最新认识多面体与旋转体教案

合集下载

第二章多面体与旋转体 棱柱(一

第二章多面体与旋转体 棱柱(一

高中立体几何教案第二章多面体与旋转体棱柱(一)教案教学目标1.掌握棱柱的概念、性质,分类及表示方法;2.培养学生的观察能力,抽象概括能力;3.通过棱柱的教学逐渐培养学生的辩证唯物主义观点.教学重点和难点棱柱的概念及性质.教具长方体、六棱柱、五棱柱、底面是梯形的四棱柱模型、橡皮.教学设计过程上一章我们研究了点、线、面间的位置关系,本章我们将研究几何体、多面体和旋转体.本节课我们先研究多面体中的棱柱.(板书:§1.棱柱)请同学们打开自己的文具盒.观察一下铅笔盒、六棱铅笔、橡皮,是否注意到它们在形状上都有什么共同的特点?为了便于学生观察,教师把做好的模型摆在讲台上让学生仔细观察后,再把它们的直观图画在黑板上,比例适当,并请同学们注意教师的画法.(要求教师做好示范)定义有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.(板书:一、定义:……)二、各部分的名称(板书)1.两个平行的面叫做棱柱的底面.2.其余各面叫做棱柱的侧面.3.侧面与底面的交线叫做底面的边.4.侧面的交线叫做棱柱的侧棱.5.侧面与底面的公共点叫做棱柱的顶点.6.侧棱与底面的边叫做棱柱的棱.7.不在同一个面上的两个顶点的连线叫做棱柱的对角线.8.两底面间的距离叫做棱柱的高.三、重要截面截面用一个平面去截棱柱,与各面的交线组成一个封闭的图形.1.平行于底面的截面.2.垂直于侧棱的截面叫直截面.3.过不相邻的两条侧棱组成的平面叫对角面.底面:ABCDE,A1B1C1D1E1或AC,A1D1侧面:ABB1A1,BCC1B1,……或AB1,BC1,底面的边:AB,A1B1,BC1,……侧棱:AA1,BB1,……顶点:A,B,A1,B1,……对角线:BE,……高:OO1平行于底面的截面:A2B2C2D2E2或A2C2直截面:A′B′C′D′E′,或A′C′对角面:ACC1A1或AC1.(教师把五棱柱标上字母.结合图形说明定义及各部分的表示方法)练习:1.在图3中,请同学们指出棱柱的底面、侧面、侧棱、对角线,并画出它们的高.2.在图3中,AB1是棱柱的对角线吗?3.在图3中,(直棱柱)侧棱AA′为什么是棱柱的高?(强调侧棱与底面的关系)4.画出几个棱柱中的一个与底面平行的截面、直截面、对角面.问题:仔细观察一下,这几个空间图形,它们都是棱柱,它们之间有什么区别?能否根据它们之间的某个区别来分类?四、分类1.按线面的位置关系分:侧棱与底面斜交的棱柱叫斜棱柱.侧棱与底面直交的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.2.按侧棱数分:侧棱数为3,4,5,可以把棱柱分为三棱柱,四棱柱,五棱柱……练习:下面一些物体属于哪一类棱柱?(1)课桌的腿.(2)教室里用的簸箕加一个盖,并指出它的底面与侧面.(说明:此练习说明底面不一定在上、下,而是根据两个平面平行的特征来决定的)(3)铅笔盒为长方体属于哪一类?并指出它的侧面与底面.(说明:此练习说明四棱柱比较特殊,一般情况下可把底面与侧面进行更换)(4)画两个三棱柱:①三条侧棱全能看见.②三条侧棱不全看见.五、性质根据定义及侧面、侧棱与底面的关系来观察、总结棱柱的性质.(学生讨论、证明)1.侧棱都相等,侧面是平行四边形.2.两底面和平行于底面的截面是全等的多边形.3.对角面是平行四边形.问题:直棱柱,正棱柱具有什么性质呢?由学生讨论、证明得到:直棱柱性质:(1)侧棱都相等,侧面是矩形.(2)底面与平行于底面的截面是全等的多边形.(3)对角面是矩形.(4)侧棱长是棱柱的高.正棱柱既有一般棱柱及直棱柱的性质,还有如下性质:(1)底面与平行于底面的截面是全等的正多边形.(2)侧面是全等的矩形.例斜棱柱ABC-A′B′C′中,A′在底面ABC的射影O是底面三角形ABC的中心,求证:BCC′B′是矩形.分析:因为斜棱柱具有性质:侧面是平行四边形,所以只需证BCC′只有一组邻边互相垂直即可.证明:连AO.因为O是△ABC的中心,所以AO⊥BC.又因为A′O⊥平面ABC,且AO是AA′在平面ABC上的射影.所以AA′⊥BC.(三垂线定理)因为BB′∥AA′,所以BB′⊥BC.因为BCC′B′是平行四边形,(性质)所以BCC′B′是矩形.注:此例说明:斜棱柱可以有一个侧面是矩形.小结:1.棱柱的定义是在抓住了它的两个特点而总结出的.2.它的性质及分类是根据它的侧棱与底面的关系及底面、侧面的形状进行的.作业:1.p.53第1,2,3题.2.在第三题中加上:对角面及平行底面的截面的形状是怎样的?侧棱与上下底面的位置关系如何?。

