alloy_718_中文版
718 Cayman 配置说明书.pdf_1702076905.6769903

718 CaymanYour dream becomes realityPorsche Code: PRK3Z7V4Visit the following link to view your conpguration: htt/s:..conpgurator-/orsche-com./orscheOcode.PRK3Z7V4718 CaymanExterior Colors & WheelsCategory W/tion W/tion code Price Exterior Colour0hite Q9Wheels18Oinch Cayman wheels36SEtandard qIui/mentInterior Colors & SeatsCategory W/tion W/tion code Price Interior Colours & Materials Etandard Tnterior . RaceOxeB in Alack D( ArraySeats E/orts seats ,twoOway) electric2PQ8Etandard qIui/mentExterior OptionsCategory W/tion W/tion code Price Powertrain & Performance SOs/eed manual transmission with dualOmass •ywheel48Q Etandard qIui/ment718 CaymanStandard Equipment Wheels518Oinch Cayman wheelsPainted Wheels50heels /ainted in Eilver colourWheel Accessories5xyre Pressure Xonitoring Eystem ,xPX2Seats5E/orts seats ,twoOway) electric2Powertrain & Performance5SOs/eed manual transmission with dualOmass •ywheel5Power steering5L4Olitre fuel tankLights & Vision5AiObenon main headlights with integrated Uq( daytime running lightsInterior design5Roof lining in faNricComfort & everyday usability5Dir conditioningInfotainment5Porsche Communication Xanagement ,PCX2 including moNile /hone /re/aration and audio interfaces5Eound Package Plus5³EA /orts718 CaymanTechnical Data Power unitFumNer of cylinders4Aore61-Q mmEtroke7S-4 mm(is/lacement1)688 cmH Power ,k02MMQ k0Power ,PE23QQ PERPX /oint maBimum /ower S)LQQ 1.min XaBimum engine s/eed7)LQQ 1.minXaB- torIue38Q FmRPX range maBimum torIue M)1LQ O 4)LQQ 1.min XaB- out/ut /er liter ,k0.l2111-QQ k0.lXaB- out/ut /er liter ,PE.l21LQ-QQ PE.lConsumption/Emissions1FWB emissions3Q-7 mg.kmConsumption/Emissions WLTP2₂uel consum/tion urNan14-S O 14-1 l.1QQ km ₂uel consum/tion suNurN6-S O 6-3 l.1QQ km ₂uel consum/tion eBtra urNan8-4 O 8-1 l.1QQ km ₂uel consum/tion highway6-Q O 8-7 l.1QQ km ₂uel consum/tion comNined6-7 O 6-3 l.1QQ km CWMOemissions low ,0UxP233Q O 3M1 g.km CWMOemissions medium ,0UxP2M17 O M11 g.km718 Cayman CWMOemissions high ,0UxP2161 O 183 g.km CWMOemissions eBtra high ,0UxP2MQ4 O 167 g.km CWMOemissions comNined ,0UxP2MMQ O M1M g.kmSound level (type approved based on UN-R 51)Eound level of stationary vehicle6Q dA,D2 Eound level of stationary vehicle ,r/m23)7LQ 1.min Eound level of /assing vehicle S6 dA,D2Consumption/Emissions (ECE)₂uel consum/tion urNan1M-4 l.1QQ km ₂uel consum/tion eBtraOurNan7-M l.1QQ km ₂uel consum/tion comNined6-1 l.1QQ km CWM emissions comNined MQ8 g.kmBody3Uength4)376 mm0idth1)8Q1 mm0idth ,with mirrors21)664 mm Yeight1)M6L mm0heelNase M)47L mm³nladen weight ,(TF21)33L kg³nladen weight ,q³211)41Q kg PermissiNle gross weight1)SLL kg XaBimum load3MQ kgCapacities718 CaymanUuggage com/artment volume) front1LQ lW/en luggage com/artment volume ,Nehind front seats2184 lUargest luggage com/artment volume ,Nehind front seats) u/ to roof2M7M l₂uel tank L4 lPerformancexo/ s/eed M7L km.hDcceleration Q O SQ m/h4-6 sDcceleration Q O 1QQ km.h L-1 sDcceleration Q O 1SQ km.h11-3 sDcceleration Q O MQQ km.h18-3 s₂leBiNility ,8QO1MQ km.h2 ,LQO7L m/h2 in Lth gear L-S s1.4 mile13-4 s1-(ata determined in accordance with the measurement method reIuired Ny law- Eince 1 Ee/temNer MQ17 certain new cars have Neen ty/e a//roved in accordance with the 0orldwide Yarmonised Uight Vehicles xest Procedure ,0UxP2) a more realistic test /rocedure to measure fuel.electricity consum/tion and CW emissions- Ds of 1 Ee/temNer MQ18 the 0UxP re/laced the Few quro/ean (riving Cycle ,Fq(C2- (ue to the more realistic test conditions) the fuel.electricity consum/tion and CW emission values determined in accordance with the 0UxP will) in many cases) Ne higher than those determined in accordance with the Fq(C- xhis may lead to corres/onding changes in vehicle taBation from 1 Ee/temNer MQ18- ou can pnd more information on the di erence Netween 0UxP and Fq(C at ww-/orsche-com.wlt/ Currently) we are still oNliged to /rovide the Fq(C values) regardless of the ty/e a//roval /rocess used- xhe additional re/orting of the 0UxP values is voluntary until their oNligatory use- Ds far as new cars ,which are ty/e a//roved in accordance with the 0UxP2 are concerned) the Fq(C values will) therefore) Ne derived from the 0UxP values during the transition /eriod- xo the eBtent that Fq(C values are given as ranges) these do not relate to a single) individual car and do not constitute /art of the o er- xhey are intended solely as a means of com/aring di erent ty/es of vehicle- qBtra features and accessories attachments) tyre formats) etc-2 can change relevant vehicle /arameters such as weight) rolling resistance and aerodynamics and) in addition to weather and tra c conditions) as well as individual handling) can a ect the fuel.electricity consum/tion) CW emissions and /erformance values of a car-M-xhese values corres/ond to your current conpguration- Tf you add or remove eIui/ment this may change the values currently shown-3-Aody3-10eight is calculated in accordance with the relevant qC (irectives and is valid for vehicles with standard s/ecipcation only- W/tional eIui/ment increases this pgure- xhe pgure given includes 7Lkg for the driver718 Cayman718 Cayman718 Cayman。
IN718合金多步锻造过程中微观组织演变数值模拟

631
仍处于亚稳定状态. 因此 , 再结晶完成 ( 即 X d 或 X st > 0. 95) 后 , 要发生进一步的晶粒长大来减小单位体 积内晶界面积, 以获得更稳定的组织. 晶粒长大后晶 粒尺寸数学方程为 Dg =
2 16 390 753 d + 1. 58 @ 10 t ex p RT 1/ 2
第 41 卷 第 4 期 2007 年 4 月
上 海 交 通 大 学 学 报
JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT Y
V ol. 41 N o. 4 A pr. 2007
文章编号: 1006 - 2467( 2007) 04 - 0629 - 05
1. 9
应用有限元法研究了变形参数对钛合金等温锻造过 程中晶粒尺寸的影响 . 目前, 组织模拟已经成为国内 外学者研究的热点 , 而国内对大锻件多步锻造过程 微观组织演变的研究未见报道 . 本文采用塑性变形 - 传热 - 微观组织演变模型 , 对 IN 718 合金多步 锻造过程的微观组织演变 进行 数值模拟 , 研究始锻温度、 压下量和空冷时间对其微 观组织演变的影响规律, 为微观组织预测和制定合 理的控制大锻件微观组织工艺提供依据 .
