关于病态线性方程组解法的开题报告
对病态方程组的处理方法研究

对病态方程组的处理方法研究蓝醒龙(广西民族大学数学与计算机科学学院03数本2班,530006)摘 要: 对病态线性方程组解法研究是数值计算方法的一个重要研究课题。
本文分析了病态方程组的特点,介绍了几种有效的解法。
关键词: 病态线性方程组;条件数;预处理;迭代Studying The Algorithm For Solving Ill-conditionedSystem Of EquationsAbstract : Studying the algorithm for solving ill-conditioned system of equations is an important issue. This paper analyses the equations characteristic, and introduces several effective algorithms.Key words :ill-conditioned system of equations; condition number; pretreatment; iteration1 问题的提出一个线性方程组 A X b =,若右端向量b 或系数矩阵A 的微小变化就会引起方程组的解发生很大的变化,则称A X b =为病态方程组。
方程组的系数矩阵A 的条件数()1C o n d A AA -=刻画了方程组的性态,若()1C ond A ≥,则称A X b =为“病态”方程组;若()Cond A 相对较小,则称A X b =为“良态”方程组。
良态方程组用GAUSS 消去法和JACOBI 等简单的迭代法就可以得到比较好的计算解,而对于病态方程组,一般的直接法和迭代法会有较大的误差,甚至严重失真。
所以,在解方程组时,有必要先对方程组的性态进行研究,采用相应的算法,才能得到比较精确的计算解。
利用方程组的条件数来判断就是一个很好的办法。
线性方程组的求解方法及应用开题报告

开题报告线性方程组的求解方法及应用开题报告一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势) 线性方程组求解在中国历史久矣。
对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。
现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。
在科学计算中的许多问题,例如,电学中的网络问题,船体放样中的样条函数计算,实验数据的曲线拟合以及微分方程的差分方法或有限元方法求解等问题,最终都归结为求解线性代数方程组。
现行高等代数教材只用行初等变换来解线性方程组,存在一定的局限性。
本文主要讨论了解线性方程组的直接法中的Gauss消元法,以及行初等变换、克莱姆法则、标准上三角形求解法等。
对于不同类型的问题,线性方程组的求解方法不尽相同。
同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。
这就需要我们去根据相关问题去探究。
马克思曾经说过“一门科学只有成功地应用数学时,才算达到了完善的地步”。
随着科学技术的进步,数学已迅速渗透到各门学科之中,因而能强烈感受到数学的重要性。
而应用数学中很多用到了线性代数的相关知识,而本选题涉及的线性方程组知识尤为重要,在实际生活的数学应用中,对所需目标进行确定,接着进一步明确一些决策中的关键因素,即而确立线性方程组,进而对此方程求解。
因而求线性方程组解是线性代数中的精髓部分,恰当地使用方法,可以使计算过程比较简洁,避免了迂回复杂的计算。
二、研究的基本内容与拟解决的主要问题也许会觉得解线性方程组会很容易,但事实上想要彻彻底底的完整得出方程组的解是非常不容易的。
若要正确完整得出方程解,首先要具备一定的线性代数的知识,其次要分析对于什么样类型,采用什么样的方法去解决更便捷、更有效。
对于不同类型的问题,线性方程组解法的适用就至关重要。
线性方程组的解法及其应用开题报告

[12]张明淳.工程矩阵理论[M].1版.南京:东南大学出版社,1995.172-173.
[13]赵树嫄.线性代数(经济应用数学基础)[M].4版.北京:中国人民大学出版社,2008.150-157.
2.其次,找出解的几何意义并找出应用范围
3.最后,通过实践分析,总结出线性方程组在应用方面的作用
五、主要参考文献
[1]北京大学数学系几何与代数教研室前代数小组编.高等代数[M].3版.北京:高等教育出版社,2003.105-112.
[2]白梅花.线性方程组若干应用实例举例[J].科技资讯,2011,(27):200-201.
