浅析光伏电站发电量与光伏组件衰减的关系
光伏电站理论发电量计算及影响因素

光伏电站理论发电量计算及影响因素一、光伏电站理论发电量计算1、太阳电池效率η 的计算在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。
其中,At 为太阳电池总面积(包括栅线图形面积)。
考虑到栅线并不产生光电,所以可以把At 换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。
Pin 为单位面积的入射光功率。
实际测量时是在标准条件下得到的:Pin 取标准光强:AM 条件,即在25℃下,Pin= 1000W / m 2。
2、光伏系统综合效率(PR)η总=η1×η2×η3光伏阵列效率η1:是光伏阵列在1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。
光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。
逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。
交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。
3、理论发电量计算太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池1 小时才能发一度电。
而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。
计算日发电量时,近似计算:理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率等效峰值日照小时数h/d=(日太阳辐照量m2/d)/1kW/m2(日照时数:辐射强度≥120W/m2的时间长度)二、影响发电量的因素的发电量由三个因素决定:装机容量、峰值小时数、系统效率。
当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能提高系统效率。
光伏组件问题系列总结——组件功率衰减原因分析

光伏组件问题系列总结——组件功率衰减原因分析光伏组件问题系列总结——组件功率衰减原因分析一、绪论在光伏行业发展形势一片大好情况下,光伏行业也出现了一些问题,其中光伏组件功率衰减幅度较大问题,对电站运营商及组件厂商影响都比较大。
本文试图从多个方面分析组件功率衰减的原因,尽量在生产中避免,提高组件质量,以减少电站运营商的投诉,提高自身声誉。
二、原因分析目前市场上主流的晶体硅光伏组件是由钢化玻璃、EVA、晶体硅电池片、背板、铝边框、接线盒、硅胶等原辅材通过一定的封装工艺,加工制作而成。
组件功率衰减是指光伏组件随着光照时间的增长,组件输出功率逐渐下降的现象。
导致组件输出功率下降的原因有三大类:第一类为组件的光致衰减及老化衰减;第二类是组件质量问题造成的功率非正常衰减;第三类为外界环境因素导致的破坏性影响,引起组件功率衰减甚至组件损坏。
三、光致衰减及老化衰减所谓光致衰减是指阳光的照射导致电池片功率下降的现象。
光伏组件光致衰减可分为两个阶段:初始光致衰减和老化衰减。
3.1初始光致衰减初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。
导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。
通过改变P型掺杂剂,用稼代替硼能有效的减小光致衰减;或者对电池片进行预光照处理,是电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就能控制在一个很小的范围之内,同时也提高组件的输出稳定性。
光致衰减更多的与电池片厂家有关,对于组件厂商的意义在于选择高质量的电池片来降低光致衰减带来的影响。
3.2老化衰减老化衰减是指在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。
其中紫外光的照射时导致组件主材性能退化的主要原因。
紫外线的长期照射,使得EVA及背板(TPE结构)发生老化黄变现象,导致组件透光率下降,进而引起功率下降。
光伏电站运行指标与评价

光伏电站运行指标与评价近年来,随着人们对可再生能源的重视程度不断提升,光伏电站已然成为了其中的一种主要形式。
在光伏电站建设完毕后,如何对其进行监测评价,成为了一个至关重要的问题。
因此,本文将从光伏电站的运行指标和评价两个方面加以分析论述。
一、光伏电站的运行指标从字面上来理解,运行指标就是用来表示光伏电站的运行情况的数量指标。
