度级数目,缺省值为256; imhist(X, map)计算和显示索引色图像X的直方图,map 为调色板; [counts, x]=imhist(...) 返回直方图数据向量counts和相 应的色彩值向量x,用stem(x, counts) 同样可以显示直方 图。
直方图均衡化的Matlab实现
例4.6调整图像的对比度,调整前后的图像见图
clear all I=imread(‘pout.tif’); J=imadjust(I, [0.3 0.7], [ ]); subplot(121), imshow(I) subplot(122), imshow(J) figure, subplot(121), imhist(I) subplot(122), imhist(J)
200
300
直方图均衡化的Matlab实现
2. imadjust函数
格式:J=imadjust(I, [low high], [bottom top], gamma) newmap=imadjust(map, [low high], [bottom top], gamma)
说明:J=imadjust(I, [low high], [bottom top], gamma)返回图像I经 直方图调整后的图像J,gamma为校正量 γ,[low high]为原图像中 要变换的灰度范围,[bottom top]指定了变换后的灰度范围; newmap=imadjust(map, [low high], [bottom top], gamma)调整索 引色图像的调色板map。此时若[low high]和[bottom top]都为 2×3的矩阵,则分别调整R、G、B 3
• I=imread('cameraman.tif'); • [c,x]=imhist(I); • subplot(1,2,1),imshow(I); • subplot(1,2,2),stem(x,c);
1800 1600 1400 1200 1000
800 600 400 200
0 0
100
•
subplot(1,2,1),imshow(I)
•
subplot(1,2,2),imshow(J)
•
figure, subplot(1,2,1),imhist(I,64)
•
subplot(1,2,2), imhist(J,64)
直方图均衡化的Matlab实现
3. histeq函数
功能:直方图均衡化 格式:J=histeq(I, n),指定均衡化后灰度级数n,缺省为64;
直方图均衡化的Matlab实现
例4.7 对图像′tire.tif′做直方图均衡化,结果见 图。
•
I = imread('tire.tif');
•
J = histeq(I);
8图像增强-直方图
直方图
1. 直方图的概念 设图像的灰度范围为[a,b],r为此灰度范围内的任 一灰度级,p(r)为这幅图像中灰度级为r的象素出 现的频率,可以看出p(r)是r的函数。该函数的图 形称为这幅图像的直方图。
p(r) 图灰像度上为r的的总象象素素数数in1 p(ri) 1
直方图均衡化
直方图均衡化的Matlab实现
例4.4 显示灰度图像‘cameraman.tif’的直 方图。 I=imread(‘cameraman.tif’); subplot(1,2,1),imshow(I) subplot(1,2,2),imhist(I);
直方图均衡化的Matlab实现
直方图均衡化的Matlab实现