自己整理的linux内存管理子系统

合集下载

linux,内核的物理内存分配的基本方式

linux,内核的物理内存分配的基本方式

Linux内核的物理内存分配基本方式在Linux内核中,物理内存分配的基本方式可以通过以下几个方面进行解释。

1. 内核启动阶段的物理内存分配在Linux内核启动阶段,内核需要为自身和各个子系统分配物理内存。

这个过程包括以下几个步骤:•内核从BIOS或者bootloader中获取系统的物理内存信息。

•内核根据系统的内存布局,将物理内存分成多个区域,如低端内存、高端内存等。

•内核为自身分配一部分物理内存,包括内核代码、数据、堆栈等。

•内核为各个子系统分配物理内存,如设备驱动、文件系统等。

2. 动态分配物理内存在运行时,Linux内核还需要动态分配物理内存来满足进程和内核的需求。

这个过程包括以下几个关键点:页框分配:内核使用页框作为最小的内存分配单位。

当一个进程或内核需要分配物理内存时,内核会使用页框分配算法来选择可用的物理页框。

页框可以通过使用位图或者链表等数据结构来管理。

伙伴系统:为了高效地管理和分配物理内存,Linux内核采用了伙伴系统。

伙伴系统将整个物理内存空间分成不同大小的块(通常是2的幂次方),每个块称为一个伙伴块。

当一个进程需要分配内存时,内核会在合适的伙伴块中找到一个合适大小的块来满足需求。

页面回收:当物理内存不足时,Linux内核会使用页面回收机制来回收部分物理内存。

页面回收可以通过将不再使用的内存页面写回硬盘,或者将内存页面移动到交换分区来实现。

回收后的物理内存可以重新分配给其他进程或内核使用。

3. 内存管理算法为了高效地管理物理内存,Linux内核采用了一些内存管理算法。

其中一些重要的算法包括:最先适应算法(First Fit):内核首先查找第一个满足分配要求的伙伴块。

这个算法简单直观,但可能导致伙伴块的碎片化。

最佳适应算法(Best Fit):内核在所有可用的伙伴块中选择最小的一个来满足分配需求。

这个算法可以减少碎片化,但需要更多的搜索开销。

循环首次适应算法(Next Fit):内核在上一次分配的位置开始搜索,直到找到第一个满足分配要求的伙伴块。

linux的内存管理器任务和职责

linux的内存管理器任务和职责

linux的内存管理器任务和职责
Linux的内存管理器的任务和职责如下:
1. 分配和回收内存:Linux的内存管理器负责分配和回收系统的物理内存。

它根据需要将内存分配给进程和系统服务,当它们不再需要时,将它们释放回内存池。

2. 内存映射和交换:内存管理器对于内存映射和交换也负有主要职责。

内存映射是将文件映射到虚拟内存空间或将虚拟内存空间映射到设备文件的过程。

交换则是将不再活跃的进程的内存数据移到磁盘中,以释放物理内存。

3. 内存页缓存:内存页缓存可以提高文件系统的性能,内存管理器可以管理这些缓存,确保缓存的内容始终与磁盘上的文件同步。

4. 虚拟内存管理:内存管理器负责将虚拟内存空间映射到物理内存,同时还需要处理由于内存不足而产生的页面置换和页面调度。

5. 保护和安全性:内存管理器通过设置页面权限位和进行用户空间和内核空间之间的分离来提供保护和安全性。

linux操作系统的结构及详细说明

linux操作系统的结构及详细说明

linux操作系统的结构及详细说明linux的操作系统的结构你了解多少呢?下面由店铺为大家整理了linux操作系统的结构及详细说明的相关知识,希望对大家有帮助!linux操作系统的结构及详细说明:一、 linux内核内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。