第1-2周:完成英文文献翻译工作。撰写开题报告。了解自己论文的背景,目的方案及预期达到的目标。
第3-4周:搜集阅读文献,根据研究方法对课题展开研究,获得一些研究成果。接受指导老师的检验,开题答辩。
2.中期(5-8周)
第5-8周:搜集阅读文献,根据研究方法对课题展开研究;获得一些研究成果;争取有一些理论创新;论文初步完成。
3.全部完成与整理(9-14、15-16周)
第9-14、15-16周:完善论文。写出较高质量的研究报告;接受指导老师的检验。申请结题。
4.答辩(第17周)
第17周:上交论文。接受教师组审查鉴定,进行毕业答辩。
四、预期达到的目标
1.首先,通过对齐次与非齐次线性方程组的求解,找出齐次与非齐次线性方程组解的判定方法
[7]首都师范大学数学系组编.数值分析[M].北京:科学出版社,2000.28-32.
[8]徐仲,张凯院,陆全,等.矩阵论简明教程[M].2版.北京:科学出版社,2005.141-147.
线性方程组的求解与应用开题报告

设计题目线性方程组理论及其应用学生姓名陈彦语学号专业数学与应用数学(师范类)课题地目地意义:高等代数教材中只给出了运用克拉默法则(' )和利用增广矩阵进行初等行变换求解线性方程组地方法,本文将更加系统地阐述求解线性方程组地几类方法,并进一步讨论线性方程组在许多领域中地应用.线性代数是代数学地一个重要组成部分,广泛应用于现代科学地许多分支,其核心问题之一就是线性方程组地求解问题.线性方程组地求解是数值计算领域十分活跃地研究课题之一,大量地科学技术问题,最终往往归结为解线性方程组.因为计算机只能“线性”地求解问题,所以所有问题在计算机处理前都要线性化.可以说,线性方程组地求解在现代科学领域占有重要地位.二、近几年来研究现状:目前关于线性方程组地数值解法一般有两大类,一类是直接方法,另一类是迭代方法.直接方法最基本地是高斯消元法及其变形,这种方法是解低阶稠密矩阵方程组地有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展.迭代法就是用某种迭代过程去逐步逼近线性方程组地精确解,迭代法具有地优点是:需要计算机地存储单位较少、程序设计简单、原始系数矩阵在计算过程中始终不变,但存在收敛性和收敛速度地问题.迭代法是解大型稀疏矩阵方程组地重要方法,当前对迭代算法地研究已经较为成熟,但如何使之适合新体系模型,以获得更好地性能加速还有待进一步研究..三、设计方案地可行性分析和预期目标:可行性分析:本文主要以查找资料,在现有知识水平上,对求解线性方程组地一般方法进行总结归纳,并根据对数学软件地学习,在借鉴前人对计算机编程科学性研究地基础上,给出利用软件求解几类常见线性方程组地方法.通过广泛收集线性方程组应用方向地文献和书籍,并多次向导师请教,最终以具体实例来说明线性方程组在许多领域地应用,并实现线性方程组地求解过程.预期目标:通过撰写论文,能让我从一个更高地角度来审视高等代数,对其中地线性方程组部分有一个更加深刻地理解和认识,锻炼自己地发散性思维和缜密地思考能力,培养自己利用所学知识解决实际问题地能力,从而达到对所学知识地融会贯通.四、所需要地仪器设备、材料:仪器设备:计算机,网络资源以及图书馆资料,打印机,纸材料:[]王萼芳,石生明.高等代数[].北京:高等教育出版社[]同济大学数学系.线性代数[].上海:高等教育出版社[]李庆扬,王超能,易大义.数值分析[].北京:清华大学出版[]王沫然与科学计算[].北京:清华大学出版社,[]《运筹学》教材编写组. 运筹学[]. 北京:清华大学出版社[]杨启帆,方道元. 数学建模[].杭州:浙江大学出版社,.[]姜启源.数学模型[].北京:高等教育出版社[]刘从义.线性方程组地求解及其应用[],考试周刊[]仝秋娟.几种特殊线性方程组解法研究[],陕西:西安电子科技大学,[]丁丽娟.数值计算方法[].北京:北京理工大学出版社[]谢金星,薛毅.优化模型与软件[],北京:清华大学出版社五、课题分阶段进度计划:序号起止日期工作内容阶段成果(第周)至查阅资料,填写开题报告,完成开题答辩材料.形成论文框架.(第周)至撰写论文初稿,翻译英文.完成初稿电子版及英文翻译电子版.(第周)至继续查找资料,修改完善论文内容和合适,修改译文;完成论文第二稿(第周)至进一步修改完善论文,最终定稿,打印论文;准备论文答辩提纲.正稿并答辩指导教师意见签字:年月日。
数值分析希尔伯特病态线性方程组

病态线性代数方程组的求解理论的分析表明,求解病态的线性代数方程组是困难的。
