第13讲 一次方程组

合集下载

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年数学中考复习每日一练第十三讲《方程类应用题专项》1.为实施乡村振兴战略,解决某山区老百娃出行难的问题,当地政府决定修建一条高速公路,其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工,甲工程队独立工作2天后,乙工程队加入,两个工程队又联合工作了1天,这3天共掘进26米,已知甲工程队平均每天比乙工程队多掘进2米.(1)求甲、乙两个工程队平均每天分别掘进多少米?(2)若甲、乙两个工程队按此施工速度进行隧道贯穿工程,剩余工程由这两个工程队联合施工,求完成这项隧道贯穿工程一共需要多少天?2.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c 元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费(元)533.41225.621.529.418.439.436.4(1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.3.七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA 运动速度为每秒转动15°,OB运动速度为每秒转动5°,设转动的时间为t 秒(t>0),请你试着解决他们提出的下列问题:(1)当t=3秒时,求∠AOB的度数;(2)当OA与OB第三次重合时,求∠BOM的度数;(3)在OA与OB第四次重合前,当t=时,直线MN平分∠AOB.4.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?5.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)6.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态14个一次性纸杯平衡记录一6个乒乓球,1个10克的砝码平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码请算一算,一个乒乓球的质量是多少克一个这种一次性纸杯的质量是多少克解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.7.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的项上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,假设这列火车的长度为am.(1)设从车头经过灯下到车尾经过灯下火车所走的这段时间内火车的平均速度为Pm/s,从车头进入隧道到车尾离开隧道火车所走的这段时间内火车的平均速度为Qm/s,计算:5P﹣2Q(结果用含a的式子表示).(2)求式子:8a﹣380的值.8.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD9.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.10.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?11.列一元一次方程解应用题目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,甲型节灯进价25元/只,售价30元/只;乙型节能灯进价45元/只,售价60元/只.(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?12.在数轴上有三个点A,B,C,O为原点,点A表示数a,点B表示数b,点C表示数c.且a、c满足|a+6|+(c﹣3)2=0.(1)填空:a=;c=.(2)点O把线段AB分成两条线段,其中一条是另一条线段的3倍,则b的值为:.(3)若b为2,动点P从点A出发,以每秒2个单位长度速度沿数轴负方向运动,同时,动点Q从点C出发,以每秒3个单位长度速度沿数轴正方向运动,求运动多少秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍?13.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?14.2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)15.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟无远途费0.8元千米(超过7千米部分)起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.16.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?17.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:A型B型类型价格进价(元/盏)400650标价(元/盏)600m(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.18.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.19.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品补充新工人后20天内能完成总任务吗20.某糕点厂生产大小两种月饼,下表是A型、B型、C型三种月饼礼盒中装有大小两种月饼数量和需要消耗的面粉总重量的统计表面粉总重量(g)大月饼数量(个)小月饼数量(个)A型月饼礼盒58086B型月饼礼盒48066C型月饼礼盒420a b(1)直接写出制作1个大月饼要用g面粉,制作1个小月饼要用g面粉;(2)直接写出a=,b=.(3)经市场调研,该糕点厂要制作一批C型月饼礼盒,现共有面粉63000g,问制作大小两种月各用多少面粉,才能生产最多的C型月饼礼盒?参考答案1.解:(1)设乙工程队平均每天掘进x米,则甲工程队平均每天掘进(x+2)米,依题意有2(x+2)+(x+x+2)×1=26解得:x=5,x+2=5+2=7.故甲工程队平均每天掘进7米,乙工程队平均每天掘进5米;(2)设完成这项隧道贯穿工程一共需要y天,依题意有(7+5)y=146﹣26,解得y=10.答:完成这项隧道贯穿工程一共需要10天.2.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.23.解:(1)当t=3秒时,∴∠AOM=15°×3=45°,∠BON=5°×3=15°,∴∠AOB=180°﹣45°﹣15°=120°;(2)设t秒后第三次重合,由题意得15t+5t=360×2+180,解得t=45,5×45°﹣180°=45°.答:∠BOM的度数为45°;(3)在OA与OB第一次重合前,直线MN不可能平分∠AOB;在OA与OB第一次重合后第二次重合前,∠BON=5t,∠AON=15t﹣180,依题意有5t=15t﹣180,解得t=18;在OA与OB第二次重合后第三次重合前,直线MN不可能平分∠AOB;在OA与OB第三次重合后第四次重合前,∠BON=360﹣5t,∠AON=15t﹣720,依题意有360﹣5t=15t﹣720,解得t=54.故当t=18或54秒时,直线MN平分∠AOB.故答案为:18或54秒.4.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W最小=﹣0.3×600+1980=1800,答:该市至少还需要投入1800万元.5.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.6.解:(1)根据题意知,这种一次性纸杯的质量是或.故答案是:或;(2)根据题意得,6x+10=16x﹣206x﹣16x=﹣20﹣10﹣10x=﹣30x=3.当x=3时,(克).答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.7.解:(1)依题意,得:P=,Q=,∴5P﹣2Q=﹣=.(2)∵火车匀速行驶,∴P=Q,即=,∴a=300,∴8a﹣380=2020.8.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.9.解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元10.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.11.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.12.解:(1)∵|a+6|+(c﹣3)2=0,∴a+6=0,c﹣3=0,解得:a=﹣6,c=3.故答案为:﹣6;3;(2)由a=6可知OA=6,∴b=6×3=18或b=6÷3=2;故b=18或2;故答案为:18或2;(3)设运动t秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍,根据题意得2t+6+2=3(3t+1),解得t=.即运动秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍.13.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.14.解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.15.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.2②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.2③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.2综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.16.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.17.解:(1)设A型台灯购进x盏,B型台灯购进(50﹣y)盏.根据题意得:400x+600(50﹣x)=25000.解得:x=25.则50﹣x=25,答:A型台灯购进25盏,B型台灯购进25盏;(2)25×(600×90%﹣400)+25×(m×80%﹣650)=7200.解得m=997.5.18.解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.19.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H 型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.20.解:(1)制作1个大月饼要用的面粉数量为:(580﹣480)÷(8﹣6)=50(g);制作1个小月饼要用的面粉数量为:(480﹣50×6)÷6=30(g),故答案为:50;30;(2)根据题意得50a+30b=420,∵a,b为整数,∴a=6,b=4.故答案为:6;4(3)设用xg面粉制作大月饼,则利用(63000﹣x)g制作小月饼,根据题意得出,解得:x=45000,则63000﹣4500=18000(g).答:用45000g面粉制作大月饼,18000g制作小月饼,才能生产最多的盒装月饼.。