第二章多面体与旋转体球

第二章多面体与旋转体球

高中立体几何教案第二章多面体与旋转体球教案教学目标1.掌握球的定义.2.掌握球的性质,并能熟练应用;3.通过球的教学,培养学生分析问题解决问题的能力.教学重点和难点重点:球的截面性质.难点:球面距离的计算.教学设计过程一、复习提问师:圆柱是怎样定义的.生:以矩形的一边为旋转轴,其余各边旋转而成的曲面所围成的几何体叫做圆柱.师:是矩形的边为旋转轴吗?生:是师:同学们请读p.21定义,然后教师强调指出,是以矩形的一边所在的直线为轴.师:同学们再考虑:圆锥、圆台是怎样定义的.教师要强调边所在的直线为轴.二、讲课题师:以上同学们清楚了圆柱、圆锥、圆台的形成过程.那么球是怎样形成的呢?是否也可以通过某一个几何体旋转而形成呢?学生经过思考不难发现,半圆以它的直径所在的直线为轴旋转所成的曲面围成的几何体.(待学生回答后)教师展示教具,(从而得出球面的旋转定义)(板书)半圆以它直径所在的直线为轴旋转所成的曲面叫做球面,球面所围成的几何体叫做球体(简称球),(接着教师画出下图并介绍球的有关概念:球心、球半径、直径、球的表示,特别要强调球面与球二者的区别)师:球面与球的区别是什么?生:球是包括球面在内的一个几何体,球面是一个面.师:在平面几何里,从点集的观点看圆是怎么定义的,我们是否也可用类似的方法定义球面.生:在同一平面内,一动点到一定点的距离等于定长的点的集合,是以定点为圆心,定长为半径的圆.师:在空间到定点的距离等于定长的点的集合,是以定点为球心的球面.球的性质:师:通过上面的讨论我们不难看出:球面两种定义和圆有联系.比如说:从点集的观点看圆与球面的定义,这个定义就其内容来说,都是指到定点的距离等于定长的点的集合,它们的不同之处只在于定义适用的范围,圆的定义是对平面而言,而球的定义则是对空间而言的,因此可以说,球面的概念是圆的概念在空间的推广,既然如此我们不禁要问,它们之间会不会有某些相似的性质,我们能否从圆的某些性质去推测并证明球的某些性质.(显而易见,上面的引入和启发为学生对球性质的进一步探讨在思维方法上做好了必要的准备,学生已形成了一定的“定势”思维,教师要牢牢把握住既定的思维轨道去探索)师:我们知道圆的割线在圆内的部分是一条线段,球被平面所截其截面是什么?生:是圆面.师:为什么是圆面,教师出示教具演示,并指出教材不做证明要求.(请有兴趣的同学下去完成证明)(下面的证明仅供教师参考)证明:设球的半径是R,下面分两种情况研究.(1)设平面α与球面相交,如果点O∈α(如上图2),设A是球面和平面α的交线上的任意一点,因为A在球面上,所以AO=R.所以A在平面α内以O为圆心,R为半径的圆上.反过来,如果B是这个圆上的任意一点.因为OB=R,所以点B在球面上.点B在球面上,又在平面α内,就是说点B在平面α和球面的交线上.因此,平面α和球O的截面是一个圆面.师:在圆中,圆心与弦的中点连线与弦有什么位置关系?生:垂直.师:那么在球中,球心与截面圆心的连线与截面有什么位置关系.(教师画出示意图)生:垂直于截面圆.(教师板书球的性质(1))(并展示实物或模型演示给学生,不作证明)师:球心与截面圆心的连线垂直于截面圆,那么不难看出,球半径R,球心与截面圆的距离d,及截面圆半径r之间有什么关系?生:所在圆半径不同.师:可以看出,半径较大的劣弧反而短.这就启示我们,在球面由A到B的路程要尽量沿着所在圆半径较大的劣弧走.在连接A,B的劣弧中最大圆的半径存在吗?生:(学生相互议论,研究发现)最大圆半径存在.师:它等于多少?生:就是经过这两点的大圆半径R.师:由以上讨论:最后我们知道,在球面上,两点间的最短距离就是经过这两点的大圆在这两点间的一段劣弧长度,把这个弧长叫做两点间的球面距离.(板书)例1(把例题抄在投影片上)我国首都北京靠近北纬40°,求北纬40°纬线的长度约为多少千米(地球半径约6370km).师:怎样能把这个问题平面化呢?生:做地球的截面大圆.师:是截面大圆吗?任一个截面大圆能完成该题的要求吗?生:(部分学生说能,另一部分说不能,经过讨论争执,最后统一了意见)是经过南北极的大圆截面.师:(画图)请同学回答哪个角等于40°.生:∠AOB=40°师:请找出经过A点纬线圈的半径.生:半径是AK.师:过A点纬线圈的周长是多少?生:C=2π·AK.师:用半径R和40°表示AK的长.生:AK=Rcos40°师:故求出了北纬40°纬线的长度约为C=2π·Rocs40°=3.066×104km练习:(1)课本p.87 1.(2)下列命题:a.球的任意两个大圆的交点连线是球的直径.b.球面上任意两点的球面距离,是过这两点的大圆弧长.c.球面上任意两点的球面距离,是连接这两点的线段长.d.用不过球心的平面截球,球心和截面圆心的连线垂直于截面.正确的是[ ]作业:课本p.91.1.2.课堂教学设计说明本教案体现由浅入深、循序渐进的教学原则,充分体现了启发式、和类比思想的教学方法,培养学生独立思考、发现问题和解决问题的能力.。