[ 8] 5
H
Q Q QFDv dS + Q L D$v d S
H S
F
¸ R DEdV + K V EV D E V dV S f
( 2)
变形间歇期间或热变形后金属仍处于较高温度 中 , 在锻件变形没有达到 E c( E < E c ) 的区域, 发生静 态再结晶, 其动力学方程为 : X s t ( t) = 1 - exp - 0. 693 31 694 D st = 628 exp - RT 式中: X st 为静态再结晶体积百分数 ; t
欧洲螺栓标准(EN bolt standards)

EN1515-2-2001
法兰和其连接件螺栓连接第2部分:PN钢法兰用螺栓材料的分类
Flangesandtheirjoints-Bolting-Part2:Classificationofboltmaterialsforsteelflanges,PNdesignated
Aerospaceseries-Bolts,MJthreads,inheatresistingnickelbasealloyNI-PH2601(Inconel718)-
Classification:1275
MPa(atambienttemperature)/650C-Technicalspecification
Fasteners;surface
discontinuities;part3:bolts,srewsandstudsforspecial
requirements(ISO
6157-3:1988)
EN2859-1995
航空航天系列镀镉合金钢制标准六角头紧公差普通柄短螺纹螺栓等级:1100MPa(环境温度)/235C
Aerospaceseries-Bolts,normal
hexagonalhead,closetolerancenormal
shank,shortthread,inalloysteel,cadmiumplated-Classification:1100MPa(atambienttemperature)/235C
欧洲螺栓标准
ANSI
"T
编号
中文名称
英文名称
EN13411-5-2003
MHR封隔器 常规完井管柱标准化操作程序

塔中常规完井管柱工艺规程当井筒情况、地质情况同时具备以下条件时,优先考虑此种完井方式:1、直井、大斜度井或水平井均可;2、无漏失、或漏失量很小;3、采油四通已安装;4、要下长期完井管柱;5、管柱回插部分可以回收,便于后期修井作业。
在同时满足以上前4个条件的情况下进行完井试油及酸压施工都优先考虑此种管柱组合。
一、管柱操作规程1、管柱配置:采用7〞MHR液压永久式封隔器单趟完井管柱2、工具系统功能2.1井下安全阀–作为紧急情况下的安全保障,可实现井口失控状态下的井下关井,作为井控安全的最后保障工具。
2.2棘齿锁定密封、完井封隔器系统–满足一趟管柱锁定、密封,油套隔离,如需修井则可以从棘齿锁定密封处脱手起出上部管柱。
3、井下工具工作原理及技术参数3.1采用NE™ 型油管携带可回收式井下安全阀哈里伯顿公司井下安全阀为全金属密封,自平衡安全阀。
金属材质INC718,具有超高抗腐蚀性,保证了在H2S 、CO2腐蚀环境下正常工作。
安全阀设计简单可靠,现场操作方便。
并提供配套的安全阀附件。
这种井下安全阀地面液压控制开关,压力通过控制管线传递,实现远端控制。
NE油管回收井下安全阀技术参数●阀的类型:非弹性密封●尺寸:3-1/2”●锁定类型:X●最大外径:5.3”(134.62mm)●最小内径:2.813”(71.45mm)●材质:NICKEL ALLOY 718●服务环境:H2S/CO2●螺纹连接:3 1/2-9.20 FOX-K BOX-PIN●压力等级:10000 PSI(68.94MPa)●温度等级:20 TO 300 Deg. F (-7 TO 149 DEG C)●最大开启压力:1900 pounds/sq. inch (13100 KPA)●最小关闭压力:600 pounds/sq. inch (4137 KPA)3.2采用哈里伯顿MHR液压永久封隔器封隔器应用于大斜度生产和注水井,单趟完井,特别适合于海上和施工环境较差的完井。
Inconel-Alloy-718-材料介绍(英文版)

Introduction•Nickel Chromium alloy•Available in a variety of conditions•High strength•Excellent corrosion resistance•Combination of excellent mechanical properties over a wide range of temperatures •Outstanding weldability with resistance to post-weld cracking•Excellent creep-rupture strength at temperatures up to 700◦C(1300◦F)•Commonly referred to as Inconel® 718Alloy 718 is a high strength, corrosion resistant nickel chromium alloy, initially developed for the aerospace industry and still considered the material of choice for the majority of aircraft engine components. Its excellent strength and corrosion resistance have been recognised by the oil industry and it is now widely used in this field.Typical ApplicationsTypical applications in the oil industry are gate valves, choke stems, fasteners, tubing hangers and fire safe valves. In the aerospace and power generation industries this grade is also used for gas turbines, aircraft engines, fasteners and other high strength applications.Stock RangeWe stock a comprehensive range of sizes between 12.7mm and 284mm diameter round bar but can convert this to enable us to supply flat, rings, blocks and slabs.Material is stocked in three heat treatment conditions:-•Solution annealed and aged in accordance with API 6A718•Annealed in accordance with AMS 5662•Annealed and aged in accordance with AMS 5663Primarily manufactured in: Europe, USIndustry Specifications•ASTM B637•UNS NO7718•API 6A 718•AMS 5662/5663•NACE MR0175/ISO15156Material may also be supplied to Customer specifications, subject to enquiryMelting Practices•VIM/ESR or VAR•EF/AOD or VOD/VAR•Triple MeltedChemical AnalysisAlloy 718 is hardened by the precipitation of secondary nickel- (aluminium, titanium, niobium) phases giving the alloy a combination of high strength and good corrosion