系统调用接口:SCI 层提供了某些机制执行从用户空间到内核的函数调用。

这个接口依赖于体系结构,甚至在相同的处理器家族内也是如此。

SCI 实际上是一个非常有用的函数调用多路复用和多路分解服务。

在 ./linux/kernel 中您可以找到 SCI 的实现,并在 ./linux/arch 中找到依赖于体系结构的部分。

1. 内存管理对任何一台计算机而言,其内存以及其它资源都是有限的。

为了让有限的物理内存满足应用程序对内存的大需求量,Linux 采用了称为“虚拟内存”的内存管理方式。

Linux 将内存划分为容易处理的“内存页”(对于大部分体系结构来说都是 4KB)。

Linux 包括了管理可用内存的方式,以及物理和虚拟映射所使用的硬件机制。

不过内存管理要管理的可不止 4KB 缓冲区。

Linux 提供了对 4KB 缓冲区的抽象,例如 slab 分配器。

这种内存管理模式使用 4KB 缓冲区为基数,然后从中分配结构,并跟踪内存页使用情况,比如哪些内存页是满的,哪些页面没有完全使用,哪些页面为空。

这样就允许该模式根据系统需要来动态调整内存使用。

为了支持多个用户使用内存,有时会出现可用内存被消耗光的情况。

由于这个原因,页面可以移出内存并放入磁盘中。

这个过程称为交换,因为页面会被从内存交换到硬盘上。

内存管理的源代码可以在 ./linux/mm 中找到。

2 .进程管理进程实际是某特定应用程序的一个运行实体。

linux系统结构框架

linux系统结构框架

linux系统结构框架
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。

内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。

1.内核:内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。

2.Shell:shell是命令行解释器,可以为用户提供对系统的访问,也可以被用作程序或者脚本的命令行环境。

有多种shell可以选择,比如bash,zsh,ksh等。

3.文件系统:Linux系统使用一个基于文件的层级结构来组织和存储系统资源。

每个文件和目录都从根目录“/”开始,然后层层嵌套。

4.应用程序:Linux系统上可以运行各种应用程序,包括文本编辑器、浏览器、开发工具等。

应用程序为用户提供了使用系统的接口。

在更细致的层次结构上,Linux系统的内存管理分为几个主要组件,包括物理内存管理、虚拟内存管理以及内核内存管理等。

物理内存管理负责物理内存的分配和回收,虚拟内存管理则将物理内存映射到虚拟地址空间,并实现内存的共享和保护。

内核内存管理则负责内核空间的分配和释放,以及内核页面的交换等。

Linux内核主要功能

Linux内核主要功能

Linux内核主要功能随着计算机硬件的发展,Linux内核的功能也在不断发展,以支持这些新硬件特性。

同时,内核的代码量也在不断增加。

内核是Linux操作系统的基础,在操作系统中完成最基本的任务。

当前的Linux内核主要功能包括以下几个方面:1.进程调度(SCHED)进程调度负责控制进程对CPU的访问,如当需要选择下一个进程运行时,由进程调度子系统根据某种算法选择最值得运行的进程。

可运行进程实际上是仅等待CPU资源的进程。

如果某个进程还在等待其它资源,则该进程将不会被选择。

Linux操作系统使用了比较简单的基于优先级的进程调度算法选择新的进程。

2.内存管理(Memory Management,MM)内存管理子系统用来管理多个进程对内存的使用。

Linux支持虚拟内存,即在计算机中运行的程序,其程序代码、数据、堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。

必要时,操作系统负责在磁盘和内存间交换程序块。

内存管理从逻辑上可以分为硬件无关部分和硬件有关部分。

其中,硬件无关部分提供了进程的映射和逻辑内存的对换;硬件有关部分为内存管理硬件部分提供了虚拟接口。

3.虚拟文件系统(Virtual File System,VFS)虚拟文件系统隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口。

