第一章-第五节-伯努利概型

合集下载

伯努利概型与全概公式市公开课获奖课件省名师示范课获奖课件

伯努利概型与全概公式市公开课获奖课件省名师示范课获奖课件
3
PB PAi PB | Ai i 1 0.5 0.95 0.3 0.92 0.2 0.90
0.931
23
定理(全概率公式)
完备事件组
若A1, A2 , , An是互不相容互斥的事件
即Ai Aj i j, 且A1 A2 An , PAi 0i 1,2, , n.则对任一事件B有
所以,使被冒牌者蒙到岗位旳概率及将真正旳行家 拒之门外旳概率都变小测试措施是不存旳.因而,只 能在两者中取其一.
14
例2 某射手每次击中目旳旳概率是0.6,假如 射击5次,求至少击中两次旳概率.
解: 因为每次射击是相互独立旳,且只有击中与 未击中两种成果,故能够按5重伯努利概型计算
事件旳概率.已知 p 0.6, q 0.4,则
5
P(至少击中两次) P(击中k次) k2
1 P(击中0次) P(击中1次)
1
C
0 5
(0.6)0
(0.4)5
C
1 5
(0.6)1
(0.4)4
0.913
15
练习、某导弹旳命中率是0.6,问欲以99%旳把握 命中目旳至少需要配置几枚导弹?
解:设需配置n枚导弹,因为导弹各自独立发射,所以
能够看作n重伯努利试验。设A={导弹命中目的},
由此可见,一件微不足 道的小事,只要坚持, 就会产生不可思议的结 果。
17
重 条件概率 点
回 定义 设两个事件A、B ,且 P(B)>0,

则称 PA | B 为在事件B发生旳
前提下,事件A发生旳条件概率。
计算公式:
PA|
B
PAB PB
同理,若PA 0有
PB
|
A

Ch1-5 事件的独立性和伯努力概型

Ch1-5 事件的独立性和伯努力概型
所以,Φ与Ω 独立且互斥。 不难发现: Φ(或Ω)与任何事件都独立。
前面我们看到独立与互斥的区别和联系, 请看下列两个练习。 设A, B为互斥事件,且P(A)>0, P(B)>0, 下面四个结论中,正确的是: 1. P(B|A)>0, 3. P(A|B)=0, 2. P(A|B)=P(A), 4. P(AB)=P(A)P(B)。
计算 n个独立事件并的概率公式:
设事件 A1 , A2 ,„, An 相互独立, 则
P( A1∪…∪An ) 1 P( A1 A2 „ An)
1 P ( A1 A2 „ An )
1 P ( A1 ) P ( A2 ) „ P ( An )
也就是说: n个独立事件至少有一个发生的 概率等于1减去各自对立事件概率的乘积。
k =0,1,2,…,n 证明与前面的例3类似
小概率事件
—— 若P(A) 0.01 则称A为小概率事件
小概率原理
——一次试验中小概率事件一般是不
会发生的. 若在一次试验中居然发生了, 则可怀疑该事件并非小概率事件.
女士品茶的故事
• 那是20世纪20年代后期,在英国剑桥一个夏日的午后,一 群大学的绅士和他们的夫人们,还有来访者,正围坐在户 外的桌旁,享用着下午茶。在品茶过程中,一位女士坚称: 把茶加进奶里,或把奶加进茶里,不同的做法,会使茶的 味道品起来不同。在场的一帮科学精英们,对这位女士的 “胡言乱语”嗤之以鼻。这怎么可能呢?他们不能想象, 仅仅因为加茶加奶的先后顺序不同,茶就会发生不同的化 学反应。然而,在座的一个身材矮小、戴着厚眼镜、下巴 上蓄着的短尖髯开始变灰的先生,却不这么看,他对这个 问题很感兴趣。 • 他兴奋地说道:“让我们来检验这个命题吧!”并开始策 划一个实验。在实验中,坚持茶有不同味道的那位女士被 奉上一连串的已经调制好的茶,其中,有的是先加茶后加 奶制成的,有的则是先加奶后加茶制成的。