七年级数学竞赛 第13讲 二元一次方程组

七年级数学竞赛 第13讲 二元一次方程组

阅读材料,善于思考的小军在解方程组
2x +5y 2x +11y
=3 =5

时,采用了一种“整体代换”的解法。

解:将方程②变形:4x+10y+y=5,即 2(2x+5y)+y=5。③
把方程①代入③得:2×3+y=5,∴ y=−1,

y=−1
代人①得,x=4。∴方程组的解为
x=4 y = −1

|
x |
− x
y +
|= x y |=
+ x
y +
− 2
2

(3)
xy
3x + 2y
xy
= =
1 8 1

2x + 3y 7
(《数学周报》杯全国竞赛题) (“五羊杯”竟赛题)
13.整体方法 整体思考方法是将问题看成一个整体,从大处着眼由整体入手,突出对问题的整体结构的分析与改造,
从整体上把握问题的特征和解题方向。
刻意练习
1.已知方程组
2a − 3b = 13 3a + 5b = 30.9
的解为
a b
= =
8.3 1.2
,则方程组
2(x + 2) − 3( y −1) = 13 3(x + 2) + 5( y −1) = 30.9
的解是

(山东省枣庄市中考题)
2.已知关于
x,y
的方程组
2x − ay = 6
例 8.能否找到 7 个整数,使得这 7 个整数沿圆周排成一圈后,任 3 个相邻数的和都等于 29?如果能,请举 一例;如果不能,请简述理由。 解题思路:假设存在 7 个整数 a1,a2,a3,a4,a5,a6,a7 排成一圈后满足题意,