虚拟文件系统提供了数10种不同的文件系统,并且又分为逻辑文件系统和设备驱动程序。

其中,逻辑文件系统是指Linux所支持的文件系统,如ext3、FAT等;设备驱动程序是指为每一种硬件控制器所编写的设备驱动程序模块。

4.网络接口(Network Interface)网络接口提供了对各种网络标准的存取和各种网络硬件的支持。

网络接口可分为网络协议和网络驱动程序2部分组成。

其中,网络协议部分负责实现每一种可能的网络传输协议;网络设备驱动程序负责与硬件设备的通信,每一种可能的硬件设备都有相应的设备驱动程序。

linux操作系统的体系结构

linux操作系统的体系结构

linux操作系统的体系结构Linux操作系统的体系结构Linux是一个开源的操作系统内核,它是一个多任务、多用户的操作系统。

它支持大量的硬件平台,可以运行在个人计算机、服务器、移动设备和嵌入式系统中。

Linux操作系统的核心设计是基于UNIX操作系统的设计理念,具有稳定、安全和高性能的特点。

本文将详细介绍Linux操作系统的体系结构。

一、内核空间和用户空间Linux操作系统采用了一种分层的体系结构,将操作系统分为内核空间和用户空间两部分。

内核空间是操作系统内核运行的区域,包括内核代码、驱动程序和中断处理程序等。

用户空间是用户程序运行的区域,包括应用程序、库文件和用户数据等。

内核空间和用户空间通过操作系统提供的系统调用接口进行通信。

用户程序通过系统调用接口请求操作系统提供的服务,如文件操作、进程管理和网络通信等。

操作系统在内核空间中响应这些请求,并将结果返回给用户程序。

二、进程管理Linux操作系统是一个多任务操作系统,能够同时运行多个进程。

进程是程序在操作系统中的实体,它包括代码、数据和运行环境等。

Linux操作系统通过进程管理功能对进程进行管理和调度。

进程管理功能包括创建进程、销毁进程、挂起进程、恢复进程和进程切换等。

Linux操作系统通过调度算法决定哪个进程优先执行,以实现操作系统的高效利用和公平分享。

三、内存管理Linux操作系统通过内存管理功能对内存进行管理和分配。

内存是计算机中重要的资源,操作系统需要有效地管理和分配内存。

Linux操作系统使用虚拟内存管理技术,将物理内存虚拟化为逻辑地址空间。

这样,每个进程都有自己独立的逻辑地址空间,不会相互干扰。

操作系统通过内存管理功能实现虚拟地址到物理地址的转换,并对内存进行分页、分段和交换等操作,以实现内存的高效利用和管理。

四、文件系统Linux操作系统通过文件系统管理文件和目录。

文件系统是一种组织和存储文件的方式,可以将文件组织成层次结构,方便用户访问和管理。

Linux内存管理分析与研究

Linux内存管理分析与研究

Linux内存管理分析与研究随着计算机技术的不断发展,操作系统在计算机系统中扮演着越来越重要的角色。

作为开源操作系统领域的佼佼者,Linux被广泛用于各种应用场景,包括服务器、桌面、嵌入式系统等。

内存管理是操作系统核心功能之一,对于系统性能和稳定性具有重要影响。

本文将对Linux内存管理进行深入分析,并探讨其存在的问题与解决方案。

Linux内存管理采用分页和分段技术,将物理内存划分为大小不同的页框或段框,以便更有效地利用和管理内存资源。

Linux通过将内存分为内核空间和用户空间,实现了内存的隔离和保护,同时允许用户进程使用不同的内存空间。

Linux内存管理存在的一个主要问题是内存分配不均。

由于内存分配是基于页框或段框的,当某些进程需要更多内存时,操作系统会从空闲的内存页框中分配内存。

然而,在实际情况中,由于页框大小固定,当需要分配大量内存时,可能会造成内存分配不均的情况。

另一个问题是浪费空间。

Linux为了提高内存利用率,采用了一种称为内存分页的技术。

然而,在某些情况下,当进程不再需要使用内存时,操作系统并不会立即将内存页框回收,而是保留在内存中以备将来使用,这可能会导致内存空间的浪费。

针对内存分配不均的问题,可以采取交换技术。

交换技术是一种将进程使用的内存部分移至磁盘上,以腾出更多内存供其他进程使用的方法。

在Linux中,可以使用瑞士文件系统(Swiss File System,SFS)作为交换设备,将不常用的内存页框交换到磁盘上,以便在需要时重新加载。

为了解决内存浪费问题,可以优化内存分配算法。

Linux中使用的内存分配算法是基于伙伴系统的,该算法会跟踪每个内存块的空闲状态。

当需要分配内存时,伙伴系统会选择一个适当大小的空闲块,并将其划分为所需的内存大小。

为了避免内存浪费,可以采取以下措施:增加空闲内存块的大小,以便更好地适应大内存需求;引入动态内存分配机制,使操作系统能够在需要时分配和回收内存;定期清理不再使用的内存块,以便及时回收内存空间。