常见的运行指标有以下几种:1. 发电量发电量指电站在一定时间内发电的总量,常用的单位是千瓦时(kWh)。
发电量的高低不仅反映出光伏电站的能量利用率,还可以为用户提供参考,对电站的设计和运营调整有重要意义。
2. 效率效率指电站发出的电能与光能输入的比值,也就是光伏组件转化率。
通常,组件的转化率越高,电站的功率输出效率也就越高。
3. 状态误差状态误差是指电站功率输出与理论功率输出之间的误差,误差越小表明光伏电站的运行状态越好。
4. 年损失电量率年损失电量率是指光伏电站年损失发电量与年总发电量之比,是衡量发电效率和运行质量的重要指标。
年损失电量率越低,表明光伏电站的性能更为稳定。
5. 反射率反射率指追踪器反射镜反射光线的反射效率。
反射率越高,追踪器反射镜反射的光线获取的收益也就越高,从而能够提高整个光伏电站的发电效率。
二、光伏电站的评价评价光伏电站的质量和性能不仅需要考虑以上几个指标,还需要考虑以下几个因素:1. 光伏组件的质量和性能光伏组件的质量和性能直接影响着光伏电站的发电效率。
在对光伏电站进行评价时,需要对光伏组件的质量和性能进行检测和评估。
2. 系统的可靠性和稳定性光伏电站的可靠性和稳定性是保证电站正常运转的关键。
为了确保光伏电站的品质,必须对电站的电气部分进行频繁检查和维护,从而可以及时发现和处理问题。
3. 操作和维护的困难程度并不是所有的电站都可以轻松操作和维护。
检验光伏电站的可行性时,必须要考虑到操作和维护的难易程度,以便保持电站的稳定运作。
4. 电站的环保程度光伏电站是一种环保型电站,在电站的设计和建设过程中,需要考虑到环境保护问题。
光伏组件功率衰减原因分析

光伏组件衰减原因分析光伏组件是太阳能发电的关键元件,光伏组件功率衰减是指随着光照时间的增加,组件输出功率不断呈下降趋势的现象。
组件功率衰减直接关系到组件的发电效率。
国内组件的功率衰减与国外最好的组件相比,仍存在一定差距,因此研究组件功率衰减非常有必要。
组件功率衰减包括组件初始光致衰减、组件材料老化衰减及外界环境或破坏性因素导致的组件功率衰减。
外界环境导致功率衰减主要由光伏电站运营不当造成,可通过加强光伏电站的维护进行改善或避免;破坏性因素导致的组件功率衰减是由于组件明显的质量问题所致,在组件生产和电站安装过程对质量进行严格检验把控,可减少此类功率衰减的现象。
本文主要研究组件初始光致衰减及材料老化衰减。
1、组件初始光致衰减分析1.1、组件初始光致衰减原理分析组件初始光致衰减(LID)是指光伏组件在刚开始使用的几天其输出功率发生大幅下降,之后趋于稳定的现象。
普遍认为的衰减机理为硼氧复合导致,即由p型(掺硼)晶体硅片制作而成的光伏组件经过光照,其硅片中的硼、氧产生复合体,从而降低了其少子寿命。
在光照或注入电流条件下,硅片中掺入的硼、氧越多,则生成复合体越多,少子寿命越低,组件功率衰减幅度就越大。
1.2、组件初始光致衰减的实验分析本研究采用对比实验的办法,在背板、EVA、玻璃和封装工艺等条件完全一致情况下,采用两组电池片(一组经初始光照,另一组未经初始光照),分别将其编号为I和II。
同时,生产出的所有组件经质量全检及电致发光(EL)检测,确保质量完全正常。
实验过程条件确保完全一致,采用同一台太阳能模拟仪测量光伏组件I-V曲线。
分别取I和II光伏组件各3组进行试验,记录其在STC状态下的功率输出值。
随后,将I和II光伏组件放置于辐照总量为60kWh/m2(根据IEC61215的室外暴晒试验要求)的同一地点进行暴晒试验,分别记录其功率,结果见表1。
由表1可知,I组光伏组件整体功率衰减明显较II组低。
因此,可推测光伏组件的初始光致衰减主要取决于电池的初始光致衰减。
光伏组件衰减及系统效率下降原因分析

光伏组件衰减及系统效率下降原因分析光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。
另外,系统效率对发电量的影响更为重要。
一、组件的衰减光致衰减也称S-W效应。
a-Si∶H薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而使薄膜的性能下降,称为StaEbler-Wronski效应(D.L.Staebler和C.R.Wronski最早发现。
个人认为光伏组件的衰减实际就是硅片性能的衰减,首先硅片在长期有氧坏境中会发生缓慢化学反应被氧化,从而降低性能,这是组件长期衰减的主要原因;在真空成型过程中会以一定比例掺杂硼(空穴)和磷(给体),提高硅片的载流子迁移率,从而提高组件性能,但是硼作为缺电子原子会与氧原子(给体)发生复合反应,降低载流子迁移率,从而降低组件的性能,这是组件第一年衰减2%左右的主要原因。