七年级(上)培优讲义:第13讲 一元一次方程

七年级(上)培优讲义:第13讲 一元一次方程

第13 讲 一元一次方程一、新知建构1. 有关概念 一元一次方程 方程的解 .2. 解一元一次方程 基本步骤 检验方法 .3. 列方程解应用题思路:设元→列方程→解方程→检验→回答问题 . 二、经典例题例1.已知m my m y-=+2(1)m =2是方程m my m y-=+2的解,求y 的解;(2)当y =4时,求m 的解.例2. 解方程: 1.x x x ++=-+3711235 2. 2102.005.004.01.01=--+x x例3. 甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.(1) 两列火车同时开出,相向而行,经过多少小时相遇?(2) 快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?(3) 若两车同时开出,同向而行,快车在慢车的后面,几小时后快车追上慢车?(4) 若两车同时开出,同向而行,慢车在快车的后面,几小时后快车与慢车相距720千米?例4.一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数.例5.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨? 三、基础演练1.下列四个式子中,是方程的是( ).A .7-4=3B .3x =-C .21m -D .|1|1x x ->- 2.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12 B.6C.6-D.12-3.方程2-2x 4x 7312--=-去分母得( ).A .2-2(2x -4)=-(x -7)B .2-4(2x -4)=-x -7C .24-4(2x -4)=-(x -7)D .24-4x +4=-x +7 4.若a =1,则方程3x a+=x -a 的解是( ) A .x =1 B .x =2 C .x =3 D .x =4. 5.规定c a bc ad d b -=,如x 26182-=- 237+x ,则x 的值是( )A .-60B .4.8C .24D .-126.飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为( )千米/小时A .(x +y )B .(x -y )C .(x +2y )D .(2x +y )7.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a 元B.1.12a 元 C.1.12a元 D.0.81a 元 8.内径为120mm 的圆柱形玻璃杯,和内径为300mm ,内高为32mm 的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A . 150mmB . 200mmC . 250mmD . 300mm9.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). A .既不获利也不亏本 B .可获利1% C .要亏本2% D .要亏本1%10. 如图,为做一个试管架,在acm 长的木条上钻了4个圆孔,每个孔的直径为2cm ,则x 等于( ) (A )cm a 58+ (B )cm a 516-(C )cm a 54-(D )cm a 58-11.三个连续的偶数和是18,它们的积是 12.若423x =与()35x a a x +=-有相同的解,那么1a -=_______. 13.甲队有32人, 乙队有28人, 如果要使甲队人数是乙队人数的2倍,应从乙队抽调 人到甲队.14.某储户将25000元人民币存入银行一年,取出时扣除20%的利息税后,本息共得25600元,则该储户所存储蓄种类的年利率为___________.15.在高速公路上,一辆车长4m ,速度为110km /h 的轿车准备超越一辆长12m ,速度为100km /h 的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是 . 16.某市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每第10题图立方米2元收费. 如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为立方米.17.解方程.(1)3x-7+4x=6x-2 (2)(x+1)-2(x-1)=1-3x(3)12223x xx-+-=-(4)1615312=--+xx(5)0.213223.60.9x xx-+-=(6)341.60.50.2x x-+-=列方程解应用题.18.甲、乙两人练跑步,从同一地点出发,甲每分钟跑250m,乙每分钟跑200m,甲比乙晚出发3分钟,结果两人同时到达终点,求两人所跑的路程.19.雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套).已知1名工人一天可缝制童装上衣3件或裤子4件,问怎样分配工人才能使缝制出来的上衣和裤子恰好配套?20.在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.21.某天,一蔬菜经营户用60元钱从蔬菜批发市红柿和豆角这天的批发价与零售价如下表所示.问:他当天卖完这些西红柿和豆角能赚多少钱?22.某儿童公园的门票价格规定如下表:某校七年级甲、乙两班共104人去儿童公园游玩,其中甲班人数比乙班人数要多,经估算,如果两班都以班为单位分别购票,那么一共应付1136元,问:(1)两班各有学生多少人?(2)如果两班联合起来,作为一个团体购票,可以省多少钱?四、直击中考1. (2013山东)某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元2. (2013山东)把方程12x=1变形为x=2,其依据是()A.等式的性质1 B.等式的性质2 C.分式的基本性质D.不等式的性质13. (2013山东)将正方形图1作如下操作:第1次:分别连结各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形……,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502B.503C.504D.5054. (2013湖南)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.5. (2013广东)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.6.我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有_______只,兔有______只.7. (2013湖南)今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为元/千克.8. (2013四川)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.9.(2013江苏)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m,求甲、乙两个工程队分别整治了多长的河道.10.(2013福建)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本.这个班有多少学生? 五、挑战竞赛1. 解关于x 的方程 a c b x --+b a c x --+cba x --=3 (ab +bc +cd ≠0) .2.已知关于x 的方程3x -3=2a (x +1)无解.试求a 的值.3. 已知方程ax +3=2x -b 有两个不同的解.试求(a +b )2007的值. 六、每周一练1. 若x x x =-+-21的根的个数( ).A .0B .1C .3D .4 2.方程133=+-x x 的解是 .3. 甲、乙两人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙两人的速度及环形场地的周长.。

