六年级下册数学课件奥数行程专题:多次往返相遇和追及全国通用
小学数学行程专题 多次相遇与追及问题 PPT+课后作业 带答案

Байду номын сангаас题4
小芳和小俞老师分别从一段长200米的马路的两端同时相向出发,做往返运动。小芳每分 钟走40米,小俞老师每分钟走60米。20分钟后,两人停止运动。 (1)在这期间,小芳和小俞老师迎面相遇多少次? (2)在这期间,小俞老师从后面追上小芳多少次? (3)在这期间,小俞老师和小芳迎面相遇和追及相遇一共多少次?
从后面追上
甲
同向追上
A
B
乙
迎面相遇可不算哦!
甲、乙两人同时从A、B两地出发,在A、B两地之间来回散步。 (1)当甲第一次从后面追上乙时,甲比乙多走__1___个全程。 (2)甲从第一次从后面追上到第二次从后面追上乙时,甲比乙又多走__2___个 全程。 (3)甲从第二次从后面追上到第三次从后面追上乙时,甲比乙又多走__2___个 全程。
答:经过2个小时,甲车第一次从后面追上乙车。 (2)路程差:2个全程
追及时间:35×2÷(75-40)=2(小时) 答:再经过2个小时,甲车第二次从后面追上乙车。
例题3
甲、乙两车分别从 A、B 两地同时出发,相向而行,在 A、B 两地之间不停往返行驶。当 甲车行驶了12 个全程时, 乙车行驶了 4 个全程,那么甲车从后面追上乙车多少次?
(1)从开始出发到第一次从后面追上,路程差为1个全程 追及时间:200÷(120-70)=4(小时) 答:经过4小时,小汽车第一次从后面追上大巴。
(2)从第一次追上到第二次从后面追上,路程差为2个全程 追及时间:200×2÷(120-70)=8(小时) 答:再经过8小时,小汽车第二次从后面追上大巴。
相邻两次同向追及之间,两者的路程差都是2个全程; 从出发到第1次同向追及,两者的路程差是2个全程; 从出发到第2次同向追及,两者的路程差是4个全程; 从出发到第3次同向追及,两者的路程差是6个全程; 从出发到第n次同向追及,两者的路程差是2n个全程。
六年级下册数学课件-奥数行程专题:变速运动 全国通用 (共13张PPT)

小朋友们,这节课程老师要给大家讲“变速 运动”,呵呵,怎样解变速运动的题目呢?秘诀 就是“我们要因题而变”!这节课小朋友要和老 师一起去变喔!
行程问题从运动形式上可以分为七大类:
第一、一般直线上的相遇、追及问题 第二、火车过桥问题 第三、流水行船问题 第四、环形运动与时钟问题 第五、多个对象间的行程问题 第六、变速运动 第七、多次往返类型的相遇、追及
“变”乃是数学的精髓,也是我们处事的法则!
例(3)一辆汽车从甲地开往乙地,如果把车速提高 20%,则可提前到达;如果以原速行驶100千米后,再 将速度提高30%,恰巧也可以提前同样的的时间到达。 甲乙两地相距多少千米?
“变”乃是数学的精髓,也是我们处事的法则!
例(4)一辆汽车从甲地开往乙地,若车速提高 20%,可比原定时间提前1小时到达,若以原速行 驶80千米后,再将速度提高25%,则可提前40分 钟到达,甲乙两地相距多少米?
例(1)甲乙两车同时从A、B两地出发,相对而行, 甲每小时行45千米,乙每小时行55千米,如果甲 每小时增加15km,乙每小时增加5km,则相遇时 间可以提前四分之一小时,A、B两地之间的距离 是多少km?
“变”乃是数学的精髓,也是我们处事的法则!
例(2)甲、乙两人同时从山脚开始爬山,到达山 顶后就立即下山,他们两人下山的速度都是各自 上山速度的2倍.甲到山顶时,乙距山顶还有400 米;甲回到山脚时,乙刚好下到半山腰.求从山 脚到山顶的距离。
例(4)一辆汽车从甲地开往乙地,若车速提高20%,可比原定时间提前1小时到达,若以原速行驶80千米后,再将速度提高25%,则 可提前40分钟到达,甲乙两地相距多少米? 第一、一般直线上的相遇、追及问题 “变”乃是数学的精髓,也是我们处事的法则! 第一、一般直线上的相遇、追及问题 “变”乃是数学的精髓,也是我们处事的法则! 本节课程需要掌握的能力: “变”乃是数学的精髓,也是我们处事的法则! 如果以原速行驶100千米后,再将速度提高30%,恰巧也可以提前同样的的时间到达。 “变”乃是数学的精髓,也是我们处 们明白了解答变速运动的题目,我们需要 因过程变化而变化。同时我们还感受到了 “数学的精髓在于变”!回归到生活中, 我们也要因环境的不同,我们处事方式也 要随机应变!