resistance.Chemical Composition of Alloy 718 for Aerospace:MachinabilityAlloy 718 can be readily machined but due to its high strength and work hardening characteristics, tooling, operating speeds and coolants should be considered. Machining in the age hardened condition improves the surface finish and chip action, whereas machinability and tool life are improved when machining material in the solution annealed condition.Material ConditionsThere are generally two heat treatments used for Alloy 718:•Solution annealed between 1021 –1038°C (1870°F - 1900°F) followed by rapid cooling and precipitation hardened around 778°C (1432°F)•Solution annealed between 941 - 1010°C (1726°F - 1850°F) followed by rapid cooling and precipitation hardened at 718°C (1324°F) furnace cooled to 621°C (1150°F) for a further ageThese provide either a combination of high strength, high fatigue and rupture life for use in aerospace applications (often referred to as High strength 718) or impact strength and low temperature notch tensile strength and lower hardness meeting the requirements of NACE MR-01- 75/ISO15156 for use in oil field applications (often referred to as API 6A 718). However the high strength version is being seen increasingly in the oil field applications due to increasingly demanding environments.Here is a summary of the differences:Corrosion ResistanceAlloy 718 has excellent corrosion resistance in a range of environments including sea water, HS2, CO2, elemental sulphur and chloride ions over various temperatures. It is resistant to sulphide stress cracking and is capable of passing the sulphide stress corrosion test in accordance with NACE TM 0177 Method C solution A.Typical results:Critical Pitting Temperature 0-5◦C (32-41◦F) ASTM G48 Method CCrevice Corrosion Temperature 40-45◦C(104-113◦F)ASTM G48 Method DMechanical PropertiesPhysical Properties Typical properties at room temperature。
水射流辅助纳秒激光加工In718高温合金微孔的实验研究

第41卷第6期Vol.41No.62020青岛理工大学学报JournalofQingdaoUniversityofTechnology水射流辅助纳秒激光加工犐狀718高温合金微孔的实验研究胡 坤,孙树峰 ,王 茜,张丰云,曹 颖(青岛理工大学机械与汽车工程学院,青岛266525)摘 要:通过纳秒激光分别在空气和旁轴水射流辅助条件下对In718高温合金进行单脉冲叩击式打孔,研究了激光功率和加工次数对孔径和孔深的影响规律,总结了水射流辅助激光加工微孔的优点.结果表明:与在空气中相比,水射流辅助激光打孔时,水流良好的冷却作用可以减少激光热量在加工区域的累积;水流的冲击可以加速熔融物质从孔内排出,并能及时带离加工区域,从而提高激光打孔的去除效率,获得孔深更大、孔口表面更加光滑的微孔.为进一步研究旁轴水射流辅助激光加工微孔的去除机理奠定了基础.关键词:纳秒激光;微孔;水射流;In718高温合金中图分类号:TN249 文献标志码:A 文章编号:1673 4602(2020)06 0061 05收稿日期:2020 08 07基金项目:国家自然科学基金面上项目(51775289);山东省自然科学基金资助项目(ZR2018ZB0524);山东省重点研发计划(2019GGX104097;2019GGX104106)作者简介:胡 坤(1997 ),男,山东曹县人.硕士,研究方向为激光精密绿色智能制造技术.E mail:1070281294@qq.com. 通信作者(犆狅狉狉犲狊狆狅狀犱犻狀犵犪狌狋犺狅狉):孙树峰,男,博士,教授.E mail:shufeng2001@163.com.犈狓狆犲狉犻犿犲狀狋犪犾狊狋狌犱狔狅狀狑犪狋犲狉犼犲狋犪狊狊犻狊狋犲犱狀犪狀狅狊犲犮狅狀犱犾犪狊犲狉狆狉狅犮犲狊狊犻狀犵狅犳犿犻犮狉狅 犺狅犾犲狊犻狀犐狀718狊狌狆犲狉犪犾犾狅狔HUKun,SUNShu feng ,WANGXi,ZHANGFeng yun,CAOYing(SchoolofMechanicalandAutomotiveEngineering,QingdaoUniversityofTechnology,Qingdao266525,China)犃犫狊狋狉犪犮狋:NanosecondlaserisusedindrillingofIn718superalloywithsinglepulsepercus sionundertheconditionsofairandparaxialwaterjetrespectively.Theeffectsoflaserpowerandprocessingtimesonthediameteranddepthofmicro holesarestudied,andtheadvanta gesofparaxialwaterjetassistedlaserprocessingofmicro holesaresummarized.Theresultsshowthatcomparedwithlaserdrillingholesintheair,waterjetassistedlaserdrillinghasagoodcoolingeffect,whichcanreducetheaccumulationofheatintheprocessingarea.Theimpactofwaterflowcanacceleratethedischargeofmoltenmaterialfromthehole,andcantimelytakethemawayfromtheprocessingarea,soastoimprovetheremovalrateoflaserdrilling,andobtaintheholeswithlargerholedepthandsmoothersurface.Theresultslayafoundationforfurtherstudyontheremovalmechanismofparaxialwaterjetassistedlaserdrillingofmicro holesmachining.