小升初数学无忧衔接第13讲用一元一次方程解决实际问题(原卷版)

小升初数学无忧衔接第13讲用一元一次方程解决实际问题(原卷版)

第十三讲用一元一次方程解决实际问题【课程解读】————小学初中课程解读————【知识衔接】————小学知识回顾————1、方程和等式等式:表示相等关系的式子叫做等式。

方程:含有未知数的等式叫做方程。

2、解方程。

解方程:求方程中未知数的值的过程叫做解方程。

解方程的依据:等式的性质。

①等式两边同时加上或减去同一个数,所得结果仍然是等式。

②等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

3.列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。

————初中知识链接————1.解方程的步骤:(1)去分母(2)去括号(3)移项;(4)合并同类项;(5)未知数的系数化1.2.列一元一次方程解应用题的一般步骤:(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.3.会列出一元一次方程解简单商品销售、积分问题、行程问题等应用题。

【经典题型】小学经典题型1.小朋友们带了一些水果去敬老院慰问老人,苹果的数量是芒果的2倍,如果给每位老人4个苹果和3个芒果,最后多出1个芒果和28个苹果。

敬老院有多少位老人?2.有一场球赛,售出50元、80元、100元的门票共800张,共收入56000元。

其中80元的门票和100元的门票售出的张数正好相同,售出三种门票各多少张?3.王兵参加五年级数学竞赛,一共有25道题,竞赛组委会规定:每做对一题得4分,做错一题倒扣2分。

王兵共得了58分,他做错了几道题?4.时代物流公司的李师傅运送1000只玻璃花瓶,双方商定:每只花瓶的运费是3元,如果打碎一只,不但没有运费,还得倒赔5元。

求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。

苏科版数学七年级下册10.3《解二元一次方程组》说课稿2

苏科版数学七年级下册10.3《解二元一次方程组》说课稿2

苏科版数学七年级下册10.3《解二元一次方程组》说课稿2一. 教材分析苏科版数学七年级下册10.3《解二元一次方程组》是学生在学习了二元一次方程的基础上,进一步学习如何解二元一次方程组的重要内容。

通过本节课的学习,学生能够掌握解二元一次方程组的基本方法,提高解决实际问题的能力。

教材从实际问题出发,引导学生认识二元一次方程组,并通过例题讲解,使学生掌握解二元一次方程组的方法。

在此基础上,教材还提供了大量的练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析学生在进入七年级下册之前,已经学习了二元一次方程的知识,对解二元一次方程有一定的了解。

但他们在解决实际问题时,还不能灵活运用所学知识。

因此,在教学过程中,我需要关注学生的学习需求,引导他们更好地理解和运用解二元一次方程组的方法。

三. 说教学目标1.知识与技能目标:使学生掌握解二元一次方程组的基本方法,能够熟练地解二元一次方程组。

2.过程与方法目标:通过观察、分析、归纳等数学活动,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 说教学重难点1.教学重点:解二元一次方程组的基本方法。

2.教学难点:如何引导学生运用解二元一次方程组的方法解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合小组讨论、学生展示等互动环节,提高教学效果。

六. 说教学过程1.导入新课:以实际问题引入,引导学生认识二元一次方程组。

2.讲解新课:通过例题讲解,使学生掌握解二元一次方程组的方法。

3.练习巩固:让学生独立完成教材中的练习题,检验所学知识。

4.拓展提高:提供一些具有挑战性的题目,引导学生运用所学知识解决实际问题。

5.课堂小结:对本节课的内容进行总结,强调解二元一次方程组的方法及应用。

七年级上册数学-一元一次方程的实际应用(三)

七年级上册数学-一元一次方程的实际应用(三)