组件的衰减分为:1、由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象;2、组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下;3、组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。
2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。
二、系统效率个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。
影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。
光伏电站理论发电量计算及影响因素

光伏电站理论发电量计算及影响因素一、光伏电站理论发电量计算1、太阳电池效率η 的计算在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。
其中,At 为太阳电池总面积(包括栅线图形面积)。
考虑到栅线并不产生光电,所以可以把At 换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。
Pin 为单位面积的入射光功率。
实际测量时是在标准条件下得到的:Pin 取标准光强:AM 1.5 条件,即在25℃下,Pin= 1000W / m 2。
2、光伏系统综合效率(PR)η总=η1×η2×η3光伏阵列效率η1:是光伏阵列在1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。
光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。
逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。
交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。
3、理论发电量计算太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池1 小时才能发一度电。
而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。
计算日发电量时,近似计算:理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率等效峰值日照小时数h/d=(日太阳辐照量kW.h/m2/d)/1kW/m2(日照时数:辐射强度≥120W/m2的时间长度)二、影响发电量的因素光伏电站的发电量由三个因素决定:装机容量、峰值小时数、系统效率。
光伏组件PID问题对光伏发电量的影响

光伏组件PID问题对光伏发电量的影响发布时间:2022-01-18T09:04:27.380Z 来源:《新型城镇化》2021年24期作者:李波[导读] 发生PID现象的光伏组件降低了吸收光能的效率,导致组件阵列功率输出降低。
呼和浩特市兴泰能源有限公司摘要:以平原大棚电站为项目背景,电站在投入使用后陆续出现组件PID现象。
统计发现,组件存在PID现象共计59条支路。
经过测量实际电压电流发现问题,修复组件,使输出电流值恢复,光伏发电达到对发电量的要求。
关键词:PID现象;光伏发电;发电量光伏组件的PID现象又被称作电势诱导衰减,形成原因有多种。
PID现象大多发生在一些高温、湿度大的环境中,从地域上来说,一些沿海、近赤道的地方更容易发生PID效应。
此类环境容易产生水蒸气,水蒸气会进入到组件的封装材料中出现离子迁移,使导电率上升,漏电流增大,电池表面出现极化。
此外,组件表面被导电性、酸性、碱性以及带有离子的物体污染的程度,也与衰减现象的发生有关。
发生PID现象的光伏组件降低了吸收光能的效率,导致组件阵列功率输出降低。
1 PID效应的危害和测试方法1.1 PID效应的危害PID效应使得PN结中的电子损失得越来越多,电池组件的功率急剧衰减,使得电池组件的填充因子(FF)、开路电压、短路电流减小。
在实际工作中,发生PID效应不仅会减小太阳能电站的输出功率,还会减少发电量,最多能达到50%甚至更高,减少太阳能发电站的电站收益。
图1电池片出现发暗甚至黑色的情况,为产生PID现象。
图2电池片发亮,为有效的电池片。
1.3 PID现象恢复方法PID现象能够预防,采取适当的措施能够使电池片发电能力恢复。
在工程实践中,常用的PID现象恢复措施有集中式逆变器的负极接地法、组串逆变器并联的单点接地法和PID夜间补偿法。
