鸡兔同笼问题讲解及习题(含答案)

合集下载

小学鸡兔同笼问题练习题及答案解析

小学鸡兔同笼问题练习题及答案解析

小学鸡兔同笼问题练习题及答案解析1.题目:鸡比兔多13只,鸡腿比兔腿多16条,鸡和兔各有多少只?答案:鸡有25只,兔有12只。

解析:设兔有x只,则鸡有x+13只。

根据题意,鸡腿比兔腿多16条,即2(x+13) - 4x = 16,解得x=12,所以兔有12只,鸡有25只。

2.题目:笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚,鸡和兔各有多少只?答案:鸡有23只,兔有12只。

解析:设兔有x只,则鸡有35-x只。

根据题意,4x + 2(35-x) = 94,解得x=12,所以兔有12只,鸡有23只。

3.题目:鸡比兔多3只,鸡腿比兔腿多2条,鸡和兔各有多少只?答案:鸡有7只,兔有4只。

解析:设兔有x只,则鸡有x+3只。

根据题意,2(x+3) - 4x = 2,解得x=4,所以兔有4只,鸡有7只。

4.题目:鸡和兔共有100只,腿共248只,鸡和兔各有多少只?答案:鸡有34只,兔有66只。

解析:设兔有x只,则鸡有100-x只。

根据题意,4x + 2(100-x) = 248,解得x=66,所以兔有66只,鸡有34只。

5.题目:鸡比兔少5只,鸡腿比兔腿少6条,鸡和兔各有多少只?答案:鸡有19只,兔有24只。

解析:设兔有x只,则鸡有x-5只。

根据题意,2(x-5) - 4x = -6,解得x=24,所以兔有24只,鸡有19只。

6.题目:鸡和兔共有15只,腿共40条,鸡和兔各有多少只?答案:鸡有10只,兔有5只。

解析:设兔有x只,则鸡有15-x只。

根据题意,4x + 2(15-x) = 40,解得x=5,所以兔有5只,鸡有10只。

7.题目:鸡比兔多8只,鸡腿比兔腿多12条,鸡和兔各有多少只?答案:鸡有20只,兔有12只。

解析:设兔有x只,则鸡有x+8只。

根据题意,2(x+8) - 4x = 12,解得x=12,所以兔有12只,鸡有20只。

8.题目:笼子里有若干只鸡和兔。

从上面数,有28个头,从下面数,有76只脚,鸡和兔各有多少只?答案:鸡有10只,兔有18只。

小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。

2.删除了第一题和第五题中的选项,因为没有必要。

3.改写了第一题和第二题的问题,使其更加清晰。

4.修改了第三题和第七题的答案,因为原来的答案是错误的。

5.修改了第六题的选项,因为原来的选项是重复的。

6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。

7.修改了部分题目的语言,使其更加易懂。

选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。

2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。

3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。

蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。

XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。

5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。

6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答鸡兔同笼是中国古代著名的数学趣题之一,也是小学数学中常见的一类问题。

它对于培养孩子们的逻辑思维和解题能力有着重要的作用。

下面我们就来通过一些题目练习及解答,深入了解鸡兔同笼问题。

题目一:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?解答:我们可以用假设法来解决这个问题。

假设笼子里全是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有 35×2= 70 只脚。

但实际有 94 只脚,多出来的脚就是兔子的。

每只兔子比每只鸡多 4 2 = 2 只脚。

所以兔子的数量就是(94 70)÷ 2 = 12(只)鸡的数量就是 35 12 = 23(只)题目二:一个笼子里鸡兔共有 20 只,脚共有 56 只,问鸡兔各有几只?解答:同样先假设全是鸡,20 只鸡就有 20×2 = 40 只脚。

实际有 56 只脚,多出的脚是兔子的,兔子数量为(56 40)÷ 2 = 8(只)鸡的数量就是 20 8 = 12(只)题目三:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,求鸡兔各有多少只?解答:设兔有 x 只,那么鸡就有 x + 10 只。

每只兔 4 只脚,每只鸡 2 只脚,可列出方程:4x + 2×(x + 10) = 1104x + 2x + 20 = 1106x = 90x = 15 ,即兔有 15 只。