第13讲一元一次方程的实际应用(三)【板块一】积分问题方法技巧1.根据已知条件或积分表中隐含的条件,得出胜1场,平1场,负1场所得的积分.2.相等关系:胜场总积分十平场总积分十负场总积分=最终积分.题型一已知胜1场,平1场,负1场的积分【例1】某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?【练1】为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九(1)班在8场比赛中得到13分,问九(1)班胜、负场数分别是多少?题型二通过积分表求胜1场,平1场,负1场的积分【例2】下表为中国足球超级联赛第27轮部分积分榜:(1(2)若第27轮后,某队积分54分,胜场是负场的整数倍,问该队胜几场?【练2】下表是欧洲足球冠军杯第一阶段G组赛(每个队分别与其它三个队进行主客比赛各一场,即每个队进行6场比赛)积分表的一个部分,本次足球小组赛中切尔西队总积分为多少分?针对练习11.爷爷和孙子下棋,爷爷赢一盘记2分,孙子赢一盘记3分,平局时爷爷记0分,孙子记2分,下了14盘后两人得分相等(其中平局2盘),则爷爷赢了()A.6盘B.7盘C.8盘D.9盘2.当今世界杯足球赛的积分如下:赢一场得3分,平一场得1分,输一场得0分,某小组四个队进行单循环赛后,其中某队积7分,若该队赢了x场,平了y场,则(x,y)是()A.(1,4)B.(2,1)C.(0,7)D.(3,-2)3.小明是班级的篮球明星,在一场比赛中,他一人独得23分(没有罚球得分),如果他投进2分球比3分球多4个,那么他在这场比赛中投进的2分球有个.4.某次综合实践竞赛共有26道题目,规则是:答对1题得3分,答错1题扣1分,不答得0分,第一小队共有5题没有回答,得了51分,那么该队共答对了道题.5.在一次有7个队参加的足球循环赛(每两个队之间赛且只赛一场)中,规定胜一场记3分,平一场记1分,负一场记0分,某队在这次循环赛中所胜场数比负场数多2场.结果共积11分,问该队战平几场?【板块二】分段计费问题◇方法技巧◇1.常见的分段收费:水费,电费,煤气费,个人所得税,打折销售等.2.相等关系:第一段费用十第二段费用+…=总费用.题型一分段计费问题【例3】为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?【练3】为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份用电量,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?题型二打折销售问题【例4】已知A,B两家商店的随身听的单价相同,书包的单价也相同,随身听和书包的单价之和为452元,且随身听的单价比书包的单价的4倍少8元.(1)问随身听和书包的单价各是多少元?(2)现在这两家商店搞促销,促销方式如下:商店A:所有的商品打八折销售;商店B:每购物满100元,立即返还25元(例如,购物205元,则立即返还50元).小明身上带了400元钱,想买随身听和书包各一个,那么,他应该选择在哪一家商店购买更省钱?【练4】某原料供应商对购买其原料的顾客实行如下优惠办法:①一次购买金额(称为应付款,下向)不超过1万元不予优惠;②一次购买金额超过1万元,但不超过3万元,给九折优惠;③一次购买金额超过3万元的,其中3万元九折优惠,超过3万元的部分给予八折优惠.(1)若顾客第一次购买原料应付款8000元,第二次应付款24000元,则实际共付款元;若他是一次购买同样数量的原料,则实际付款元;(2)某厂因库容原因,第一次在该供应商处购买原料实际付款若干元,第二次购买实际付款26100元,如果他是一次购买同样数量的原料,则实际付款可少付金额为1540元,只知第一次购买的原材料应付款不超过1万元,问第一次到底花费多少钱?针对练习21.某出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是()A.13 B.11 C.9 D.72.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米,按每立方米a 元收费;用水超过10立方米的,超过部分加倍收费.