犓犲狔狑狅狉犱狊:nanosecondlaser;micro holes;waterjet;In718superalloy激光加工作为一种现代加工方式,具有加工精度高、效率高、热影响区小、材料适应性强等优点,广泛应用于微孔加工领域.激光加工微孔的过程中,材料迅速熔化和冷却,不可避免会产生重铸层和微裂纹等青岛理工大学学报第41卷缺陷,影响孔的质量.单一激光很难实现高质量微孔加工,很多学者开始采用其他方法与激光进行复合加工,例如:液体辅助激光打孔[1]、激光电化学复合打孔[2]、超声波辅助激光打孔[3]等多种复合加工方法,液体辅助激光打孔因其独特的优势备受关注.液体辅助激光加工的方法,通过液体的冷却作用减小激光加工时产生的热影响,减少重铸层,从而能够提高激光的加工质量.常用的辅助液体有水、化学溶液、酒精等.与其他液体相比,水是一种廉价且清洁的能源,而且对热量有较好的吸收能力,是理想的辅助液体.当激光在穿过水层到达加工表面的过程中,不可避免地会产生一定的能量损失,KRUUSING[4]研究了不同厚度的水层对激光能量的吸收特性,发现水层厚度越薄,损失的能量越小.JIA等[5]对纳秒激光在空气、低压水射流辅助和不同厚度静态水层下刻蚀单晶硅进行了研究,分析了不同刻蚀条件对槽深、槽宽、热影响区(HAZ)和微槽内壁形貌的影响,发现在薄水层和水射流中烧蚀比在空气中烧蚀产生更小的热影响区;而采用静态薄水层辅助激光加工时,加工区域容易产生局部沸腾,生成的气泡会对激光产生干涉,影响加工效果.为了减小水层对激光的干涉,TANGWARODOMNUKUN等[6]提出了旁轴水射流辅助激光加工的方法,水射流冲击到材料表面形成流动的薄水层,该方法通过激光软化材料,水射流冲击加速去除材料,从而提高激光的加工效率并且减小了热影响区和重铸层的产生.WANG等[7]采用旁轴水流辅助激光加工氮化硅陶瓷,发现激光功率和射流压力对槽深有显著的影响.FENG等[8]建立了水射流辅助激光加工的数值模型,为实验加工提供了理论指导.国内外不少专家学者对旁轴水射流辅助激光加工刻蚀微槽做了大量的研究,但是在微孔加工方面的研究较少.本文对纳秒激光在空气中和旁轴水射流辅助条件下加工In718高温合金微孔进行了研究.采用单脉冲叩击打孔方式,对比研究了空气和旁轴水射流辅助条件下激光功率和加工次数对孔的直径以及深度的影响,分析了旁轴水射流辅助激光加工微孔作用机理.通过对比分析加工出的微孔形貌和质量,验证了旁轴水射流辅助激光加工微孔的特点和优势.1 实验设计及装置本实验使用输出波长为1064nm的IPG光纤激光器,脉宽为100ns,最大输出功率为200W,脉冲频率在20~2000kHz可调.通过调整激光频率和出光时间来实现单脉冲输出,设置激光频率为200kHz,出光时间为0.005ms,实现每次出光为一个脉冲,改变加工次数,实现不同加工次数的单脉冲打孔实验.图1 旁轴水射流辅助激光加工原理 旁轴水射流辅助激光加工原理如图1所示,激光器输出激光经过光闸传输到扩束镜,扩束后的光束通过反射镜进入扫描振镜系统,然后经过Ftheta透镜聚焦(焦距犳=260mm)到加工材料表面,在聚焦平面处激光光斑直径约为70μm.实验选用材料为In718高温合金,尺寸为20mm×20mm×600μm,将工件放置在定制的亚克力容器中,采用自行设计的夹具将工件固定,如图1所示,水流经喷嘴(内径2mm)从一侧流进加工区域,在加工区域形成流动薄水层,设定喷嘴流量为30L/h,喷嘴与工件之间夹角为45°,高度为2cm.为了避免水中杂质对激光产生吸收和散射等影响,采用去离子水.射流到达工件后水膜厚度与偏移距离的关系如式(1)所示[6]:26第6期 胡 坤,等:水射流辅助纳秒激光加工In718高温合金微孔的实验研究犺w=犱n2sinθj-犱0[]tanθj; -犱n2sinθj≤犱0≤犱n2sinθj-0.1犱ntanθj0.1犱n; 犱0≥犱n2sinθj-0.1犱ntanθj烅烄烆(1)式中:犺w为水膜厚度;犱0为打孔位置与喷嘴之间的距离;犱n为输出喷液束直径;θj为喷嘴与工件之间夹角.当射流到达工件表面后形成射流冲击区域,该区域水膜流速大,会对激光产生较大的干涉.为了减少水膜对激光的干涉,本研究保持打孔位置与喷嘴之间的距离为1.5mm,此时水膜流速平缓,厚度为0.1犱n即0.2mm.当激光穿过水膜到达靶材后产生的能量损失极小,同时流动的水膜一方面能够减小激光加工过程中产生的热累积,同时还能带走加工过程中产生的熔渣,保证了微孔的质量.在实验完成后,工件经超声清洗和烘干后,使用最大放大倍数为24000倍的激光共聚焦显微镜(基恩士VK H2J100)测量微孔的三维形貌,每次实验对每个微孔的几何特征测量3次,取平均值作为最后读数,进而得到孔的深度、孔口直径和孔的轮廓等数据.2 结果讨论分析2.1 激光功率对孔径和孔深的影响激光功率是激光加工的一个重要参数.在纳秒激光作用下,材料吸收激光能量,温度升高,产生熔融和气化,熔融物质从加工区域溅射出来形成微孔.图2和图3为在加工次数为100次、激光功率20~200W时,在空气和水射流辅助条件下激光加工出的微孔孔径和孔深变化曲线.从图2可以看出,随着激光功率的增加,在2种条件下加工的孔径都呈现先增大,当功率大于160W后趋于稳定的变化趋势,并且都大于光斑直径.因为激光加工区域的面积取决于高斯脉冲分布达到烧蚀阈值的区域,随着功率的增大,光斑边缘处的能量也不断达到阈值,使得实际加工产生的孔径大于光斑的直径[9].而随着功率的进一步增大,有效烧蚀面积又受理论光斑尺寸的限制,边缘未达到烧蚀阈值区域的能量增加值会变得越来越小,孔径增长趋势变得缓慢,当激光功率达到160W后,孔口直径将不会再增加.同样参数下,水射流辅助激光加工出的孔径小于在空气中,这是由于水的冷却作用吸收了一部分能量,减少了激光能量在加工区域累积和不均匀横向传递.从图3可以看出,在空气中激光加工微孔深度随着功率的增加不断增大,当功率大于140W后出现减小的趋势.这是因为低功率下,激光能量密度低,吸收激光能量产生熔化的材料体积小,熔融物依靠激光与材料作用时产生的反冲压力溅射出来;随着功率增大,更多体积的材料得到去除,深度不断增加,当功率36青岛理工大学学报第41卷增大到140W后,熔融物质的体积过大,依靠反冲压力不能完全地从孔内喷射出来,部分回流进孔内重新冷却堆积,使得孔的深度减小.而在水射流辅助激光打孔时,流动的水流将熔融物质及时带走,使激光可以更好地向孔内部传递,加速了材料的去除;加工过程中孔内温度升高,会产生空泡,空泡溃灭瞬间产生的高速射流射向壁面,同样会加速材料的去除和熔融物质从孔内的排出,孔深随着功率增大不断增加,功率达到180W后实现了通孔的加工.与空气中直接进行打孔相比,旁轴水射流辅助激光打孔方式的材料去除效率更高,相同功率条件下能加工出更深的孔.2.2 加工次数对孔径和孔深的影响除了研究激光功率对孔径和孔深的影响,还研究了加工次数对孔径和孔深的影响.比较了当激光功率为100W、加工次数分别为100,200,300,400,500次时孔的直径和深度变化,结果如图4和图5所示.从图4、图5中可以看出,当激光在空气中打孔时,孔径随加工次数增加先增大,当加工次数大于300次后基本趋于稳定,孔深随加工次数增加不断增大.这是因为在功率为100W时,熔融材料依靠激光作用过程中产生的反冲压力能够较好地从孔内溅射出来,随着加工次数的增加深度呈现直线增加的趋势,而随着加工次数的不断增加,激光作用区域能量不断累积,使更大区域材料达到烧蚀阈值,从而导致孔径不断增大.随着微孔深度的进一步增大,激光可以更好地向孔内传输,更多的能量作用于孔底,减少了孔口的热累积,所以当加工次数大于300次后,孔径的增长趋势变得平缓.旁轴水射流辅助激光加工微孔时,随着加工次数的增加,孔径无明显变化,孔深变化趋势与空气中相同.这主要是因为水射流辅助激光加工时在材料表面形成一层薄薄的流动水膜,水的冷却作用削弱激光在孔口产生的热量累积,减少热量的横向传递,孔口直径无明显增大.相对于空气中,较小区域材料达到烧蚀阈值,使得孔口直径小于在空气中打孔的孔口直径.同时水流的冲击作用以及孔内空泡溃灭的冲击加速了材料的去除,因此相同加工次数下水射流辅助激光加工出的孔深度要大于空气中激光直接进行打孔的深度.2.3 水射流辅助激光加工对微孔表面形貌的影响图6为激光功率100W、加工次数100次时,在空气和水射流辅助条件下,激光加工出的微孔形貌特征.