鸡的数量就是 15 + 10 = 25 只。

题目四:有鸡兔同笼,它们共有 48 个头,132 只脚,鸡和兔各有几只?解答:假设全是鸡,48 只鸡共有脚 48×2 = 96 只。

实际 132 只脚,多出的是兔子的,兔子数量为(132 96)÷ 2 = 18 只。

鸡的数量为 48 18 = 30 只。

题目五:笼子里鸡兔的数量相同,它们的脚一共有 90 只,鸡兔各有几只?解答:因为鸡兔数量相同,设鸡兔各有 x 只。

鸡兔同笼问题练习题及答案

鸡兔同笼问题练习题及答案

鸡兔同笼问题练习题及答案一、例题精讲若干只鸡和兔子关在同一个笼子里,从上边数,有35个头,从下边数,有94只脚,问,鸡和兔子各有几只。

【解析】题目中告诉我们鸡和兔子共有35个头,94只脚,而常识告诉我们,一只鸡有一个头两只脚,一只兔子有一个头4只脚,所以,我们可以假设鸡和兔子分别有x,y只,则有: x+y=35,2x+4y=94,由此可以解得x=23,y=12。

按照我们的方程法,其实就是可以解出的,但是在实际操作过程中,方程可能将比较耗时,所以我们须要给大家传授另外一种快速的方法,假设法。

在这道题中,我们可以假设全部的动物都就是鸡,则35个动物就可以存有70只脚,但实际上,存有94只脚,所以我们算是的70可以和实际差距24只脚,再去思索一下,为啥可以差距呢?是因为我们把所有的兔子都当作了鸡,每把一直兔子当作鸡的时候就可以太少两只脚,所以共少24只脚,就须要12只兔子。

因此就可以存有23只鸡。

对比上述两种方法,我们会发现假设法比较简单一些。

二、典型例题例1.某餐厅设有可坐12人和10人两种规格的餐桌共28张,最多可容纳人同时就餐,问餐厅有多少10人桌?a.2b.4c.6d.8【答案】a。

中公解析:假设全部都是10人桌,则共可以容纳人,但实际上容纳人,相差52人,而每一张12人桌和10人桌会相差2人,所以会有26张12人桌,因此我们可以得到10人桌有2张。

三、题目稳固例. 有一辆货车运输只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角钱,如有破损,破损一只还要倒赔2角,结果共得到运费.2元,破损的只数是:a.17b. 24c.34d.36【答案】a。

解析:假设所有的瓶子都是完好无损的,则可以得到运费元,但实际上只有.2,相差6.8元,因为当瓶子破损时,与好的瓶子相比,除了2角钱运费得不到还需要倒赔2角,所以每有一个坏瓶子会与好瓶子相差4角,因此共有17个坏的瓶子。

选择a。

小学五年开放性鸡兔同笼习题及答案

小学五年开放性鸡兔同笼习题及答案

鸡兔同笼的公式:解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数追击问题公式:追及距离除以速度差等于追及时间.追及时间乘以速度差等于追及距离.追及距离除以追及时间等于速度差.追及:速度差×追及时间=追及路程追及路程÷速度差=追及时间(同向追及)甲路程—乙路程=追及时相差的路程相遇:相遇路程÷速度和=相遇时间速度和×相遇时间=相遇路程速度差×追及时间=追及路程追及路程÷速度差=追及时间(同向追及)甲路程—乙路程=追及时相差的路程“相遇问题”( 或相背问题)是两个物体以不同的速度从两地同时出发,( 或从一地同时相背而行),经若干小时上遇( 或相离)。