六年级下册数学小升初专题-相遇追及(多次)、电车问题 全国通用(含答案)

小升初数学专题第4讲行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。
同时也是小学专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。
(一) 典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里: =⨯路程和速度和相遇时间; =⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。
(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。
追及问题相遇问题举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。
我们可以依次求出甲、乙每次到达A 点或B 点的时间。
为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。
折线示意图能将整个行程过程比较清晰的呈现出来:例如AD 表示的是,甲从A 地出发运动到B 地的过程,其中D 点对应的时间为1小时,表示甲第一次到达B 点的时间为1小时,BF 表示乙从B 地出发到达A 地的过程,F 点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD 与BF 相交于C 点,对应甲、乙的第一次相遇事件,同样的G 点对应是甲、乙的第二次相遇事件。
六年级奥数专题-8多次相遇追及——一图一表走天涯

多次相遇追及——一图一表走天涯距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系:⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲; ⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲; ⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距多少千米. 【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)(小学数学奥林匹克初赛A 卷第12题)甲、乙两车分别从A 、B 两地出发,在A 、B 之间不断往返行驶,已知甲车的速度是乙车的速度的七分之三,并且甲、乙两车第2007次相遇(这里特指面对面的相遇)的地点与第2008次相遇的地点恰好相距120千米,那么,A 、B 两地之间的距离等于多少 千米?甲、乙速度之比是3:7,所以我们可以设整个路程为3+7=10份,这样一个全程中甲走3份,第2007次相遇时甲总共走了()320072112039⨯⨯-=份,第2008次相遇时甲总共走了例2例1本讲要点()320082112045⨯⨯-=份,所以总长为120÷[12045-12040-(12040-12039)]×10=300千米.(2007年希望杯第五届五年级二试第12题,5分;第五届六年级二试第12题,5分)甲、乙两车同时从A 、B 两地相对开出,两车第一次在距A 地32千米处相遇,相遇后继续行驶,各自达到B 、A 两地后,立即沿原路返回,第二次在距A 地64千米处相遇,则A 、B 两地间的距离是____千米。
小升初专题:多次相遇与追及(讲义)-数学六年级下册(含答案)全国通用

例3甲乙两人分别以每分钟60m 、70m 的速度同时从A 地向B 地行进,丙以每分钟80m 的速度同时从B 地往A 地行进,丙遇到乙后3分钟又遇到甲。
问AB 之间相距多少米?例2甲、乙、丙三人只有一辆自行车,他们同时出发进行100千米的旅行,甲先带着丙以每小时25千米的速度前进,乙以时速5千米的速度步行前进。
经过一段时间后,丙下车以时速5千米的速度步行,而甲又折回去接乙,并将乙带上,最后与丙同时到达目的地。
问这次旅行的时间是多少小时?(设甲骑车速度与乙丙步行速度都是不变的。
)例1甲乙两地相距60km ,小王骑车以10km/h 的速度在上午8点从甲地出发去乙地。
过了一会儿,小李骑车以15km/h 的速度也从甲地去乙地。
小李在途中M 地追上小王,通知小王立即返回甲地。
小李继续骑车去乙地。
各自分别到达甲乙两地后都马上返回,两人再次见面时,恰好还在M 地。
问小李是几点出发的?补充两辆电动小汽车在周长为360米的圆形跑道上不断行驶,甲车每分钟行驶20米。
甲、乙两车同时分别从相距90米的A、B两地相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B地时,甲车过B地后恰好又回到A地。
此时甲车立即返回(乙车过B地继续行驶),再过多少分与乙车相遇。
补充如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形。
甲、乙两人分别从两个对角处沿逆时针方向同时出发。
如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?测试题1.小猫和小耗同时同地向同一方向出发,8分钟后,小猫比小耗多走了56米;如果他们同时同地背向而行,5分钟后两人相距425米。
小猫每分钟走_____米,小耗每分钟走______米。
2.小张和小王早晨八点整同时从甲地出发去乙地,小张开车,速度是每小时60千米。
小王步行,速度是每小时4千米。
如果小张到达乙地后停留一小时立即沿原路返回,恰好在十点整遇到正在前往乙地的小王。
那么甲、乙两地之间的距离是_____千米。
六年级下册数学课件奥数行程专题:多次往返相遇和追及全国通用

例(6)A、B两地相距1000米,甲从A地、乙从B地同 时出发,在A、B间往返锻炼。甲跑步每分钟行150米, 乙步行每分钟60米。在30分钟内,甲、乙两人第几次 相遇时距B地最近?此时距离B地多少米?