图6(a)为在空气中所加工孔的孔口形貌,可以明显看到在孔口周边堆积大量喷溅出的重凝物,形成了“火山口”.图6(c)为旁轴水射流辅助激光打孔的孔口形貌,与在空气中相比,孔口附近无大体积的堆积物,仅存在较小体积的重凝物,说明流动的水流可以将大部分重凝物带离加工区域,而小体积熔融物质从孔内溅射出的速度很快,迅速到达孔口冷却堆积;在孔口右端存在一尖角热影响区域,产生这一现象的主要原因是孔内较大体积熔融物喷溅到该区域,高温熔融物使得该区域受到热影响.图6(b)为在空气和水射流辅助条件下,激光加工出的孔横截面轮廓,可以看出,在两种环境下,加工出的孔底部都呈现锥形,这与激光能量呈高斯分布有关.同样的加工参数下,水射流辅助激光能够加工出更深的孔,而且孔的内壁形貌也更好.46第6期 胡 坤,等:水射流辅助纳秒激光加工In718高温合金微孔的实验研究图6 微孔的形貌特征3 结论本文利用纳秒激光分别在空气和水射流辅助条件下对In718高温合金进行单脉冲叩击式打孔.研究了激光功率和加工次数对孔径和孔深的影响规律.实验结果表明,在旁轴水射流辅助激光条件下打孔时,水流良好的冷却作用,减少了热量在加工区域的累积,加工出的孔径要小于在空气中直接进行打孔;水流的冲击效果改善了空气中打孔过程存在的熔融物溅射不彻底对孔造成阻塞的现象,能够加工出更深的孔.同时水流能够将熔融物及时地带离加工区域,避免了在孔口周围的重凝堆积,使孔口表面更加光滑.本文对水射流辅助激光加工过程水流的作用效果进行了阐述,为进一步研究水射流辅助激光加工过程中材料的去除机理奠定了基础.参考文献(犚犲犳犲狉犲狀犮犲狊):[1] ZHANGQiang,SUNShu feng,ZHANGFeng yun,etal.AstudyonfilmholedrillingofIN718superalloyvialasermachiningcom binedwithhightemperaturechemicaletching[J].TheInternationalJournalofAdvancedManufacturingTechnology,2020,106(1/2):155 162.[2] 张朝阳,秦昌亮,冯钦玉,等.脉冲激光电化学复合的定域性研究及三维微细刻蚀加工[J].机械工程学报,2014,50(23):200 206.ZHANGZhao yang,QINChang liang,FENGQin yu,etal.Investigationonlocalisationandthree dimensionalmicro etchingbasedonpulselaserelectrochemicalmachining[J].JournalofMechanicalEngineering,2014,50(23):200 206.(inChinese)[3] 刘斌,戴玉堂,殷广林,等.超声波辅助飞秒激光加工光纤材料的工艺探索[J].中国激光,2016,43(3):60 65.LIUBin,DAIYu tang,YINGuang lin,etal.Explorationonultrasonicvibrationaidedfemtosecondlasermachiningprocessoffiberopticmaterials[J].ChineseJournalofLasers,2016,43(3):60 65.(inChinese)[4] KRUUSINGA.Underwaterandwater assistedlaserprocessing Part1:Generalfeatures,steamcleaningandshockprocessing[J].OpticsandLasersinEngineering,2004,41(2):307 327.[5] JIAZhou,HUANGYu xing,ZHAOYao wu,etal.Studyonwater assistedlaserablationmechanismbasedonwaterlayercharacteris tics[J].OpticsCommunications,2019,450:112 121.[6] TANGWARODOMNUKUNV,WANGJ,HUANGCZ,etal.Aninvestigationofhybridlaser waterjetablationofsiliconsubstrates[J].InternationalJournalofMachineToolsandManufacture,2012,56:39 49.[7] WANGLiang,HUANGChuan zhen,WANGJun,etal.Anexperimentalinvestigationonlaserassistedwaterjetmicro millingofsiliconnitrideceramics[J].CeramicsInternational,2018,44(5):5636 5645.[8] FENGShao chuan,HUANGChuan zhen,WANGJun,etal.Ananalyticalmodelforthepredictionoftemperaturedistributionandevo lutioninhybridlaser waterjetmicro machining[J].PrecisionEngineering,2017,47:33 45.[9] 夏博.飞秒激光高质量高深径比微孔加工机理及其在线观测[D].北京:北京理工大学,2016.XIABo.Mechanismandonlineobservationofhigh aspect ratio,high qualitymicroholesdrillingwithfemtosecondlaser[D].Beijing:BeijingInstituteofTechnology,2016.(inChinese)(责任编辑 赵金环)56。
Alloy–StainlessSteel-17-7PH:合金–不锈钢17-7ph

20pcs
113
Alloy – Stainless Steel - 17-7PH
Goodfellow Corporation 305 High Tech Drive, Oakdale, PA 15071-3911. USA Tel: 1-800-821-2870 : Fax 1-800-283-2020
<25 % 61-115 J m-1 214 GPa 1020-1550 MPa
FE280290
Xn
FE280300
Xn
Thickness . . . . . . . . . . . . . . 0.05mm Condition. . . . . . . . . . . . . . . Precipitation hardenable
Stainless Steel - 17-7PH Fe/Cr17/Ni 7
Foil
FE280320
Xn
FE280321
Xn
FE280350
Xn
FE280360
Xn
Thickness . . . . . . . . . . . . . . 0.125mm Condition. . . . . . . . . . . . . . . Precipitation hardenable
Thickness . . . . . . . . . . . . . . 0.635mm Temper . . . . . . . . . . . . . . . . Annealed - Condition A
Coil
Web Code 519-492-444 743-688-393 186-616-190 406-999-418 982-926-625
基尔斯特 6021b 型号 高温压力传感器 使用手册说明书