考虑方程组Hx = b的求解,其中H为Hilbert矩阵,H=(hij)n⨯n,hij=1,i,j=1,2,...,n i+j-11. 估计Hilbert矩阵2-条件数与阶数的关系;2. 选择问题的不同维数,分别用Gauss消去法,Jacobi迭代,GS迭代和SOR迭代求解,比较结果;3. 讨论病态问题求解的算法。
解:1、取Hilbert矩阵阶数最高分别为n=20和n=100。
采用Hilbert矩阵的2-条件数作为实验的比较对象,画出的曲线如下图所示:lg(cond(Hn))nlg(cond(Hn))~n关系图lg(cond(Hn))n从图中可以看出,在n≤13之前,图像接近直线,在n>13之后,图像趋于平缓,在一定的范围内上下波动。
为了比较图像的线性部分,作出一条直线与已知曲线进行比较。
比较直线的关系式为:lg(cond(Hn))=1.519n-1.833,结果下图所示。
lg(cond(Hn))~n关系图lg(cond(Hn))n从图2中可以看出,当n较小时,lg(cond(Hn))~n之间近似满足线性关系。
当n 继续增大到100时,lg(cond(Hn))~n关系图下图所示:lg(cond(Hn))~n关系图lg(cond(Hn))n从图中可以看出,图像的走势符合在n=20时的猜想,在n大于一定的值之后,图像趋于平缓,且在一定范围内震荡,同时又有一定上升趋势,但上升速度很慢。
2、选择不同的阶数n,设方程组的精确解为xz=(1,1,…,1)T进行计算,用四种方法解x_Guass1、x_Jacobi1、x_GS1、x_SOR1对比表如下表所示。
Gauss消去法求解:选择问题的阶数为3~8时,用Gauss消去法求得的解与精确解一致,当阶数为9~14时,解开始出现偏差,而且n越大,偏差越大。
用迭代法求解:取初始向量为1.2(1,1,…,1)T.无论n为多少阶,用Jacobi迭代方法迭代出现发散的不稳定现象,无法求解;用GS迭代方法迭代不发散,能求得解,但收敛非常缓慢,当迭代次数取得相当大(20000次)时解仍在精确解附近波动;取w=1.5,用SOR迭代方法迭代不发散,能求得解,收敛速度较GS迭代快一些,但仍非常缓慢。
线性方程组解法的研究【开题报告】

毕业论文开题报告信息与计算科学线性方程组解法的研究一、选题的意义线性代数是本专科高校中各类专业的一门公共基础课.。
由于线性问题广泛地存在于科学技术的各个领域, 许多非线性问题在一条件下也可以转化为线性问题来处理,线性代数已成为应用最广泛的大学基础数学课程之一,它的重要性也已经成为我们的共识.。
通过对线性代数课程的学习,可以提高学生的数学素质和数学能力, 特别是培养逻辑推理、归纳判断、科学计算、用数学语言和符号进行表达的能力等,对提高学生的思维能力、开发学生智力等起到重要作用。
尤其是现在, 随着计算机的逐渐普及,作为一门基础理论课的线性代数, 能够很好的帮助学生对计算机知识的理解和学习, 提高培养学生综合素质的效率。
矩阵被作为许多高等代数教材中研究的重要工具, 然而, 线性方程组理论同样也是一个比较重要的研究工具。
线性方程组是线性代数的主要内容,只要恰当地运用线性方程组理论, 我们在研究一些问题时就可以使比较复杂的研究过程简单化。
线性方程组与矩阵、向量的内容密切相关, 它与矩阵、向量组相关的许多重要结论都是线性方程组有关结论的应用和推广。
求解线性方程组是线性代数的核心内容之一, 同时也是它的最重要的应用领域之一。
线性方程组的求解还能处理许多实际问题,在科学研究与生产实践中,许多问题都可以归结为线性方程组的求解。
线性方程组的解法有很多,不同的线性方程组,根据其性质和特征,应当选择适当的解法。
所以,寻找最有效最简便的求解方法就显得极其重要。
本文首先对线性方程组的定义和基本性质等作了一些简单阐述,然后通过例子介绍了一些方程组的解法和特征,对其加以延伸综合、归纳总结,进一步提高我们线性方程组及其解法的认识,接着介绍了行列式线性方程组及其解法在一些领域中的应用,本文最后做出了简单的总结,使文章更加完整,也更加巩固了我们所学的线性方程组的相关知识,提升了我们对数学的理解和应用能力。
二、研究的主要内容,拟解决的主要问题(阐述的主要观点)本文研究的主要内容及解决的主要问题是线性方程组的多种解法研究及其有关应用。
病态的线性方程组求解

数值实验3_3 病态的线性方程组求解
自动化系李琳琳 2004211068