实验8Linux的内存管理

实验8Linux的内存管理

内存管理的概念
内存管理的定义
内存管理是指操作系统对计算机内存 资源的分配、回收、保护和扩充等一 系列操作,以确保系统高效、稳定地 运行。
内存管理的目标
提高内存利用率,减少内存碎片,实 现多任务环境下的内存共享和保护, 以及提供虚拟内存等。
Linux内存管理的特点
分段和分页机制
Linux采用分段和分页机制来管理内存,将物理内 存划分为大小相等的页框,同时将进程地址空间 划分为多个段,每个段对应一个页表项,实现地 址空间的隔离和权限控制。

03 通过实验操作和观察,加深对Linux内存管理的 理解和认识。
实验环境
操作系统
Linux(建议使用Ubuntu或CentOS等常见发行版 )
开发工具
GCC编译器、GDB调试器、Valgrind内存检测工 具等。
实验材料
一台配置有Linux操作系统的计算机,具备基本的 编程和调试能力。
02
Linux内存管理概述
VS
共享内存的实现方式
在Linux中,共享内存可以通过shmget() 、shmat()和shmdt()等系统调用来实现 。首先,使用shmget()函数创建一个共 享内存段;然后,使用shmat()函数将共 享内存段连接到当前进程的地址空间;最 后,使用shmdt()函数将共享内存段从当 前进程的地址空间中分离。
06
内存优化与性能提升
内存泄漏问题及其解决方案
内存泄漏定义
内存泄漏是指程序在申请内存后,未能正确释放,导致系统内存逐 渐耗尽的现象。
检测工具
使用Valgrind等内存检测工具,可以检测程序中的内存泄漏问题。
解决方案
及时释放不再使用的内存,避免不必要的内存申请,采用智能指针等 RAII技术来管理内存。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-4 linux内存管理子系统4-4-1 linux内存管理(参考课件)物理地址:cpu地址总线上寻址物理内存的地址信号,是地址变换的最终结果逻辑地址:程序代码经过编译后,出现在汇编程序中的地址(程序设计时使用的地址)线性地址:又名虚拟地址,32位cpu架构下4G地址空间CPU要将一个逻辑地址转换为物理地址,需要两步:1、首先CPU利用段式内存管理单元,将逻辑地址转换成线性地址;2、再利用页式内存管理单元,把线性地址最终转换为物理地址相关公式:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)(通用的)16位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)线性地址=段寄存器的值×16+逻辑地址的偏移部分物理地址=线性地址(没有页式管理)32位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)线性地址=段寄存器的值+逻辑地址的偏移部分物理地址<——>线性地址(mapping转换)ARM32位:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)逻辑地址=段内偏移量(段基地址为0)线性地址=逻辑地址=段内偏移量(32位不用乘以32)物理地址<——>线性地址(mapping转换)************************!!以下都是x86模式下!!********************************* 段式与页式存储管理的比较如下表所示。

段式页式分段由用户设计划分,每段对应一个相应的的程序模块,有完整的逻辑意义。

分页用户看不见,由操作系统为内存管理划分。

段面是信息的逻辑单位页面是信息的物理单位便于段的共享,执行时按需动态链接装入。

页一般不能共享段长不等,可动态增长,有利于新数据增长。

页面大小相同,位置不能动态增长。

二维地址空间:段名、段中地址;段号、段内单元号一维地址空间管理形式上象页式,但概念不同往往需要多次缺页中断才能把所需信息完整地调入内存实现页(段)的共享是指某些作业的逻辑页号(段号)对应同一物理页号(内存中该段的起始地址)。

页(段)的保护往往需要对共享的页面(段)加上某种访问权限的限制,如不能修改等;或设置地址越界检查,对于页内地址(段内地址)大于页长(段长)的存取,产生保护中断。

一、段式管理1.1、16位CPU:(没有页式管理)1.1.1、段式管理的由来:16位CPU内部有20位地址总线,可寻址2的20次方即1M的内存空间,但16位CPU 只有16位的寄存器,因此只能访问2的16次方即64K。