1.5_伯努利(Bernoulli)概型

1.5_伯努利(Bernoulli)概型

2017年3月25日星期六
4
目录
上页
下页
返回
解 设系队得胜人数为 X ,则在上述三种方案中,系队 胜利的概率分别为
(1) P X 2 C 0.4 0.6
k 2 5 k 3 k k 5 k
3
3 k
0.352. 0.317. 0.290.
(2) P X 3 C 0.4 0.6
§1.5 伯努利(Bernoulli)概型
2017年3月25日星期六
1
目录
上页
下页
返回
定义 1:如果随机试验只有两个可能结果: A 与 A , 其中 P(A)=p, P( A )=1-p=q, 为伯努利试验 .
__
__
0<p<1, 则称该试验
定义 2:独立地重复 n 次伯努利试验,称为 n 重伯 努利试验,也称伯努利概型.
在 n 重伯努利试验中,我们将事件 A 发生 k 次的概 率记作 B(k;n,p).
2017年3月25日星期六
2
目录
上页
下页
返回
在 n 重 伯 努 利 试 验 中 , 设 P( A) p , P( A) 1 p q (其中 0 p 1 ),则事件 A 恰好发生 k 次 的概率为: k k n k k k n k P ( k ) C p (1 p ) C , (k 0,1, 2,, n) . n n n p q 定理
2017年3月25日星期六
7
目录
上页
下页
返回
【例】 某人有一串 m 把外形相同的钥匙, 其中只有一把 能打开家门. 有一天该人酒醉后回家, 下意识地每次从 m 把钥匙中随便拿一只去开门,问该人在第 k 次才把门打 开的概率 多大?

1-5事件的独立性与伯努利概型

1-5事件的独立性与伯努利概型

例 6 加工某一种零件需要经过三道工序,设三道 工序的次品率分别为 2% , 3% , 5% ,假设各道序是 互不影响的,求加工出来的零件的次品率. 解 设
A={产品为次品}, Ai={第i道工序的产品为次品} (i=1,2,3),则来自A A1 A2 A3
P(A) 1 P( A ) 1 P( A1 A2 A3 )
,P ( Ai ) pi , i 1,2 , , n, Ai 第i个元件正常工作
串联系统的可靠性
由n 个元件串联而成的系统,只要有一 个元件失效,该系统就失效.因此串联系 统的可靠性为:
P串 P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An ) p1 p 2 p n
P (1 105 ) 520
1 520 105 0.9948
例8 甲、乙、丙三人独立地向同一飞机射击.设 三人射中飞机的概率分别为0.4,0.5,0.7,一人射中 飞机被击落的概率为0.2, 两人射中飞机被击落的 概率为0.6,三人射中,则飞机被击落.求飞机被击落 的概率. 解 设 A {飞机被击落 }, Bi {飞机被i个人击中 }, i 1,2,3
例1 掷两次硬币,观察其出现正面H和反面T的情 况.设事件 A={第一次出现正面H}, B={第二次出现正面H}, 则试验的样本空间为 Ω={HH,HT,TH,TT} 所以
A={HH,HT},B={HH,TH},AB={HH}
P(A)=2/4=1/2, P(B)=2/4, P(B|A)=1/2, P(AB)=1/4
p并 1 (1 p1 )(1 p2 )(1 pn )
元件n
例9 设由5个元件组成的系统 如图1所示, 元件的可靠性分 别为 p1 , p2 , p3 , p4 , p5 ,

1.5独立性及伯努利概型 《概率论与数理统计》课件

1.5独立性及伯努利概型 《概率论与数理统计》课件
则称 A1,A2,An 相互独立.
n 个事件相互独立,则必须满足 2n n1个等式.
显然 n 个事件相互独立,则它们中的任意
m (2 mn)个事件也相互独立.
2.事件独立性的性质
定理1.5.1 四对事件{A、B},{ A , B },{A,B }、
{ A 、B }中有一对相互独立,则其它三对也相互独立.
证明 不失一般性.设事件 A 与 B 独立,仅证 A 与 B
相互独立,其余情况类似证明 因为 P ( A B ) P ( B A ) P ( B A ) P B ( B ) P ( A )B
又 A 与 B 独立,所以 P (A)B P (A )P (B )
从而 P ( A B ) P ( B ) P ( A ) P ( B ) P ( B ) 1 P ( ( A ) P ) ( A ) P ( B ) 所以, A 与 B 相互独立.
AB={(男、女),(女、男)}
于是
P(A)= 1 , P(B)= 3 , P(AB)= 1
2
4
2
由此可知 P(AB) P(A) P(B).
所以 A与B 不独立.
2)有三个小孩的家庭,样本空间Ω={(男、
男、男),(男、男、女),(男、女、男),
(女、男、男)(男、女、女),(女、女、男),
(女、男、女),(女、女、女)}
= 1 P(A1A2An) = 1 P(A 1)P(A 2)P(A n)
这个公式比起非独立的场合,要简便的多,它 在实际问题中经常用到.
例1.5.6 假若每个人血清中含有肝炎病的概率为 0.4%,混合100个人的血清,求此血清中含有肝炎病 毒的概率?
解: 设 A i={第 i 个人血清中含有肝炎病毒}