某职工6月份缴水费16a元,则该职工6月份实际用水量为( )A.13立方米B.14立方米C.15立方米D.16立方米3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费( )A.60元B.66元C.75元D.78元4.行李托运费用的计算方法:当行李的重量不超过40千克时,每千克收费1元;超过40千克时,超过的部分每千克2元,某旅客托运了x千克的行李.(1)请用x的代数式表示托运行李的费用;(2)当x=60时,求托运行李的费用.【板块三】方案设计问题◆方法技巧◆1.选择方案时,先列一元一次方程求出两种方案费用相等时,变量的取值,再根据题意,选择合理的方案.2.设计最佳方案时,经常将题目中提供的两种方案结合起来,才能设计出最佳方案.题型一选择购物商场方案【例5】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?【练5】国庆节期间,某地的李老师带领部分生物兴趣小组的同学租用商务车到微山湖湿地公园进行野外生物调查,每张车票原价是30元,甲车车主说:“乘坐我的车可以打折8折(即原价的80%)优惠”.乙车车主说:“乘坐我的车只要超过6人,超过的人数一律按半价收费.”(1)如果李老师带领x(x>6)名同学去微山湖湿地公园则租用甲车和乙车的费用分别是多少元?(2)如果李老师带领10名同学去微山湖湿地公园,则租用哪辆车比较合算?(3)如果租用甲车和乙车的费用相等,试估算出李老师应带几名同学去(直接写出答案,不必写过程)题型二选择购买门票方高【例6】公园门票价格规定如下表:某校七(1)都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【练6】为庆祝“六一“儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.题型三设计生产天数方案【例7】一牛奶制品厂现有鲜奶9吨.若将这批鲜奶制成酸奶销售,则加工1吨鲜奶可获利1200元;若制成奶粉销售,则加工1吨鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3吨;若专门生产奶粉,则每天可用去鲜奶1吨.由于受人员和设备的限制,酸奶和奶粉两种产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕,假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?【练7】某公司以每吨600元的价格收购了100吨某种药材,若直拉在市场上销售每吨的售价为1000元,该公司决定加工后再出售,相关信息如下表所示:(受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利多少元?(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利多少元?(3)若部分粗加工,部分精加工,恰好10天完成,可获利多少元?针对练习31.为庆祝文峰商场正式营业三周年,商场推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠;方案二:如交纳300元会费成为该商场会员,则所有商品价格可获九折优惠.以x(元)表示商品价格.(1)若按方案一购买,需付款元(用含x的代数式表示),若按方案二购买,需付款元(用含x的代数式表示);(2)若某人计划在商场购买价格为5880元的电视机一台,请分析选择哪种方案更省钱.2.某开发公司生产若干件某种新产品需要加工后才能投放市场.现有甲、乙两个加工厂都想加工这批产品.已知甲、乙两个工厂每天分别能加工这种产品16件和24件,且知单独加工这批产品甲厂比乙厂要多用20天,又知若由甲厂单独做,公司需付甲厂每天费用80元;若由乙厂单独做,公司需付乙厂每天费用120元. (1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个厂家单独完成,也可以由两个厂家同时合作完成,但在加工过程中,公司派一名工程师到厂进行技术指导,并由公司为其提供每天5元的午餐补助费,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.。