我们若把两物体速度之和称之为“速度和”,从同时出发到相遇( 或相距)时止,这段时间叫“相遇时间”;两物体同时走的这段路程叫“相遇路程”,那么,它们的关系式是:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.那么,红铅笔买支,蓝铅笔买支.红铅笔:(16×0.19-2.8)/(0.19-0.11)=3支蓝铅笔:(2.8-16×0.11)/(0.19-0.11)=13支3、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.有只蜘蛛,只蜻蜓,只蝉.假设全部都是蜘蛛,那么蜻蜓和蝉共有:(8×18-118)/(8-6)=13只所以蜘蛛有:18-13=5只假设全都是蝉,那么蜻蜓有:(20-13×1)/(2-1)=7只所以蝉有:13-7=6只4、鸡和兔共100只,鸡的脚数比兔的脚数少28.鸡有只,兔有只.涉及到了盈亏问题假设全是鸡,那么,鸡的脚数比兔的脚数多200只实际上,鸡的脚数比兔的脚数少28所以兔子的数量是:(200+28)/(2+4)=38只故鸡的数量是:100-38=62只5、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算.每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费389.2元.在这次搬运中,玻璃破损了只.假设没有损坏,则得到:2000×0.2=400元故破损了:(400-389.2)/(0.2+1)=9只6、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.那么,五言绝句有首,七言绝句有首.如果再添加13首七言绝句就多了13×7×4=364个字则总字数就比五言绝句多了384字因此五言绝句有:384/(2×4)=48首七言绝句则就有:48-13=35首7、一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运的次数却比晴天少27次.那么一连运了天.假设晴天再多3天,那么就能多运3×16=48次,因此雨天比晴天的次数少了48+27=75次所以雨天的次数是:75/(16-11)=15天雨天的次数是:15+3=18天因此一连运了15+18=33天8、一些2分和5分硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍.5分硬币有个.假设有1个5分,那么就有4个2分因此有:5+4×2=13分所以有5分的:299/13=23个9、学校组织新年游艺晚会,用于奖品的铅笔、圆珠笔和钢笔共232支,共花了300元.其中铅笔的数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.那么铅笔有支,圆珠笔有支,钢笔有支.假设有1支圆珠笔,那么就有4支铅笔,所以就有2.7+0.6×4=5.1元假设全是钢笔,那么就有铅笔和圆珠笔(232×6.3-300)/(6.3-5.1/5)=220支所以铅笔有:220×4/5=176支,圆珠笔44支,钢笔12支10、“京剧公演”共出售750张票得22200元.甲票每张60元,乙票每张30元,丙票18元.其中丙票张数是乙票数的2倍.其中甲票有张.乙丙每张票需要:(18×2+30)/3=22元假设全是甲票,则乙丙有:(60×750-22200)/(66-22)=600张所以甲有150张,乙有200张,丙有400张11、某工厂的27位师傅共带徒弟40名,每位师傅可以带1名徒弟、2名徒弟或者3名徒弟.如果带1名徒弟的师傅人数是其他师傅的2倍.带2名徒弟的师傅有位.带1名徒弟的师傅有:27×2/3=18人,故收1名徒弟的有:18人假设剩下的9位师傅都是带3名徒弟,那么有徒弟9×3=27人,实际才22人因此带2名徒弟的师傅有:(27-22)/(3-2)=5人12、某人在途中经过一个山岭,上山时每小时走3240米;下山时每小时走6440米.已知他从上山到下山共用去6小时(不包括休息时间),共走27.440千米.上山用了小时,下山用了小时,上山走米,下山走米.假设全是上山,则总共爬了3240×6=19.44千米因此下山用时(27.44-19.44)/(6.44-3.24)=2.5小时,走了2.5×6.44=16.1千米故上山则用时6-2.5=3.5小时,走了27.44-16.1=11.34千米13、甲乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分.两人各打了10发,共得208分,其中甲比乙多64分.甲中发,乙中发.甲得分(208+64)/2=136分,乙得分208-136=72分甲中(136+12×10)/(20+12)=8发乙中(72+12×10)/(20+12)=6发14、大小猴子共35只,它们一起去采摘桃子.猴王不在的时候,一个大猴子一小时可采摘15千克,一个小猴子一小时可采摘11千克;猴王在场监督的时候,每个猴子不论大小每小时都可多采摘12千克.一天采摘了8小时,其中只有第一小时和最后一小时猴王在场监督,结果共采摘4400千克桃子.那么,在这群猴中,共有小猴只.假设猴王一分钟都不在,那么可以采摘4400-35×12×2=3560千克假设全是大猴,则可以采摘35×15×8=4200千克所以相差的640千克是小猴子采摘的故有小猴子:640/8/(15-11)=20只15、郭华叔叔八点整由A地出发到相距7.2千米的B地去.开始他步行,每分钟走90米;走到C地,向朋友借了一辆自行车,骑车的速度是原来步行的3倍.又知他借车花了6分钟,最后他是八点四十分到达B地的.AC两地相距米.A----------C-------------B去掉借车的6分钟,则总共用时40-6=34分钟假设都是自行车,则行驶:90×3×34=9180米=9.18千米因此步行用时:(9.18-7.2)/(0.27-0.09)=11分钟故AC相距:11×90=990米☆今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元年.4年后,父母的年龄是78+2×4=86岁,兄弟的年龄是17+2×4=25岁假设这25岁都是兄的年龄,则母亲的年龄则是25×3=75,实际才86,相差11年故弟弟4年后的年龄是11岁,兄的年龄是14岁,父亲的年龄是11×4=44岁父亲和兄的年龄差是44-14=30,因此父亲:兄=3:1=45:15故是在公元2003年☆甲、乙两件商品成本共600元.已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利润110元.两件商品中,成本较高的那件商品的成本是元.甲的售价是1.45×0.8=1.16,获利0.16乙的售价是1.4×0.9=1.26,获利0.26假设都是甲商品,则获利600×0.16=96元因此乙商品的成本是(110-96)/(0.26-0.16)=140元故甲商品的成本就是600-140=460元因此甲的成本高☆如下图,从A至B步行走细线道A♑D♑B需要35分钟,坐车走粗线道A♑C♑D♑E♑B需要22.5分钟.D♑E♑B车行驶的距离是D至B步行距离的3倍,A♑C♑D车行驶的距离是A至D步行距离的5倍.又知车速是步行速度的6倍.那么,先从A至D步行,再从D♑E♑B坐车,一共需要分钟。