①集中式逆变器负极接地在国内使用500kW以上逆变器的地面电站,利用集中式逆变器负极接地的方法来解决PID衰减。
光伏电站运行数据分析原则及方法

项目
影响因素
损失%
合计
光伏发电效 率影响因素
系统设计
阵列遮挡
3
14-15%
组件匹配
2
直流汇集线路
1.5
逆变器出口至并网点 (含升压变压器)
2.5
环境
温度
1
运行维护
设备故障、维修等
3
组件表面污秽
1~2
逆变器性能
逆变器变换效率
2.2
2.7%
MPPT效率
0.5
第 6 页
1、光伏电站发电量影响因素分析· 1、太阳辐射量·太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着 发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取, 也可以借助光伏设计软件例如PV-SYST、RETScreen得到。·1.2、太阳能电池组件的倾斜角度·从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾 斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地 的纬度有关。大致经验值如下:·A、纬度0°~25°,倾斜角等于纬度·B、纬度26°~40°,倾角等于纬度加5°~10°·C、纬度41°~55°,倾角等于纬度加10°~15°
第 8 页
组件功率的衰减·抽取一个组串,这个组串里头每一个组件都要进行测试,首先对清洁干净之后 的组件进行I-V测试,测试他的功率。这个功率和他标准功率进行比较,得到他 的衰减率。· 判定条件是这样的,多晶硅组件在一年内它的衰减不应该超过2.5%, 两年内衰 减不超过3.2%, 单晶硅组件一年内不超过3%,两年内不超过4.2%。这是判定条 件。
第 3 页
汇流箱Combi Box直流配电DCDistributor汇流箱CombinerBox
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析光伏电站发电量与光伏组件衰减的关系
摘要:在光伏电站建设前期的项目可行性评估中,对光伏电站的发电量进行估算具有非常重要的意义,因为这将直接影响到项目的收益预期。
目前系统设计人员常用软件来模拟第一年的发电量,本文将基于第一年估算的发电量,并试图计算随后24年发电量。
关键词:光伏电站组件衰减发电量估算 PVSYST模拟
1 前言
由于全球的能源危机问题,风能、太阳能等资源丰富的新能源逐渐占有重要的地位。
世界太阳能光伏发电系统在近几年里保持持续高速增长,到2012年世界光伏发电累积装机容量已经达到102GW[1],并且成为增长速度最快的发电技术,光伏发电在20多个国家实现平价上网。
随着核心器件光伏组件的技术不断突破,效率不断提升,光伏发电系统的度电成本会逐渐的逼近传统的火力发电成本,同时随着储能技术的不断发展,届时,光伏发电系统由于它的系统规模随意、安装要求门槛低等优点将会在世界各地更普遍的应用开来。
在整个光伏系统应用市场里,目前并网光伏系统占有绝对主导的地位,皆依赖于并网光伏技术的不断发展成熟、相应设备性能成本的不断研发进步以及各国政府在政策方面的积极推进。
2 光伏发电系统的原理
由于光伏发电系统根据实际的应用大体上分为并网系统和独立系统[2],由于并网系统应用所占的份额较大,本文着重分析并网系统的发电量估算。
同时,由于系统规模和场合条件的不同,并网系统也有多种系统形式,本文对发电量的评估是按较大规模的光伏电站作为模型,且光伏电站所处的环境条件比较好。
图2-1为一个典型的大型地面电站的发电原理框图
图2-1 大型电站发电原理简图
整个系统主要由光伏方阵和交(直)流输变电组成,光伏方阵输出的直流电经过直流线路汇流后通过逆变器转变为波形规则、频率稳定的交流电,然后就地进行一次升压到中压后,在中压交流线路上进行汇流后再进行二次集中升压,最后接入电网进行并网。
根据图示,通常在产权点会安装一个有效的电能计量表对光伏电站发电量进行计量,这是最为准确的统计数据。
根据最初几年的计量统计数据对模拟数据进行分析修正,可以较为准确的预估今后的发电量。
3 光伏电站发电量损耗因素分析[3]
要在项目前期比较准确的预估光伏电站的发电量,除了对光伏电站的系统结构有深刻的了解外,也必须对主要的设备性能参数有很深刻的了解。
同时,如果要对发电量进行更长年限的预估时,则必须全面考虑长时间内外界环境因素的影响和电站运营状况的预估。
分析第一年光伏电站的发电量估算时,通常需要考虑的损耗因素如下:
⑴倾斜面太阳光辐照量修正;
⑵组件表面灰尘等异物挡光的影响;
⑶温度对光伏组件输出的影响;
