因式分解知识点归纳

合集下载

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。

因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。

注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。

3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。

系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。

例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。

因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

初中数学知识点:因式分解考前复习

初中数学知识点:因式分解考前复习

初中数学知识点:因式分解考前复习
初中数学知识点大全:因式分解
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:
①确定公因式。

②确定商式③公因式与商式写成积的形式。

分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。

(完整版)乘法公式和因式分解知识点

(完整版)乘法公式和因式分解知识点

乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。

m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。

注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。

(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。

3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。

(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。

简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。

我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。

因式分解知识点总结

因式分解知识点总结

因式分解知识点总结一、因式分解的概念。

1. 定义。

- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。

2. 与整式乘法的关系。

- 因式分解与整式乘法是互逆的恒等变形。

整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。

二、因式分解的方法。

1. 提公因式法。

- 公因式的确定。

- 系数:取各项系数的最大公因数。

例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。

- 字母:取各项相同的字母。

在6x^2+9x中,相同的字母是x。

- 字母的指数:取相同字母的最低次幂。

对于6x^2+9x,x的最低次幂是1。

所以公因式是3x。

- 提公因式的步骤。

- 找出公因式。

- 用多项式除以公因式,得到另一个因式。

例如,6x^2+9x = 3x(2x+3)。

2. 公式法。

- 平方差公式。

- 公式:a^2-b^2=(a + b)(a - b)。

- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。

例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。

- 完全平方公式。

- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。

- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。

例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。

3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。

因式分解知识点总结

因式分解知识点总结

第一讲因式分解知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

即:多项式f几个整式的积例:-ax+-bx=-x(a-∖-b)3 3 3因式分解,应注意以下几点。

1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幕的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

'系数一一取各项系数的最大公约数<字母——取各项都含有的字母指数一一取相同字母的最低次塞例:↑2a3b3c-Sa3b2c3+βa4b2c2的公因式是解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分/匕3g。

302。

3,。

力力:都含有因式/∕c,故多项式的公因式是2a3b2c.②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

例1:把12/b78。

从一2447√分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次耗是ab,故公因式为6abo 解:↑2a2b-↑Sab2-24aV=6ab(2a-3b-4a2b2)例2:把多项式3。

-4)+x(4-R)分解因式解析:由于4-x=-(x-4),多项式3(x-4)+M4-x)可以变形为3(x-4)-X(X-4),我们可以发现多项式各项都含有公因式(工-4),所以我们可以提取公因式(x-4)后,再将多项式写成积的形式.解:3(x-4)+x(4-x)=3(x-4)-x(x-4)=(3-x)(x-4)例3:把多项式-f+2为分解因式解:-X2+2x=-(x2-2x)=-x(x-2)(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

因式分解知识点归纳总结一

因式分解知识点归纳总结一

因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

(完整版)因式分解知识点归纳

(完整版)因式分解知识点归纳

n m n a a +=同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。

因式分解知识点归纳总结

因式分解知识点归纳总结

因式分解知识点归纳总结因式分解是数学中的一个重要知识点,它在代数的各个领域中有着广泛的应用。

因式分解是将一个多项式表示为乘积的形式,使得每个乘积因子都是原多项式的一个因子。

通过因式分解,我们可以更好地理解多项式的结构、性质和特点。

一、基本概念和思想1.多项式:由变量和常数的乘积相加或相减而成的代数表达式。

2.因式:在乘积中的每个项。

3.因式分解:将一个多项式表示为乘积的形式。

4.公因式提取:在多个项中提取出一个公共的因子,然后将其提取出来。

5.公式:将其中一种特殊形式的多项式因式分解的方法。

二、因式分解的基本方法1.提取公因子:在多个项中提取出一个公共的因子。

2.完全平方公式:将二次多项式表示为完全平方的形式。

3.平方差公式:将二次多项式表示为一个平方差的形式。

4.组合因式法:将多项式按照特定的方式分组,然后进行因式分解。

5.因式定理:根据多项式的特征和性质,通过试探法找到一个因式,然后进行因式分解。

6.代换法:通过适当的代换,将多项式转化为一个更易于因式分解的形式。

三、因式分解的应用1.简化运算:可以通过因式分解将复杂的数学计算简化为更简单的形式,提高计算的速度和效率。

2.解方程:通过因式分解将方程转化为一个乘积的形式,可以更方便地求解方程的解。

3.获得更多信息:因式分解可以给出多项式的根的信息,从而帮助我们更好地理解多项式的特点和性质。

4.拓展推广:通过因式分解的方法,可以推广到更高次数的多项式,进行更深入的数学研究和应用。

四、因式分解的注意事项1.因式分解的结果应尽可能简化,即将多项式表示为最简形式的乘积。

2.对于不同类型的多项式,有不同的因式分解方法,需要根据具体情况选择合适的方法。

3.因式分解中的变量可以是实数、复数或其他数学对象,需要根据具体情况进行分析和处理。

4.在进行因式分解时,需要注意运算规则和性质,避免出现错误。

总结起来,因式分解是数学中的一个重要概念和方法,它在代数的各个领域中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n m n
=
a a+
同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单3
+=
()
a b
5、已知2a b +=,2ab =,求32231122
a b a b ab ++
6、证明代数式2210845x y x y +-++的值总是正数
7、已知a ,b ,c 分别是ABC ∆的三边长,试比较2222()a b c +-与224a b 的大小
考点四、十字相乘法
(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解
成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以
把二次三项式2x px q ++分解成
()()()b x a x ab x b a x q px x ++=+++=++22
例题讲解1、分解因式:652++x x
分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3
的分解适合,即
2+3=5
1 2
解:652++x x =32)32(2⨯+++x x 1 3
=)3)(2(++x x 1×2+1×3=5
最新文件仅供参考已改成word文本。

方便更改。

相关文档
最新文档