1.选择问题的维数为6,分别用Gauss消去法、J迭代方法、GS迭代方法和SOR 迭代方法求解并与问题的解比较,所得结果见下表
2.逐步增大问题的维数,仍用上述方法求解,结果如下:
由上述计算结果可以看出:
病态方程组的数值求解必须小心进行,否则得不到所要求的准确度或不稳定。
由本题中所做的数值实验可以看出,对于系数矩阵为Hilbert矩阵的病态方程组,Guass(即LU分解)方法和J迭代法都是无效的,结果发散。
而GS迭代和SOR迭代方法则较有效的解决了这个问题,得到较为精确的结果。
另一方面,也可以说明GS方法和SOR方法在收敛性方面更有优势。
其中,当系数矩阵A对称正定时,GS法一定收敛,而J法却不一定;且采用最优松弛因子的SOR方法要比GS法和J法收敛快得多。
(完整版)开题报告(线性方程组解的结构

线性方程组在解决应用问题中起着重要的作用,是一个极其重要的数学工具.线性方程组的求解过程通常与向量相联系,而空间又可以用向量来表示,向量又与我们日常生活的许多事例相关,所以,我们生活中遇到的许多无法快捷解出的难题中的很大一部分都可以通过与向量相联系,运用向量方程组的求解进而解决一些复杂的难题。而在方程组的求解中,线性方程组是方程组中的最基本的方程组,所以,线性方程组的求解是十分重要的,故归纳和总结出求解线性方程组的方法就显得尤其必要,对线性方程组解的结构研究具有重要意义.
2、国内外研究现状
国内外都对方程组的解的结构的求解过程做出了详尽的分析,但是很少有人对线性方程组下的齐次线性方程组和非齐次线性方程组解的过程放在一起做具体的分析,比较和概括,所以本文将对线性方程组下的齐次线性方程组和非齐次线性方程组解的求解过程做详尽的分析,从中我们可以看到两者在求解过程中的联系与区别,最后将两者解集间的区别与相互间关系作一个系统的归纳,便于理解和记忆。
本科毕业论文(设计)开题报告
题目:线性方程组解的结构研究
二级学:
学生姓名:
指导教师:
2013年 11 月 10 日
学院本科毕业论文(设计)开题报告
题 目
线性方程组解的结构
二级学院
数学与财经学院
班 级
开题日期
专 业
数学与应用数学
姓 名
学 号
指导教师
研究方法:查阅文献、探索研究、综合论述.
拟要解决的关键问题:齐次线性方程组与非齐次线性方程组的解的结构及两者
解集间的关系
6、前期准备和主要参考文献
前期准备:收集资料,查阅大量参考文献,研读拟定出论文大纲。
主要参考文献:
[1]张禾瑞,郝邴新编.高等代数(第四版)[M].北京:高等教育出版社,2003:263—267。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[4] 郑洲顺, 黄光辉。求解病态线性方程组的共轭向量基算法好.pdf。山东大学学报(理学版),第43卷第10期。
[5]郑洲顺, 黄光辉, 杨晓辉。求解病态线性方程组的混合算法.pdf。贵州工业大学学报( 自然科学版),第37卷第3期。
二、主要研究内容
整理和总结各种求解病态线性方程组算法,熟悉和了解各种方法的求解过程,并总结其优缺点,在此基础上,创新方法,寻求一种新的方法,将现有的方法适当的组合起来,取长补短而形成新的算法,并且有好的数值结果。
三、研究设计方法及技术路线
1、首先进行资料的搜集,并仔细阅读文献,熟悉文献内容。
2、重点研究最新的迭代算法,并与传统方法进行简单对比,分析各自的优缺点。
3、创新已有的方法,综合各种方法的优缺点,尽可能找到新的、能够很快得到有效解的方法。
4、最后结合实例,对相关方法的收敛速度和精确度进行测试和对比。
四、时间安排
本课题拟研究病态线性方程组的解法,首先对已有的算法进行总结、比较,由于算法一般都具有某些优点以及缺点,在结合自己的学习成果,总结创新得出自己的求解方法。
2、国内外研究状况
用直接法求解线性方程组,对于系数矩阵对角占优是很有效的。方程阶数不高时,人们经常使用;而当方程组阶数大时,由于积累误差,导致结果失真。为了克服误差积累问题,通常用迭代法。它具有可达到所要求的精度和对计算内存要求不大优点,对求解大型线性方程组,迭代法计算时间远比直接法少,所以在实际计算中,迭代法也被人们广泛使用。本次论文主要整理和研究利用迭代法求解病态线性方程组。
课
导师姓名
学生姓名
学 号
专业班级
信计08(1)
一、选题依据
1、课题的目的和意义
病态方程组的条件数较大, 当输入数据有微小扰动或计算过程中的舍入误差都可能引起输出数据的很大扰动, 使得解严重失真, 因此求解此类方程组是相当困难的.