概率伯努利概型

概率伯努利概型
能的值
伯努利试验的概率:每 个试验的结果发生的概
率都是相同的
伯努利概型的性质
伯努利概型的数学期望
伯努利概型是一 种离散概率分布, 其概率函数为 P(X=k) = p^k * (1-p)^(n-k), 其中p是成功的 概率,n是试验 次数。
伯努利概型的数 学期望E(X) = p * n,其中p是成 功的概率,n是 试验次数。
伯努利概型的概率分布可以表示为P(A)=p,P(A')=1-p,其中p是事件A发生的概率。
伯努利概型的分布函数
伯努利概型是概率论中一 种基本的概率模型,用于 描述随机变量服从伯努利
分布的情况。
伯努利分布是一种离散型 概率分布,其概率函数为
P(X=k) = p^k * (1p)^(1-k),其中k为随机
02
伯努利概型的性质包括:期望值、方差、 标准差等,这些性质可以帮助我们分析 和评估伯努利概型在实际问题中的应用 效果。
04
伯努利试验的概率模型
A
B
C
D
伯努利试验:一种只有 两种可能结果的随机试

概率模型:描述伯努利 试验中各种结果发生的
概率
伯努利概型:一种特殊 的概率模型,其中每个 试验的结果只有两个可
变量,p为成功概率。
伯努利概型的分布函数F(x) 定义为P(X ≤ x),其中x为
实数。
1
2
3
伯努利概型的分布函数F(x) 具有以下性质:F(0) = 0,
F(1) = p,F(∞) = 1。
伯努利概型的分布函数F(x) 可以用于计算伯努利概型 的期望、方差等统计量, 以及进行概率计算和统计
推断。
4
02
概率性:每个试验的结果都有一定的概率, 且概率之和为1

伯努利概型与全概公式

伯努利概型与全概公式

伯努利概型与全概公式伯努利概型是指一类仅有两个可能结果的随机试验,比如扔一次硬币只有正面朝上或者反面朝上。

伯努利概型的特点是每次实验结果的概率都是相等的,且各次实验结果之间相互独立。

假设实验中有n个相互独立的伯努利概型,每个伯努利概型的成功概率为p,失败概率为1-p。

则在这n次实验中,成功k次的概率可以表示为二项分布的概率质量函数:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中,C(n,k)表示组合数,即从n个元素中选取k个元素的组合方式数。

这个公式被称为伯努利概型的概率公式,可以用于计算一系列相关试验中的概率。

全概公式,也称作全概率公式,是概率论中的一条重要原理,用于计算一个事件的概率。

全概率公式的基本思想是将一个事件分解为多个互斥且完备的事件,然后根据这些事件的概率来计算所求事件的概率。

全概率公式的表达式如下:P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)其中,P(A)表示事件A的概率,B1、B2、..、Bn表示一组两两互斥且完备的事件,P(B1)、P(B2)、..、P(Bn)表示这些事件的概率,P(A,B1)、P(A,B2)、..、P(A,Bn)表示在事件B1、B2、..、Bn已经发生的条件下,事件A发生的概率。