第二章多面体与旋转体 棱柱(二)

第二章多面体与旋转体 棱柱(二)

高中立体几何教案第二章多面体与旋转体棱柱(二)教案教学目标1.使学生掌握四棱柱的概念及类属关系;2.通过对长方体性质的研究,培养学生的空间想象能力;3.通过由长方形性质推导长方体性质的类比方法对学生进行辩证唯物主义的思想教育.教学重点和难点长方体的性质.教具四棱柱、平行六面体、直平行六面体、长方体、正四棱柱、正方体等模型.教学设计过程一、复习1.棱柱的定义.2.棱柱的性质.3.什么叫四棱柱.二、新课师:由复习3知:底面是四边形的棱柱叫四棱柱.(板书:1.四棱柱)师:四棱柱有6个面,各个面的形状不同,构成不同的四棱柱,请大家观察模型总结出:(板书上面图表,从两个不同的角度带领学生分析各面的形状对四棱柱分类)师:由此得到问题:1.平行六面体的各个面是什么样的四边形?直平行六面体、长方体、正方体呢?学生甲:平行六面体的六个面都是平行四边形.生乙:直平行六面体的一组相对的面是平行四边形,其余四个面是矩形.生丙:长方体的六个面都是矩形;正方体的六个面都是正方形.2.长方体是直四棱柱,直四棱柱是长方体吗?生:不一定.因为直四棱柱的底不一定是矩形.3.正方体是正四棱柱,正四棱柱是正方体吗?生:不一定.因为正四棱柱的底是正方形,而侧面不一定是正方形.(通过这组练习,使学生搞清不同的四棱柱间的区间与联系)师:在平面几何中长方形有什么性质呢?生:若长方形的长为a,宽为b,则对角线长为l2=a2+b2.另一生:若对角线与过同一个顶点的两条边的夹角分别为α,β,则有cos2α+cos2β=1.师:谁能证明?(通过学生回忆,讨论后,找一学生到前面板演)生:证明:如图1:师:引申:若以D点为坐标原点,DA方向为x轴的正方向,DC方向为y轴的正方向DD1方向为z轴的正方向,在确定长度单位后就建立了空间直角坐标系,则长方体的长、宽高即为B1点在坐标轴上的射影,α,β,γ即为OB1与x,y,z轴的夹角,即有关系式:小结:本节课的内容:1.特殊四棱柱及它们之间的关系,用集合表示为:2.长方体的性质,长方体的对角线长的平方,等于长方体三棱的平方和,利用这一性质可使求空间两点间的距离问题转化为求长方体的对角线长的问题,使运算简单多了.作业:p.58第4、5题.思考题:(1)在例1中若沿对角线AC折起成直二面角后是否可构成一长方体,求BD 的距离?若能构成长方体,是怎样的长方体?(2)在例1中沿任一条直线l折成直二面角后如何构成一长方体,求BD的距离?课堂教学设计说明本节课由于是第二章多面体与旋转体的第一节,所以在教学中分两节进行.第一节是紧扣教学大纲和教材,从辩证唯物主义的观点出发,培养学生的观察能力、空间想象能力.抽象的概括出棱柱的定义、性质和分类,所以这节课中用的教具较多,意在多观察、多想.老师适当点拨、高度的概括出定义、性质并有意的引导出棱柱的两种分类的方法.第二节是在上一节的内容基础之上进一步培养学生的观察能力和空间想象能力.通过对四棱柱的研究进一步的展现“转化”这一思想方法的应用.通过学习,使学生学会研究多面体的方法和步骤,学会如何对多面体进行分类.。