⑷光伏组件的自身衰减;
⑸组串内组件的匹配损失;
⑹方阵前后排之间的阴影遮挡损失;
⑺直流线路损失;
⑻逆变器转换效率损失;
⑼本地变压器损耗;
⑽交流线路损失;
⑾主变压器损耗;
⑿电站自用电损耗;
⒀停机时间损失;
通常采用PVSYST软件模拟发电量时,没有考虑自用电和停机时间的损耗,只是考虑其它因素的一个综合数据。
分析后面24年的光伏电站发电量时,运营管理是最主要的影响因素,但预估性差,通常假定其与其它因素不发生变化,只是考虑光伏组件自身的衰减。
4 光伏组件功率的衰减分析
在实际中,光伏组件在制造出来后就一直处于衰减的状态,不过在包装内未见光时衰减非常慢,一旦开始接受太阳光照射后,衰减会急剧加快,衰减一定比例后逐渐稳定下来,如图4-1所示的第一年衰减曲线模型示意图,
图4-1 光伏组件第一年衰减曲线模型
图4-1中第一年3%的总衰减数据取自正泰太阳能多晶硅组件的25年衰减保证当中,其25年衰减保证如图4-2所示,
图4-2 光伏组件衰减曲线
从图4-2中可以看出第一年光伏组件最大衰减值为3%,后面24年每年衰减值为0.7%。
由于初始阶段的衰减与光强有着直接的关系,因此在第一年内,在平均光强条件下,基本上前期呈现急剧衰减,后期逐渐平稳的状态。
但是实际上,一个光伏电站从组件开始安装到最后开始并网发电这个时间跨度都是不一定的,到开始计量发电量的时候,组件可能已经进行了一定比例的衰减了,为了减小实际情况与理论估算的误差,除了在质保起始时间做要求外,一般组件在出厂时都会有一定比例的正功率偏差,这个正功率偏差可以覆盖一部分由于一些人为因素导致的组件在没有发电的情况下的一些衰减损耗。
所以在理论计算上,发电量模拟计算的额定功率起始点可以等同于光伏组件出厂时的额定功率,而且一年内组件的衰减可视为线性衰减。
5 光伏电站发电量的估算
光伏电站年发电量计算事实上是光伏电站实时输出功率与时间的函数积分,如图5-1
所示,
图5-1 光伏发电功率-时间曲线示意图
为了便于计算,通常将上图等效为标准光强下的输出功率与峰值日照小时数的矩形图,如图5-2所示,
图5-2 光伏发电功率-时间等效矩形图
所以每年的光伏电站发电量Q=等效功率P´×峰值日照时间H×365天,其中等效功率P ´在实际一天当中是一个波动的数值,计算公式可用下式(式5-1)表示,等效功率P´=额定装机功率P×系统综合效率η(式5-1)
为便于计算光伏电站25年的发电量,可将式5-1表述为式5-2,如下
等效功率P´=额定装机功率P×组件平均效率η1×系统其它损失因素综合效率η2(式5-2)
综合上述,光伏电站年发电量Q=额定装机功率P×组件平均效率η1×系统其它损失因素综合效率η2×峰值日照时间H×365天,在25年期限中,除了组件平均效率η1,其它项的乘积可视为一个不变的常数Q?,则最终的表达式为光伏电站年发电量Q= Q×组件平均效率η1(式5-3)。
组件平均效率η1——(年初组件额定容量比例+年末组件额定容量比例)/2
比例的正功率偏差,这个正功率偏差可以覆盖一部分由于一些人为因素导致的组件在没有发电的情况下的一些衰减损耗。
所以在理论计算上,发电量模拟计算的额定功率起始点可以等同于光伏组件出厂时的额定功率,而且一年内组件的衰减可视为线性衰减。
综上所述,以正泰太阳能多晶硅组件的衰减保证为例,25年的年组件平均效率如下表所示:
表5-1 25年组件额定容量变化预测表
表5-2 25年发电量估算关系式
如采用PVSYST软件估算光伏电站第一年发电量时,系统效率里是没有考虑电站自用电和停机时间这两项的,但是不影响根据第一年的估算值来计算后面24年的预估发电量。
根据前面的表述,用PVSYST估算第一年发电量时,如果在Detailed losses中Module efficiency loss设定为1.5%,则表示第一年计算的组件平均效率为98.5%,则第二年估算发电量为第一年的98.12%,第三年为第一年的97.41%,第四年为第一年的96.70%,依次例推,可以看出从第二年开始,后面每年的预估发电量约在前一年的基础上减少0.7%。
6 总结
根据以上的推算大致得出以下结论:在其它因素不变的情况下,一个光伏电站的发电量大致跟光伏组件的衰减呈同比关系。
然而,实际运行当中,组件表面的清洁、设备的故障率、电站的管理是影响后期电站发电量的主要因素,记录电站实际运行当中的损耗因素影响程度,然后对估算的发电量进行修正具有非常重要的意义。
参考文献
【1】王一波,郭靖(译),Geoff Stapleton, Susan Neill(编);太阳能光伏并网发电系统, 2014,3(1)
【2】王长贵,王斯成;太阳能光伏发电实用技术,2009,9(3)
【3】李英姿;太阳能光伏并网发电系统设计与应用,2013,8(1)。