Page 1/7PressureHigh temperature pressure sensorfor gas turbine- and thermoacoustics applications6021B _003-590e -10.22© 2022 Kistler Group, Eulachstrasse 22, 8408 Winterthur, SwitzerlandT . Kistler Group products are This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting Type 6021B...Differential, acceleration compensated, piezoelectric pressure sensor for dynamic applications at highest temperatures up to 1 000°C.• Operating temperature –55 … 700°C• Short time operating temperature –55 … 1 000°C • Internally case isolated • Differential charge output • Highest reliability • Not pyroelectric• Acceleration compensated • ATEX/IECEx certificated • CE conformDescriptionCore of the sensor is the single crystal PiezoStar measuring element, which has a temperature capability up to 1 000°C and is not pyroelectric. The sensor is designed for maximum longevity.To reach highest resolution in harsh environment, the sensor is internally case isolated featuring two-wire technology with differential signal output. The integrated, mineral insulated hardline cable is available with different terminations.Ex-approval (ATEX, IECEx) allows operation in hazardous areas.ApplicationMain applications are protection of equipment and condition monitoring of gas turbines. In addition, the sensor is used for the development of combustion chambers of gas turbines.General purpose and thermoacoustics applications, which re-quire• Temperature capability up to 1 000°C• Measurements of smallest pressure fluctuations • Explosive and/or EMC loaded environments in the acoustic rangeFurther applications• Pressure pulsations on compressors, pumps, turbines, pro-pellers, etc.• Dynamic pressure measurements with high thermal shocks as for example gas and dust explosions (Ex testing), pyro-technical devices, closed vessel testing, energetic material testing, sloshing or small dynamic pressures as for example sound pressure, etc.IECExTechnical dataReference temperature for performance specifications is 25°C unless otherwise noted. For more information, see technical brochure 960-201e.Electric Power none Output signal chargeSignal mode 2-wire, differential Signal conditioningdiff. charge amplifierInsulation resistance pin – pin @ 25°C Ω≥10 11@ 700°CΩ≥10 5Insulation resistance pin – case @ 25°C Ω≥10 10@ 700°CΩ≥10 5Capacitance pin – pin pF ≤20 + 60 pF/m cable length Capacitance pin – casepF≤8 + 175 pF/m cable lengthFig. 1: Diagram, 2-wire, internally case isolatedSensor +Sensor –RoHSPage 2/76021B _003-590e -10.22© 2022 Kistler Group, Eulachstrasse 22, 8408 Winterthur, SwitzerlandT el.+41522241111,****************,. Kistler Group products are This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting Technical data (continuation)OperationPressure measuring range bar/psi 0 ... 100 / 0 ...1 450Calibrated partial range bar/psi 0 ... 20 / 0 (290)Overloadbar/psi 200 / 2 900Sensitivity (nom. ±10 %)pC/bar 62Thermal sensitivity shift see Fig. 2Linearity, hysteresis and repeatability%FSO ≤1Acceleration sensitivity, typical mbar/g 0.4Natural frequency, longitudinal kHz ca. 50Frequency range upper range (+10 %)Hz ca. 20 000lower range (–3 dB)Hz0.51)1)In combination with differential charge amplifier Types 5181, 5183, 5185.EnvironmentOperating temperature range Continuous °C –55 ... 700Extreme 3)°C 1 000 3)Termination°C–55 (180)LEMO PCA.0S.3027/16"-27 UNS-2A °C–55 ... 180Open leads –55 (180)Shock g <1 000Corrosion see materialHumidityHousing with integr. cable hermetically sealedConnector IP50Explosive atmosphereExplosion protection:Fig. 2: Typical thermal sensitivity shift relative to room temperatureNimonic is a registered trade mark of Special Metals Wiggins Ltd.INCONEL alloy 718 und INCONEL alloy 600 are registered trade marks of INCO family of companies.2) Special conditions for safe use are described in the instruction manual3)For detailed information please contact the local Kislter sales officePhysicalWeight sensor and cable g14 + 47 g/m cable length MaterialNimonic alloy 90 INCONEL alloy 718Cable jacket INCONEL alloy 600WireNickelPage 3/76021B _003-590e -10.22© 2022 Kistler Group, Eulachstrasse 22, 8408 Winterthur, SwitzerlandT el.