柳卡图:
分析:知道了两地的距离,需要求出每个人走一个全程所用的时间,方便画出柳 卡30图分。钟乙内行,一两个人全一程共用合1行00(0÷15105+06=0632)×分3钟0÷,10甲00行=6一.3个个全全程程用。1画00出0÷图6后0=,1632 可分以。
已实知际甲 甲每走分了钟4/7走×6第20=米8六/,7 乙、每变分钟速走运80动米,则A和B两地相距多少米?
第三次相遇时,甲行了3/5×5=3,此时甲在B地 甲跑步每分钟行150米,乙步行每分钟60米。
第七、多次往返类型的相遇、追及
从题目的解题方法上又可以分为五大类:
第一、利用设数法、设份数处理
第二、利用速度变化情况进行分段处理
第三、利用和差倍分以及比例关系,将行程过程进 行对比分析
第四、利用方程方法进行求解
第五、利用柳卡图来分析
注意:以上五种方法都是要结合画图去分析的!
本节课程回归到生活中的主题:
总结规律,灵活处事!
例(1)甲乙两车同时从A、B两地相向而行,在距 B地54千米处相遇,它们各自到达对方车站后立即 返回,在距A地42千米处相遇。请问A、B两地相 距多少千米?
例(4)甲乙二人分别从A B两地同时相向而行,甲的速 度是乙的1.5倍,二人相遇后继续行进,甲到B地,乙 到A地后立即返回,已知二人第四次相遇的地点距离 第三次相遇的地点20千米,那么A B两地相距多少千 米?
解:此题这样理解 甲乙在相同时间内的路程比=速度比=1.5:1=3:2 那么第一次相遇是在距离A地3/5处 第二次相遇甲乙一共行了3个全程 第三次相遇甲乙一共行了5个全程 第四次相遇甲乙一共行了7个全程 以此类推 第三次相遇时,甲行了3/5×5=3,此时甲在B地 第四次相遇时,甲行了3/5×7=21/5,此时距离B地1-(21/5-3-1)
奥数-行程多次相遇和追问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程; 第3次相遇,共走5个全程; …………, ………………; 第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………, ………………; 第N 次相遇,共走2N 个全程; 3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程 多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡知识框架多次相遇与追及问题柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?例题精讲【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
小升初典型奥数:多次相遇问题+(讲义)-2023-2024学年六年级下册数学

多次相遇问题【知识精讲+典型例题+高频真题】第一部分知识精讲知识清单方法技巧第二部分典型例题例题1:甲、乙两车同时从东城出发,开往相距750千米的西城,甲车每小时行68千米,乙车每小时行57千米,甲车到达西城后立刻返回.两车从出发到相遇一共经过多长时间?【答案】12小时【分析】甲车到达西城后返回与乙车相遇时,两车一共走了2个全程.【详解】750×2÷(68+57)=1500÷125=12(小时)答:两车从出发到相遇一共经过12小时.例题2:小新、正南、妮妮三人同时从学校出发到公园去。
小新、正南两人的速度分别是每分钟20米和每分钟16米。
在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度。
【答案】13米/分钟【分析】当小新和风间相遇时,正南落后小新6×(20-16)=24(米)。
依题意知正南和风间走这24米需要7-6=1(分钟),正南和风间的速度和为24÷1=24(米/分),风间的速度为:24-16=8(米/分),风间和小新相遇后又过了8-6=2分钟,才与妮妮相遇,所以在8分钟中妮妮的行程为20×6-8×2=104(米),根据速度=路程÷时间,即可解答。
【详解】风间的速度:(20-16)×6÷(7-6)-16=4×6÷1-16=24÷1-16=24-16=8(米/分)妮妮的速度:(20×6-8×2)÷8=(120-16)÷8=104÷8=13(米/分)答:妮妮的速度是13米/分。
【点睛】这是一个多重相遇和追及的问题,考查学生分析与理解能力。