全概率公式的应用非常广泛,特别适合于利用辅助事件来计算复杂事件的概率。

例如,假设工厂生产了两个品牌的产品A和B,其中A的缺陷率为0.02,B的缺陷率为0.04、现在从工厂中随机抽取了一个产品,发现该产品有缺陷。

问这个产品是属于品牌A还是品牌B的概率是多少?根据全概率公式,我们可以将这个问题分解为两个互斥事件:产品是A品牌和产品是B品牌。

设事件A表示产品是A品牌,事件B表示产品有缺陷。

根据题目的条件,可以得到以下信息:P(A)=0.5,P(B,A)=0.02,P(B,B)=0.04应用全概率公式,可以求得产品有缺陷的概率为:P(B)=P(B,A)*P(A)+P(B,B)*P(B)=0.02*0.5+0.04*0.5=0.03然后,根据贝叶斯公式,可以求得产品是A品牌的条件概率为:P(A,B)=P(B,A)*P(A)/P(B)=0.02*0.5/0.03≈0.333所以,这个缺陷产品属于A品牌的概率约为33.3%。

伯努利概型

伯努利概型

e
Cnk
pk (1
p)nk

e
n
nk n!

n! k!(n
k )!
pk
(1

p)nk

(p)k
k!
e


[
nk
(1 p)]nk (n k)!

(p)k
k!
e


m0
[
(1
p)]m m!
(p)k e e(1 p)
k!
解 设Bm表示4道题中碰对m道题这一事实,则
P ( Bm
)

C4m
(1)m 4
( 3 )4 m 4
(m 0,1,2,3,4)
经计算得
P(B0 )

C40
(
1 4
)0
(
3 4
)40

0.316
P(B3 )

C
3 4
(
1 4
)3
(
3 4
)43

0.048
几何分布 在贝努利试验中,通常需要计算事件 A
P(B) (p)k ep , (k 0,1,2, )
k!
(2) 若某蚕养出k只小蚕,求它产了n个卵的概率. 由贝叶斯公式,得
P( An
B)

P( An )P(B P(B)
An )

(p)n
n!
e
C p k n
pk
(1

(p)k ep
p)nk
[(1 p)]nk
(n k)!
P(

5)

5 k 0
P(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B3= {甲前四盘两胜两负而第五盘获胜},则 P(B)=P(B1)+P(B2)+P(B3)
p3 C32 p2 1 p p C42 p2 1 p2 p 10 p3 15 p4 6 p5.
解:设事件A={采用三盘两制甲胜},A1= {甲前两盘获胜} A2= {甲前两盘一胜一负而第三盘获胜},则
P(A)=P(A1)+P(A2) p2 C21 p1 p p 3 p2 2 p3.
设事件B={采用五盘三制甲胜},B1= {甲前三盘获胜} B2= {甲前三盘两胜一负而第四盘获胜},
p的k次项.
故又称为二项概型。
例.从次品率为p=0.2的一批产品中,有放回抽取5件,每次抽 取一件,分别求抽到恰有3件次品以及至多3件次品的概率。
解: 记Ak={恰有k件次品}, k=0,1,2,…,5. A={恰有3件次品}, B={至多有3件次品},则
A A3 , B A0 A1 A2 A3 .
第五节 伯努利概型
一、独立试验系列 二、二项概率公式
一、独立试验系列
独立重复试验:某个随机试验多次重复进行, 各次试验结果相互独立。
重复次数称为重数。 典型实例:多次投掷、有放回抽取。
二、二项概率公式
定义1.11、n重伯努利试验(或n重伯努利试验)
在相同条件下,重复n次做同一试验,每次试 验只有两个可能结果A,A;
n次试验是相互独立的; 每次试验中P(A)=p不变.
定理1.4伯努利定理(二项概率公式): 设一次试验中事件A发生的概率为p(0<p<1),则n次
伯努利试验中,事件A恰好发生k次的概率pn(k)为
pn (k) Cnk pk (1 p)nk
pn (k)


n
k

pk (1
p)nk
代数中有二项式定理
n
( x y)n
C
k n
xk
ynk
k0
用伯努里定理中的p和q 1 p代入上式
可得
n
n
( p q)n Cnk pkqnk C事件A发生k次的概率为( p q)n展开后的
P(
A)

P( A3
)

C
3 5
(0.2)3 (0.8)2

0.0512.
P(B) 1 P(B) 1 P( A4 ) P( A5 )

1

C
4 5
(0.2)4
(0.8)
C
5 5
(0.2)5
(0.8)0
0.9933.
例.甲、乙两名棋手比赛,已知甲每盘获胜的概率为p.假定每盘 棋胜负是相互独立,且不会出现和棋。在下列情况下,试求甲最 终获胜的概率。(1)采用三盘两胜制;(2)采用五盘三胜制。
相关文档
最新文档