+41522241111,****************,. Kistler Group products are This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting Connector TypesFig. 3: Sensor dimensions Type 6021B... including cable terminationsType 6021B_N0A_2-pol. connector LEMO PCA.0S.302Type 6021B_N0B_2-pol. connector 7/16"-27 UNS-2AType 6021B_N0C_2-pol. open leads blackwhitePage 4/76021B _003-590e -10.22© 2022 Kistler Group, Eulachstrasse 22, 8408 Winterthur, SwitzerlandT el.+41522241111,****************,. Kistler Group products are This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting Mounting boreFig. 4: Direct installationFig. 6: Direct installation for Sensor with 7/16" connectorFig. 5: For installation with intermediate adapter for Type 6419A21C* for installation with Kistler tools* for installation with Kistler tools* for installation with Kistler toolsSensor mountingFig. 7: Sensor installation with mounting nut Type 6419A21A and seal Type 1147A21A Fig. 8: Installation with mounting adapter Type 6419A21A, seal Type 1147A21A, and removal tool Type 6419A21BMounting nut, 16 mm hex.Tightening torque 20 Nm Type 6419A21ASeal, silver plated Type 1147A21ARemoval tool, 14 mm hex.Tightening torque 5 Nm Type 6419A21BMounting nut, 16 mm hex.Tightening torque 20 Nm Type 6419A21ASeal, silver plated Type 1147A21AFig. 9: Installation with mounting adapter Type 6419A21D andseal Type 1147A21AFig. 10: Installation with adapter Type 6419A21C, mounting nutType 6419A21A, and seal Type 1147A21A and 1147A21BMounting nut, 16 mm hex. withintermediate ring slotedTightening torque 25 NmType 6419A21DSeal, silver platedType 1147A21AMounting nut, 16 mm hex.Tightening torque 20 NmType 6419A21AAdapter, 21 mm hex.Tightening torque 60 NmType 6419A21CSeal, silver platedType 1147A21BSeal, silver platedType 1147A21ARemoval tool, 14 mm hex.Tightening torque 5 NmType 6419A21BPage 6/7© 2022 Kistler Group, Eulachstrasse 22, 8408 Winterthur, SwitzerlandT el.+41522241111,****************,. Kistler Group products are This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting Fig. 20: Flame protection shield, Type Z21603A21FPage 7/76021B _003-590e -10.22© 2022 Kistler Group, Eulachstrasse 22, 8408 Winterthur, SwitzerlandT el.+41522241111,****************,. Kistler Group products are This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting Ordering keyEx certificationNot Ex certificated–Ex certificated: "Ex-ia", Ex-nA"ECable termination Lemo 2 pole connector A 7/16" 2 pole connector B Open leads CCable length* 4)1 m 013 m03* Customized lengths on requestIncluded accessories Type/Mat. No.• Mounting nut 6419A21A or 6419A21D • Sealing ring, silver platted (5 pieces) 1147A21A Optional accessories Type/Mat. No.• Sealing ring, silver platted (5 pieces) 1147A21A • Sealing for intermediate adapter 1147A21B M18x1,5, silver platted • Mounting nut 6419A21A • Mounting nut 6419A21D • Insertion/removal tool 6419A21B • Adapter M18x1,5 6419A21C • Adapter M18x1,5 6419A21E • Mounting bracket for hardline cable 1423A1• Mounting tool, slotted 1251A21A • High temperature thread paste 1059• Flame protection shield Z21603A21F Optional accessories Type/Mat. No.• Softline cable 1652A...• Differential charge amplifier – Standard version 5181A – Ex-iA version 5183A – Ex-nA version 5185A4)Tolerance for cable lengths less than 1 m: +45 mm.Tolerance for cable lengths between 1 m and 5 m: +75 mm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用 由于在 700℃时具有高温强度和优秀的耐腐蚀性能、易加工性,Nicrofer 5219 Nb 可广泛应用于各种高要求的场合。