例题3:甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【答案】100【详解】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000×=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54×=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100−=米才能回到出发点.例题4:快、慢两车同时从甲、乙两车站迎面开来,快车每小时行驶100km,慢车每小时行驶65km.两车到达车站后立即往回开,第二次相遇时快车比慢车多行驶了210km.求甲、乙两车站间的距离.【答案】330km【详解】快车慢车总共花的时间是一样的.快车每小时比慢车多走35千米,多行驶了210千米,说明一共行驶了210÷35=6小时.第二次相遇两辆车一共行驶了3个车站的距离.(100+65)×(210÷35÷3)=330(km)例题5:甲乙两人同时从A、B两地出发相向而行,两人在离A地90米处第一次相遇,相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距B地70米处第二次相遇.两人从第一次相遇到第二次相遇恰好经过了5分钟,甲、乙两人的速度是多少?【答案】甲的速度为每分钟36米,乙的速度为每分钟44米【详解】解:A、B间距离:90×3-70=270-70=200(米)甲的速度:90÷(5÷2)=90÷2.5=36(米)乙的速度:(200-70+90)÷5=220÷5=44(米)答:甲的速度为每分钟36米,乙的速度为每分钟44米.【点睛】两人第一次相遇时,合行的路程是A、B之间的距离.两人从出发到第二次相遇时,合行的路程是三个A、B之间的距离,即从第一次相遇到第二次相遇所行的路程应是从出发到第一次相遇的两倍.因此甲从第一次相遇到第二次相遇所行的时间也是从出发到第一次相遇时间的两倍,所以甲行90米用了5分钟的一半时间.第三部分高频真题1.甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶.甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和第1997次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇).那么,A、B两地之间的距离是多少千米?2.甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.3.甲、乙二人分别从A、B两地同时出发,往返跑步.甲每秒跑3米,乙每秒跑7米.如果他们的第四次相遇点与第五次相遇点的距离是150米,求A、B两点间的距离为多少米?4.如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?5.每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?6.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?7.有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?8.张华和李冰分别从A、B两地同时出发相向而行,张华的速度是李冰的56,两人分别到达B地与A地后,立即返回各自的出发地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例(6)A、B两地相距1000米,甲从A地、乙从B地同 时出发,在A、B间往返锻炼。甲跑步每分钟行150米, 乙步行每分钟60米。在30分钟内,甲、乙两人第几次 相遇时距B地最近?此时距离B地多少米?
柳卡图:
分析:知道了两地的距离,需要求出每个人走一个全程所用的时间,方便画出柳 卡30图分。钟乙内行,一两个人全一程共用合1行00(0÷15105+06=0632)×分3钟0÷,10甲00行=6一.3个个全全程程用。1画00出0÷图6后0=,1632可分以。
六年级下册数学课件奥数行程专题: 多次往 返相遇 和追及 全国通 用
多次往返相遇和追及
六年级下册数学课件奥数行程专题: 多次往 返相遇 和追及 全国通 用
小朋友们,这节课程老师要给大家讲解“多 次往返和相遇问题”,这个内容有点复杂喔,不 过老师相信前面五关都顺利闯关,最后一关也一 定没问题!加油!
一、成功之处 本节教学最大的成功在于教师把主要精力放在积极引导学生探索发现问题之上。利用复习准备、导入两个环节,为学生探索比例的基 本性质搭建了桥梁,新知构建部分,有教师引导的思路设计,学生通过阅读教材、分析、计算,总结出比例的基本性质,教学自然流畅。随 堂练习,让学生展示自己发现的成果,在获得成功的同时也收获了解决问题的方法。 二、不足之处 在例1的教学时教师放手还是有些不够,问的太多,学生自主学习成分略显不足。 三、再教设计 再教这个内容时,我应该在引导学生发现问题时,真正让学生自主阅读,自主发现,培养学生探究发现新知的本领。
例(4)甲乙二人分别从A B两地同时相向而行,甲的速 度是乙的1.5倍,二人相遇后继续行进,甲到B地,乙 到A地后立即返回,已知二人第四次相遇的地点距离 第三次相遇的地点20千米,那么A B两地相距多少千 米?