因此就采用了内存分段的管理模式,在CPU内部加入了段寄存器,这样1M被分成若干个逻辑段,每个逻辑段的要求如下:1、逻辑段的起始地址(段地址)必须是16的整数倍,即最后4个二进制位须全是0 (因此不必保存)。

2、逻辑段的最大容量为64K。

段寄存器是为了对内存进行分段管理而增加的,16位CPU有4个段寄存器,程序可同时访问4个不同含义的段。

1、CS+IP:用于代码段的访问,CS指向存放程序的段基地址,IP指向下条要执行的执行在CS端的偏移量,用这2个寄存器就可以得到一个内存物理地址,该地址存放着一条要执行的指令。

2、SS+SP:用于堆栈段的访问,SS指向堆栈段的基地址,SP指向栈顶了,可以通过SS和SP两个寄存器直接访问栈顶单元的内存物理地址。

3、DS+BX:用于数据段的访问。

DS中的值左移4位得到数据段起始地址,再加上BX中的偏移量,得到一个存储单元的物理地址。

4、ES+BX:用于附加段的访问。

ES中的值左移4位得到附加段起始地址,再加上BX中的偏移量,得到一个存储单元的物理地址。

三、32位CPU2种工作模式:实模式和保护模式1、实模式下,32位内存管理和16位CPU是一致的。

2、段基地址长达32位,每个段的最大容量4G,段寄存器的值是段地址的“选择器”,用该选择器从内存中得到一个32位的段地址,存储器单元的物理地址就是该段地址加上段内偏移量。

得到线性地址空间。

从管理和效率的角度出发,线性地址被分为固定长度的组,成为页,例如32位机器,线性地址最大可为4G,如果用4KB为一个页来划分,这样整个线性地址就被划分为2的20次方个页。

线性地址通过映射关系得到物理地址。

四、linux段管理所有段的基地址为0,每个段的逻辑地址空间范围为0~4G,因为每个段的基地址为0,因此,逻辑地址到线性地址映射不变,在Linux中所提到的逻辑地址和线性地址指的也就是同一地址。

看来,linux巧妙的把段机制给绕过去了,完全利用了分页机制。

linux2.6.29采用四级页管理架构。

1.1.2、物理地址的形成方式:段地址:将段寄存器中的数值左移4位补4个0(乘以16),得到实际的段地址。

段偏移:在段偏移寄存器中。

1)逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)2)由逻辑地址得到物理地址的公式为:(因为没有页式管理,所以这一步就得到了物理地址)物理地址PA=段寄存器的值×16+逻辑地址的偏移部分(注意!!)(段与段可能会重叠)按段式管理能访问2的32次方共4GB 的空间(2的16次方个段,每个段可以为2的16次方byte的大小),但是只有20位地址总线,因此只能访问1M的内存。

1.2、32位CPU:1)实模式:与16位时是一样的段寄存器的值×16就是段地址2)保护模式:段寄存器的值是一个选择器,间接指出一个32位的段地址段基地址长达32位,每个段的最大容量可达4G,段寄存器的值是段地址的“选择器”(segment selector),用该“选择器”从内存(segment descriptor)中得到一个32位的段地址,存储单元的线性地址就是段地址加上段内偏移量,这与32位CPU的物理地址的计算方式完全不同。

!!!线性地址=段基地址+段内偏移量/逻辑地址(段选择器指向的内存中存储的基地址+段偏移寄存器)!!! 这里不用乘以16或者32,因为段基址寄存器可以完全存下段地址。