热处理 不同的固溶处理和时效处理工艺会得到不同的材料性能。由于γ”相的扩散 速率较低,所以通过长时间的时效处理能使 Nicrofer 5219 Nb 合金获得最佳的机 械性能。
-6-
ThyssenKrupp
典型的热处理工艺见表 8(时间视工件大小而定)
工艺 固溶处理 A 960±15℃ 30 分钟~1 小时*,空冷或水冷
产 品 形 测试方向 测试 规格 mm
式
温度
持续加载 N/mm2
时间 延 伸 率
h
A5
%
板、带
650 ℃ ±2℃
>0.38 0.38-0.62 >0.62
655 690
23 4
4
棒材 锻件
径向 横向 径、横
650 ℃ ±2℃
690
23 5
无缝管
700 ℃ ±2℃
500
23 5
参照 AMS 5596
5662 5663
12 10 6
10
硬度 HB
晶粒尺 寸 µm
<240 <260
>350
>260
>368
≤277
>331
≤248 >341
ThyssenKrupp
棒材 焊丝
760/650℃ 固溶处理
1021-1052℃
E +沉淀硬化 621-843℃ 或 774-802℃
去应力退火 960℃
锻件、环
≤4.75
655
A 细晶结构保证了材料的疲劳寿命、塑性、韧性、屈服强度、抗拉强度在 室温时的最优组合。
B 将 A 中的优点扩展到了更宽的温度范围。
C 对大工件的特殊的均匀化处理使工件获得了最佳的韧性和冲击强度。 在热处理过程中必须保证工件表面清洁。
D 对用于石油或酸性气体环境中的直径 215mm 以下的棒材的热处理工艺, 该工艺使材料得到相当于 ASTM 3 或更细的晶粒度,没有叶状或针状 δ 相析出。
1.2
约 5 GTAW
130-150 23-27
氩气或氩气+不超过 3%的氢气 对于 MAG 焊,推荐使用保护性气体 Cronigon He30S。 在所有气体保护焊操作中,都要确保有足够的防护层。 这些数据仅供参考,并为焊机设置提供方便。
焊接 速度 cm/min 10-15 10-15 10-15 10-15 25 25 25 25 24-30
E 用于 H2S 工业的合金 718 棒材处理。
打磨 在 Nicrofer 5219 Nb 工件焊缝附近的氧化物要比不锈钢的更难以去除,需要用 细砂带打磨,在硝酸和氢氟酸的混合酸中酸洗之前,也要用砂纸去除氧化物或进 行盐浴预处理。
机加工 Nicrofer 5219 Nb 的机加工需在固溶处理后进行,要考虑到材料的加工硬化 性,与奥氏体不锈钢不同的是,Nicrofer 5219 Nb 适合采用低表面切削速度。
Nicrofer 5219 Nb 具有以下特性: 易加工性 在 700℃时具有高的抗拉强度、疲劳强度、抗蠕变强度和断裂强度 在 1000℃时具有高抗氧化性 在低温下具有稳定的化学性能 良好的焊接性能
牌号和标准:
牌 号 和 材料牌号 标准
化 学 管材 成分 无缝管 焊管
法国
NC19FeNb
AFNOR
德国
温度 mm
度 RP0.2
度 Rm
A5*
N/mm2 N/mm2 %
AMS
板、带
650℃ ≤0.62 795 ±2℃ >0.62 825
965 1000
5
5596
棒材 锻件
径向 横向 径、横
650℃ ±2℃
1000 12
860
965
6
10
5662 5663
表 6—Nicrofer 5219 Nb 合金在特定温度下的性能(沉淀硬化态)
DIN WL
W.Nr.2.4668 NiCr19Fe19Nb5 Mo3
17744 parts 1-3
17751
英国
NA 51
BS
美国
UNS N07718
B637
ASTM
ASME
AMS
5589
5590
ISO
NiCr19Nb5Mo3
* 用于高温领域
** 丝材,不仅指焊丝
板材
技术规范 棒材
带材
AIR9165 AIR9165
比热 J/Kg K 432 440 462 488 510 540 565 595 620 650 680 715
热导率 W/mK 11.1 12.2 13.6 15.2 17.0 18.9 20.8 22.4 24.4 26.1 28.0
电阻率 µΩcm 123 124 126 128 130 131 132 133 133 134 134 134
棒、 锻件
固溶处理
≤58cm2
940-1000℃ >58cm2
、环
B +沉淀硬化 720-760℃/ 620-650℃
径向 锻件 径、横向 棒/横向
1275 1240 1240
1035
C
固溶处理 1065℃
+沉淀硬化 ≤250 棒
1240
1035 -3-
延伸 Z 区减 率 A % 缩%
5
30 12Krupp
图 1:经固溶强化 +沉淀硬化处理的 Nicrofer 5219 Nb 合金 薄板在室温及特定温 度下的瞬时性能。
表 7—Nicrofer 5219 Nb 合金(固溶处理+沉淀硬化)的蠕变值
温度℃
600 649 700 760 800
断裂强度 Rm 104hrs N/mm2 620
GTAW
4.0 等离子弧 1.2
0.5 165 25
中间和最终焊道
A
V
110-120 11
120-130 12
130-140 12
130-140 12
150
10
150
10
6.0 等离子弧 1.2
0.5 190-200 25
8.0 MIG/ MAG2)
1.0
约 8 GTAW
130-140 23-27
10.0 MIG/ MAG2)
1034 1069
12
35
552
20
862-1000 20 35 965-1034 17 25
≤363 ASTM3 (最大 或更高 HRC40)
AMS 5832
表 5—Nicrofer 5219 Nb 合金在高温下的最低机械性能(沉淀硬化态)
产品 测试方向 测 试 规 格 屈 服 强 抗 拉 强 延 伸 率 参 照
ThyssenKrupp
高温高强度合金
Nicrofer® 5219 Nb –合金 718
W.-Nr. 2.4668 UNS N07718
蒂森克虏伯 VDM
蒂森克虏伯不锈钢公司的子公司
ThyssenKrupp
Nicrofer 5219Nb-alloy 718 合金 718
Nicrofer 5219 Nb 是含铌、钼的沉淀硬化型镍铬铁合金,在 700℃时具有高强 度、良好的韧性以及在高低温环境均具有耐腐蚀性。供货状态可以是固溶处理或 沉淀硬化态。
弹性模量 KN/mm2 205 199 192 187 181 175 169 161 150 136 120 100
热膨胀系数 10-6/K
12.6 13.4 13.8 14.1 14.4 14.8 15.4 16.1 16.8
机械性能: 表 4 中所列性质适用于 Nicrofer 5219 Nb 合金的标准规格产品冷、热加工成型 后或固溶强化或固溶强化+沉淀硬化后的情况。非标准尺寸材料的特殊性能可以 根据特定应用场合的要求提供。
推荐使用的焊接材料: GTAW/GMAW Nicrofer S 5219 W.-Nr. 2.4667 SG-NiCr19NbMoTi AWS A 5.14 ERNiFeCr-2 BS 2901 Part 5: NA 51
-8-
ThyssenKrupp
表-2 焊接参数(指导值)
板材 焊接工艺 焊条
焊接参数
B 940~1000℃ 1 小时*以上,空冷或水冷
C 1065±15℃ 30 分钟~2 小时*,空冷或水冷
D 1038℃ 1 小时,水冷
C 1021~1052℃ 1~2 小时,水冷
* 加热时间视工件尺寸而定
沉淀硬化 720±8℃,8 小时 炉冷 2 小时至 620℃ 620℃±8℃,8 小时 720~760℃,8 小时 炉冷 2 小时至 620~650℃ 620~650℃,8 小时 760±8℃,10 小时 炉冷 2 小时至 650℃ 650℃±8℃,8 小时 787℃,6 小时 空冷 621~843℃,6~8 小时,空冷 或 774~802℃,6~8 小时,空冷
min 50 17 余
2.8
0.2 0.7 4.75 0.00
量
2
max 55 21
0.08 0.35 0.35 0.3 3.3 1.0 0.8 1.15 5.5 0.00 0.01 0.01
6
5
物理性能: 密度 熔点
8.2 g/cm3 1260-1340℃
-2-
ThyssenKrupp