学生版三元一次方程组(基础)知识讲解

学生版三元一次方程组(基础)知识讲解

三元一次方程组(基础)知识讲解【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B .111216y x z y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩类型二、三元一次方程组的解法2. (韶关)解方程组275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩①②③举一反三: 【变式】解方程组:3. 解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②举一反三:【变式】方程组329a b b c c a +=⎧⎪+=-⎨⎪+=⎩的解为 .类型三、三元一次方程组的应用2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③4.黄冈市在国庆节前夕举办了庆祝建国六十一周年足球联赛活动,这次足球联赛共赛11轮,胜一场记3分,平一场记一分,负一场记0分.某校队所负场数是胜的场数的12,结果共得20分.问该校队胜、平、负各多少场?举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?三元一次方程组(基础)巩固练习【巩固练习】一、选择题1.下列四组数,是方程2x-y+z=0的解的是( ).A .111x y z =⎧⎪=-⎨⎪=⎩B .000x y z =⎧⎪=⎨⎪=⎩C .210x y z =-⎧⎪=⎨⎪=⎩D .012x y z =⎧⎪=⎨⎪=⎩2.已知方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩,则a+b+c 的值为( ).A .6B .-6C .5D .-53.已知532y x y z x a b c ++-与254x y a b c -是同类项,则x-y+z 的值为 ( ) .A .1B .2C .3D .44.若x+2y+3z =10,4x+3y+2z =15,则x+y+z 的值为 ( ) .A .2B .3C .4D .55.已知甲、乙、丙三个人各有一些钱,其中甲的钱是乙的2倍,乙比丙多1元,丙比甲少11元,则三人共有( ).A .30元B .33元C .36元D .39元6. 如图所示,两个天平都平衡,则三个球的质量等于( )正方体的质量.A .2个B .3个C .4个D .5个二、填空题7. 解三元一次方程组的基本思路是 .8. 三元一次方程7x+3y-4z=1用含x、z 的代数式表示y = .9. 在三元一次方程x+y+z=3中,若x=-1,y=2,则z= .10. 若方程-3x-my+4z=6是三元一次方程,则m的取值范围是 .11. 如果方程组864x y y z z x +=⎧⎪+=⎨⎪+=⎩的解满足方程kx+2y-z =10,则k =________.12.已知方程组2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩,若消去z ,得到二元一次方程组________;若消去y ,得到二元一次方程组________,若消去x ,得到二元一次方程组________.三、解答题13.解方程组:(1) 2321122x y zx y x y z -=⎧⎪⎪+=⎨⎪⎪-=+⎩ (2)32522642730x y z x y z x y z ++=⎧⎪--=⎨⎪+-=⎩14. 在等式2y ax bx c =++中,当x =1时,y =4;当x =2时,y =3;当x =-1时,y =0,求a 、b 、c 的值.问每队胜一场、平一场、负一场各得多少分?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三讲 一次方程组一次方程组是在一元一次方程的基础上展开的,教材只介绍了二元一次方程组、三元一次方程组的概念、解法,类似地我们可得到四元一次方程组、五元一次方程组等,尽管元数可以增加,但是它们的解法却是一样的.“消元”是解一次方程组的基本思想,即通过消元把一次方程组转化为一元一次方程来解,而代人法、加减法是消元的两种基本方法.解一些复杂的方程组(如未知数系数较大、方程个数较多等),需要观察方程组下系数特点,着眼于整体上解决问题,常用到整体叠加、整体叠乘、设元引参、对称处理、换元转化等方法技巧.对于含有字母系数的二元一次方程组,我们可以进一步讨论解的特性、解的个数.基本思路是通过消元,将方程组的解的讨论转化为一元一次方程解的讨沦.例题【例1】 给出下列程序: ,且已知当输入x 值为1时,输出值为1;输入的x 值为一1时,输出值为一3,则当输入的x 值为21时,输出值为 . (南通市中考题)思路点拨 建立关于k ,b 的方程组,解方程组先求出k 、b 的值.注:方程、方程组是代数研究的主要内容,当未知数增加、未知数的次数增高,就得到复杂的方程组和高次方程,这是后续学习的主要内容,但解法的思想却不变,即消元与降次.方程组的解是方程组理论中的一个重要概念,求解法、代解法是处理方程蛆的解的基本方法.透彻理解方程蛆的概念并能灵活适用,是解与方程组的概念相关问题的关键.【例2】 若4x-3y-6z=0,x+2y-7z=0(xyz ≠0),则代数式222222103225zy x z y x ---+的值等于( ). A .21-B .219- C .—15 D .—13 (全国初中数学竞赛题)思路点拨 视z 为常数,解关于x 、y 的方程组,这是解本例的关键. 【例3】 解下列方程组:(1)⎩⎨⎧-=-=+1327y x y x(2)⎩⎨⎧=+=+598719951997598919971995y x y x(3)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+324356p r rp r q qrq p pq思路点拨 对于(1)解关于x 、y 的方程组,对于(2)运用整体叠加法解;对于(3)通过取倒数、拆分得到关于p 1、q 1、r1的方程组. 【例4】 k 、b 为何值时,方程组⎩⎨⎧+-=+=2)13(x k y bkx y(1)有惟一一组解;(2)无解;(3)有无穷多组解?思路点拨 通过消元,将方程组的解的情况的讨论转化为一元一次方程解的情况讨论. 注: 所谓“整体叠加”就是说在解一些复杂的方程组,若方程组未知数系数规律可循,可直接把方程作加或作减,而不必拘泥于一般意义上的代入法、加减法,就能达到简化方程组目的.