鸡免同笼应用题及答案

鸡免同笼应用题及答案

鸡免同笼应用题及答案鸡免同笼应用题及答案我国古代数学起源于上古至西汉末期,全盛时期是隋中叶至元后期,可见,老祖宗的智慧。

以下是小编整理的鸡免同笼应用题及答案,希望对你有帮助。

鸡免同笼应用题及答案1"鸡兔同笼"是一类有名的中国古算题。

最早出现在中。

许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。

因此很有必要学会它的解法和思路。

例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。

现在,地面上出现脚的总数的一半,·也就是244÷2=122(只)。

在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。

因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子。

当然鸡就有54只。

答:有兔子34只,鸡54只。

上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数。

上面的解法是中记载的。

做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的`2倍。

可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通。

因此,我们对这类问题给出一种一般解法。

还说例1。

如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只)。

每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只)。

说明我们设想的88只"兔子"中,有54只不是兔子。

而是鸡。

因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-数)。

当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只)。

小学鸡兔同笼经典讲解与例题

小学鸡兔同笼经典讲解与例题

小学鸡兔同笼经典讲解与例题含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1长毛兔子芦花鸡,鸡兔圈在一笼里。

数数头有三十五,脚数共有九十四。

请你仔细算一算,多少兔子多少鸡?解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。

例22亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解此题实际上是改头换面的“鸡兔同笼”问题。

“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。

(完整版)“鸡兔同笼”问题-练习题及答案

(完整版)“鸡兔同笼”问题-练习题及答案

1.鸡兔同笼,共有30个头,88只脚.求笼中鸡兔各有多少只?鸡:16只,兔:14只2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?鸡:30只,兔:18只3.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?20分的邮票25张,50分的邮票10张.4.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?2分硬币52枚,5分硬币18枚。

5.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?捐2元的有27人,捐5元的有7人。

6.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?晴天2天,雨天6天。

7.解放军进行野营拉练.晴天每天走 35千米,雨天每天走 28千米,11天一共走了 350千米。

求这期间晴天共有多少天?晴天共有6天.8.某校有一批同学参加数学竞赛,平均得63分,总分是3150分.其中男生平均得60分,女生平均得70分.求参加竞赛的男女各有多少人?女生15人,男生35人。

9.一次数学竞赛共有20道题。

做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?刘冬做对14道题.10.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。

求大船和小船各几只?大船4只,小船7只。

11.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。

求小轿车和摩托车各有多少辆?小轿车22辆,摩托车10辆。

12.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个.求大小和尚各有多少个?大和尚有25个,小和尚有75个。

13.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对.问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)蜘蛛5只;蜻蜓7只;蝉6只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题讲解及习题
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。

许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。

因此只要算出12里面有几个2,就可以求出兔的只数。


解:有兔(44—2×16)÷(4—2)=6(只),
有鸡16—6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。

我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。

因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

因此这类问题也叫置换问题。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。

问:大、小和尚各有多少人?
分析与解:本题由中国古算名题“百僧分馍问题”演变而得。

如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。

现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。

问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。

这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19—11=8(元),所以买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套)。

例4 鸡、兔共100只,鸡脚比兔脚多20只。

问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。

这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。

现在以免换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100-30=70(只)。

解:有兔(2×100—20)÷(2+4)=30(只),
有鸡100-30=70(只)。

答:有鸡70只,兔30只。

例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。

问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。

解:小瓶有(4×50—20)÷(4+2)=30(个),
大瓶有50—30=20(个)。

答:有大瓶20个,小瓶30个。

例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。

已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。

根据条件,要装完这144吨钢材还需要45—36=9(辆)小卡车。

这样每辆小卡车能装144÷9=16(吨)。

由此可求出这批钢材有多少吨。

解:4×36÷(45—36)×45=720(吨)。

答:这批钢材有720吨。

例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。

问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。

实际上只得到115.5元,少得120—115.5二4.5(元)。

搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。

因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。

已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。

可求出小乐每分钟跳
(780-60)÷(2+3+3)=90(下),
小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780—270×2=240(下)。

练习题
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。

问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。

活页簿每本L9元,日记本每本3.1元。

问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。

问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。

贺年卡每张3元5角,明信片每张2元5角。

问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。

问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。

做对一题得5分,没做或做错一
题都要扣3分。

小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。

已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现有三种小虫共18只,有118条腿和20对翅膀。

问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。

问:鸡、兔各几只?。

相关文档
最新文档