在许多工程实际应用中,超大规模的线性方程组的数值解法是时常要遇到的问题。由于线性方程组的维数巨大,给具体的计算带来很大的问题——算法对计算机的内存需求大,算法的收敛速度慢以及计算舍人误差的累积扩张。这些往往使理论上较好的算法无法真正的应用到工程实际中,因此寻求一种真正能实际应用的数值算法一直是人们关注的问题。通常求解线性方程组一般可以分为直接解法和迭代解法。现在流行的算法一般采用迭代的算法来求解线性方程组,这主要是为了加快求解的速度。另外由于计算机的发展,在许多领域里涌现了一些新型的算法如神经网络 ,遗传算法,粒子群算法,模拟退火算法以及蚁群算法等。
(1)遗传算法( GeneticAlgorithm) 是美国密执根大学Holland教授倡导发展起来的, 是一种基于生物进化的机制和原理并引用随机理论的全局优化搜索方法. 近年来遗传算法( GA) 以其高效、实用等特点在各领域中得到了广泛的应用, 并越来越受到重视。此文中,使用遗传算法来求解病态线性方程组, 得到了较好的结果, 并与传统的求解方法作了简单的比较。
(2)针对地球物理反问题中经常碰到的病态线性方程组的求解问题。发现一种简单迭代(SI)算法,从理论上证明了解序列收敛且收敛到方程组的真解,然后给出了几个算例,将计算结果与对付病态问题能力很强的CG类算法的结果进行了对比,结果表明: SI 算法具有极强的抗病态能力,计算精度明显高于CG类算法, 但计算速度稍低于后者。
第6周:作课题准备。
第7周~第14周:实施课题研究,完成论文初稿。
第15、16周:完成论文定稿。打印装订成册。
五、预期成果
汇总已有的一些求解病态线性方程组的解法,深入研究各种方法,比较各法的优缺点,并进行总结,在此基础上,进行创新,最后找到自己的求解病态线性方程组的方法。
2012年 4月9 日
指导教师意见:
3、主要参考资料
[1]黄松奇,黄守佳。用遗传算法求解病态线性方程组.pdf。数学的实践与认识,第33卷,第8期;
[2] 毛先进,杨玲英。病态线性方程组的简单迭代解法.pdf。物探化探计算技术,第21卷,第1期;
[3] 胡圣荣, 戴纳新。病态线性方程组新解法_增广方程法.pdf。华南农业大学学报,第30卷第1期;
(3)增广方程法:将病态方程组放到一个增广的系统中考虑, 这时原方程组的解只是增广解的一个局部, 并处在增广解的前部, 再适当构造增广方程组, 就不难获得比较准确的解.
(4)算法适合求解大型病态线性方程组的解法:结合最速下降法计算量小和共轭方向法收敛速度快的特点, 提出了一种求解病态方程组的共轭向量基的方法。线性方程组的精确解能够由共轭向量基线性表示,利用迭代的方式给出了构造共轭向量基以及对应系数的方法, 证明了算法所构造的向量基的共轭性。同时给出了一个改进算法以适合不同精度要求, 加快迭代的收敛速度。通过对5000阶的Hilbert 方程组进行求解, 结果的相对误差小于045%, 并与当前普遍使用有效的方法进行了比较, 数值实验结果表明,该算法适合求解大型病态线性方程组,且具有快速收敛, 精度较高的特性。
指导教师: 年 月 日