32位CPU得到线性地址后,再经过页式管理就能得到物理地址二、页式管理2.1页:线性地址被分为固定长度的组,称为页。

例如32位的机器,每页4KB,可划为2的20次方个页(划分虚拟单元),32位机器的线性地址空间为4G。

2.2物理页:也称为页框、页桢;分页单元把所有的物理内存也划分为固定长度的管理单位(划分实在的单元),它的长度一般与线性地址页是相同的。

二者的区别:页划分的是线性地址,物理页划分的是实际的物理地址二者的联系:1、页的长度一般相同,2、通过mapping转换,存在映射关系。

通过分页管理模型,由线性地址得到物理地址1、分页单元中,页目录的地址存放在CPU的cr3寄存器中,是进行地址转换的开始点。

2、每个进程,都有其独立的虚拟地址空间,运行一个进程,首先要将它的页目录地址放到cr3寄存器中,将其他进程的页目录地址保存下来。

3、每个32位的线性地址被划分为三部分:页目录索引(10位);页表索引(10位);偏移(12位)(mapping映射关系由下图反映)上图中页的大小为2的12次方,即4K。

两级分页模型(页不算在内)******************************!!以上都是x86模式!!*********** *******************Linux内存管理Linux有限度地使用了Intel的段式管理机制,而完全采用了页式管理机制。

(也可以说没有采用段式管理)所有段的基地址全部为零(那么所有段都重合,相当于只有一个段)又因为"线性地址=段基地址+段内偏移量/逻辑地址偏移部分",所以"线性地址=逻辑地址"。

在linux系统中,逻辑地址=线性地址=虚拟地址物理地址<——>线性地址(mapping转换)linux页式管理linux2.6.29内核采用了四级页式管理架构,来兼容二级、三级管理架构的CPU。

页全局目录、页上级目录、页中间目录、页表(四级时,线性地址为64位)4-4-2进程地址空间(参考课件)linux操作系统采用虚拟内存管理技术,使得每个进程的地址空间都是独立的。

该空间大小是3G,用户看到的都是虚拟地址,无法看到实际的物理地址。

虚拟内存管理的优点:1、保护操作系统,2、用户程序可以使用比实际物理内存更大的地址空间。

linux将4G的虚拟地址空间划分为用户空间和内核空间。

用户空间:0~0xbfffffff(0~3G):用户进程通常情况下只能访问用户空间。

内核空间:0xc0000000~0xffffffff(3G-4G)用户空间对应进程,所以每当进程切换,用户空间就会跟着变化。

每个进程的地址空间都是独立的。

每个进程的页目录、页表不一样,因此通过页式转换就可以得到不同的物理地址。

例如:同一个用户程序运行多次,产生多个进程,每个进程访问的虚拟地址(逻辑地址、线性地址)都是一样的,但是每个进程都有一套独立的页目录、页表,因此得到的实际物理地址是不同的。

每个进程的页目录和页表就可以理解为进程独立的用户空间。

Fork(),execve(),malloc()等进程相关操作分配的内存,都是虚拟地址。

只有当进程去访问新获取的虚拟地址时,才会由“请页机制”去分配实际的物理地址。

实际的物理内存只有当进程真的去访问新获取的虚拟地址时,才会由“请页机制”产生“缺页”异常,从而进入分配实际页框的程序。

该异常是虚拟内存机制赖以生存的基本保证——它会告诉内核去为进程分配物理页,并建立对应的页表,这之后虚拟地址才实实在在地映射到了物理地址上。

动态分配——Linux内核中,动态分配内存使用函数kmalloc()头文件:#include<linux/slab.h>原型:void *kmalloc(size_t size,int flags) ——kfree,适用于分配小于128KB的内存功能:分配实际的物理页框,虽然返回的是虚拟地址,但已经有对应的物理页了。

参数:Flags取值为:1、GFP_KERNEL,分配实际的内存,分配不到时睡眠。

返回虚拟地址,但对应有实际的物理单元。

(16M-896M)2、GFP_ATOMIC,用来在进程上下文之外的代码(包括中断处理)中分配内存,从不睡眠。

3、__GFP_DMA,要求分配能够DMA的内存(物理地址在16M以下的页桢)4、__GFP_HIGHMEM,分配的内存位于高端内存。

(896M以上)当用完这些页,需要使用下列函数之一来释放它们:◎kfree函数按页分配◎get_zeroed_page(unsigned int flags)——free_page返回指向新页面的指针,并将页面清零。

相关文档
最新文档