解:此题这样理解 甲乙在相同时间内的路程比=速度比=1.5:1=3:2 那么第一次相遇是在距离A地3/5处 第二次相遇甲乙一共行了3个全程 第三次相遇甲乙一共行了5个全程 第四次相遇甲乙一共行了7个全程 以此类推 第三次相遇时,甲行了3/5×5=3,此时甲在B地 第四次相遇时,甲行了3/5×7=21/5,此时距离B地1-(21/5-3-1)
例(2)甲乙两人分别从A、B两地同时出发相向而行, 两人第一次在E处相遇,相遇后,甲继续向B地行走, 乙则休息了14分钟,再继续向A地行走,甲和乙分别 到达B和A后立即折返,仍在E处第二次相遇。已知甲 每分钟走60米,乙每分钟走80米,则A和B两地相距多 少米?
解:把全程看作单位1 甲乙的速度比=60:80=3:4 E点的位置距离A是全程的3/7 二次相遇一共是3个全程 乙休息的14分钟,甲走了60×14=840米 乙在第一次相遇之后,走的路程是3/7×2=6/7 那么甲走的路程是6/7×3/4=9/14 实际甲走了4/7×2=8/7 那么乙休息的时候甲走了8/7-9/14=1/2 那么全程=840÷1/2=1680米
行程问题从运动形式上可以分为七大类:
第一、一般直线上的相遇、追及问题 第二、火车过桥问题 第三、流水行船问题 第四、环形运动与时钟问题 第五、多个对象间的行程问题 第六、变速运动 第七、多次往返类型的相遇、追及
从题目的解题方法上又可以分为五大类:
第一、利用设数法、设份数处理
第二、利用速度变化情况进行分段处理
例(3)小明和小亮分别从甲乙两地同时出发相向而行, 小明和小亮的速度比是5/6,途中两人相遇,相遇后 继续前进,各自到达对方后;立即返回原出发点。返 回时小亮速度不变,小明加速20%,已知两次相遇点 相距40千米。甲乙两地相距多少千米?
解:小明和小亮的路程比=速度比=5:6 第一次相遇距离甲地5/11 小明到达乙地,行了全程的6/11 那么小亮行了全程的6/11×6/5=36/55 此时小亮距离甲地36/55-5/11=1/5 两人距离1-1/5=4/5 此时速度比=5×(1+20%):6=1:1 那么第二次相遇地点距离甲地1/5+4/5×1/2=1/5+2/5=3/5 所以甲乙距离=40÷(3/5-5/11)=4。下面只要求出第三次相遇点距离B地
多分少钟千,米这即时可甲。行第了6三0次×12相4 遇=两60人00共/7行米了,3距个离全B程地,还1有00100×030÷-6(00105/07+=61046)2 =1米742。
7
7
小朋友们,通过这节课程的学习,我们明白 了在生活中我们要学会总结规律,灵活处事!比 如说当我们第一次做某件事情的时候,我们在做 的同时要善于发现规律,从而我们在做第二次的 时候就可以运用第一次总结的规律,这样我们做 事就会事半功倍!
=4/5 所以AB距离=20÷(4/5)=25千米
例(5)甲、乙两人在一条长30米的直路上来回跑步, 甲的速度是每秒1米,乙的速度是每秒0.6米.如果他 们同时分别从直路的两端出发,当他们跑了10分钟后, 共相遇几次?(包括追及产生的相遇)
柳卡图:
分析:甲行一个全程用30÷1=30秒,乙行一个全程用 30÷0.6=50秒,然后画出柳卡图,从图上看出,甲乙分别 从两端出发,150秒后又回到两端的位置,所以可以看成 150秒一个周期,甲乙在1个周期里共相遇了5次, 10×60÷150=4个周期,共相遇了4×5=20次。
第三、利用和差倍分以及比例关系,将行程过程进 行对比分析
第四、利用方程方法进行求解
第五、利用柳卡图来分析
注意:以上五种方法都是要结合画图去分析的!
本节课程回归到生活中的主题:
总结规律,灵活处事!
例(1)甲乙两车同时从A、B两地相向而行,在距 B地54千米处相遇,它们各自到达对方车站后立即 返回,在距A地42千米处相遇。请问A、B两地相 距多少千米?