【例5】 已知m 是整数,方程组⎩⎨⎧=+=-266634my x y x 有整数解,求m 的值.( “华杯赛”试题)思路点拨 先求出y ,运用整除的性质求出m 的值,需注意所求的整数m 要使得x 也为整数.【例6】已知方程组⎩⎨⎧=+=+4535y ax y x 与⎩⎨⎧=-=+5235y x by x 有相同的解,则b a ,的值为( )A .⎩⎨⎧==21b a B .⎩⎨⎧-=-=64b a C .⎩⎨⎧=-=26b a D .⎩⎨⎧==214b a思路点拨 由方程组的解的意义可知,它的解满足方程组⎩⎨⎧=-=+5235y x y x解之得⎩⎨⎧-==21y x ,代入⎩⎨⎧=+=+1545by x y ax 得解⎩⎨⎧==214b a ,故选D .【例7】 (全国初中联赛题)若a 、c 、d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,那么a+b+c+d 的最大值是( )A .-1B .-5C .0D . 1思路点拨 有条件得⎪⎩⎪⎨⎧-=-=-=b d b c b a 23,∴a+b+c+d=-5b∵b 是正整数,其最小值为1,于是a+b+c+d =-5b 的最大值是-5.故选B .【例8】(全国通讯赛试题)已知:⎩⎨⎧=-+-+-=-+-+-)2(1989)(1990)(1989)(1988)1(0)(1990)(1989)(1988222 x z z y y x x z z y y x , 求z-y 的值.思路点拨∵x-y=(x-z)+(z-y),代入方程组并化简得⎩⎨⎧-=-++-+=-+-)4(1989))(19891988())(19901988(2)3(0)()(2 y z z x y z z x (4)-(3)×(1988+1990)得z-y=1989学力训练1.(1)方程组⎩⎨⎧=+=++224)2(2y x y x x 的解是 .(荆州市中考题)(2)若关于x 的方程m(x 一1)=2001一n(x 一2)有无数个解,则m 2003+n 2003= . 2.(1)已知方程组⎩⎨⎧-=-=+)2(24)1(155 by x y ax ,由于甲看错了方程①中的a 得到方程组的解为⎩⎨⎧-=-=13y x ;乙看错了方程②中的b 得到方程组的解为⎩⎨⎧==45y x ,若按正确的a 、b 计算,则原方程组的解为 . (2)若mn a+23和都是52a 的同类项,则)()21()(235253nm m n m n ⋅÷的值是 .3.若1-+y x 与3+-y x 互为相反数,则(x+y)2001= . ( “希望杯”邀请赛试题)4.当a = 时,方程组⎩⎨⎧-=+=-1872253a y x ay x 的解x 、y 互为相反数,方程组的解为 . (天津市竞赛题)5.已知x-y=4,7=+y x ,那么x+y 的值是( ). A .土23 B .土211c .士7 D .土11 (宁波市中考题) 6.关于x 、y 的方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 的值为( ).A .一6B .6C .9D .307.若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=+57cy bx by ax 的解,则a 与c 的关系是( ).A .4a+c =9B .2a+c =9C .4a 一c =9D .2a —c =9 8.已知(x 一y+1)2十72-+y x =0,则x 2一3xy+2y 2的值为( ).A .0B .4C .6D .12 (重庆市竞赛题) 9.解下列方程组:(1)⎩⎨⎧=+-=+102361463102463361y x y x (2)⎪⎪⎩⎪⎪⎨⎧=---=-+-152223*********yx y x yx y x(3)⎩⎨⎧-=-=-+-421621y x y x10.已知对任意有理数a 、b ,关于x 、y 的二元一次方程(a 一b)x 一(a 十b)y =a+b 有一组公共解,求这个方程的公共解. (江苏省竞赛题) 11.若21,2=-=-c a b a ,则49)(3)(3+---c b c b = .13.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,即x 、y 均为整数,则m 2= .(“希望杯”邀请赛试题)14.当k 、m 的值符合条件 时,方程组⎩⎨⎧+-=+=4)12(x k y mkx y 至少有一组解.15.若方程组⎩⎨⎧=-=+4732by ax y x 与方程组⎩⎨⎧=-=+3546y x by ax 有相同的解,则a 、b 的值为( ).A .a=2,b=1B .a=2,b=-3C .a=2.5,b=1D .a=4,b=-5(“信利杯”竞赛题)16.设0,0,0.>>c b a ,若ba cc a b c b a x +=+=+=,则x 的值为( ) A .21 B .1 C .23D .2 17.满足2200019991999=+++++yx xz z y 的整数组),,(z y x 有( )组A .3B .5C .8D .12 18.已知:c b a ,,三个数满足51,41,31=+=+=+a c ca c b bc b a ab ,则cabc ab abc++的值为( )A .61 B .121 C .152 D .20119.解下列方程组:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧=====64321ea de cd bc ab (2)⎩⎨⎧=+=+321y x y x (3) 求方程组⎪⎩⎪⎨⎧=+=-=-28)(35)(27)(y x z z x y z y x 的正整数解.20.若51~x x 满足下列方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++++=++++=++++=++++962482242122625432154321543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x 求5423x x +的值. (美国数学邀请赛试题)21.对于有理数y x 、定义一种运算“Δ”:x Δy=ax+by+c ,其中c b a 、、为常数,等式右边是通常的加法与乘法运算.已知3Δ5=15,4Δ7=28,求1Δ1的值. 22.已知)1(10 =++y x x ,)2(12 =-+y x y , 求x+y 的值. (江苏省竞赛题)参考答案。

相关文档
最新文档