认识多面体和旋转体

认识多面体和旋转体

课题: 6.1.1 认识多面体和旋转
【教学目标】
了解多面体和旋转体的基本概念,认识多面体的面、棱、顶点、对角线及旋转体的轴和母线;通过学习认识空间几何体的结构特征,提高学生的归纳总结能力,培养学生由具体到抽象,由一般到特殊的思想方法。

【教学重点】
多面体和旋转体的有关概念
【教学难点】
多面体和旋转体的基本概念,初步形成空间想象力
【教学方法】
观察演示探究
【教学过程】
教学
环节教学内容师生活动二次修改
导入
PPT展示:在现实生活中,我们周围存在着很多
形状各异的几何体,让学生观察它们的结构特点
圆形的方形的,多面的,旋转的都有
教师展示图形,并
分析这些图形的结构特
点,学生认真观察,并
回答老师提出的问题:
这些图形各有什么特
点?
估计学生认识到:方的,
圆的,有尖的等多面体
教师分析所展示图形并
板书多面体。

第二章多面体与旋转体球的表面积

第二章多面体与旋转体球的表面积

高中立体几何教案第二章多面体与旋转体球的表面积教案教学目标1.使学生理解球的表面积公式的推导方法,并能熟记公式内容;2.在引理的论证过程中,进一步要求学生树立转化的思想(把空间问题转化为平面问题);3.通过寻求如何研究球表面积的方法,培养学生应用无限分割和极限思想的意识,进而在实施推导公式的过程中,对学生进行“以直代曲”的辩证唯物主义思想教育.教学重点和难点本节教材的重点是掌握球的表面积的计算公式,而如何推导球的表面积公式是本节的难点.教学设计过程一、新课引入师:(手持模型)今天,我们要研究的课题就是如何求得球的表面积.下面,请同学们各抒己见.(板书课题)生甲:(脱口而出)可以仿照圆柱、圆锥和圆台的侧面积的求法,设法剪开球面,使其展成平面图形而求得结果.(同学们立即反驳,此办法不可能实现)生甲:(申辩)如果像家里削水果皮那样(想象水果是个球体),球的表面就会被削下来,然后展开,再进行计算.生乙:削下来的球表面是螺旋状连接的,根本无法展平.另外,条形表面也有一定的弯曲度.生甲:那可以把条形表面尽可能地削得窄一点,弯曲度也会随之变小,也就接近平面图形了.生丙:(好像受到了启发)我们要求球的表面积,可以先求半球面的大小.用一组平行于底面圆的平面去截球面,随着平行平面间距离的逐渐减小,原来弯曲的球面就转化为一族圆柱侧面的总和,圆柱侧面积有计算公式,那么再找到这一族圆柱侧面积之间的大小关系,最后求出这所有圆柱侧面积之和,我们要求的球表面积就可以解决了.生丁:我想用一些很小的正方形去贴满球体表面,那么只要求出这些小正方形的面积和,问题也可以解决.……师:同学们的想法都很好.要求球的表面积不再能简单地利用已学过的几何体侧面展开的办法了,因为对球体而言,无论怎样剪开,它还是曲面,不可能成为平面图形.大家可以来仔细分析一下刚才几位同学的解题方案,都有一个共同的想法,这就是我们将要在高二进一步学习的极限思想.若把球表面无限分割,将会得到许多近似于平面图形的图形.问题解决已有些眉目,再让咱们大家集思广议,完善求解方法.(课堂内鸦雀无声)(需引导一下)二、新课师:回忆一下,在平面几何的学习过程中,求圆的周长公式,我们采取了什么办法?生:是用圆内接正多边形的周长来近似地表示它的.师:当边数逐渐增加时,正多边形的周长就越来越接近圆的周长.当边数无限增加时,圆内接正多边形的周长就是圆的周长,这正是“以直代曲”的尝试.我们是否可以对此方法稍加改造,来完成球的表面积计算公式的推导?生丙:我想用球的内接圆柱的侧面积来近似求球表面积,只要用越来越多的平行平面把球分割,那么所得到的许多个内接圆柱的侧面积的全体就越来越接近球的表面积了.师:只能用球的内接圆柱去研究吗?生:圆台也可以.师:下面,我们以圆台为例,证明一个预备定理.目的是求出球内接圆台的侧面积公式.(板书引理)引理球面内接圆台(圆台上、下底面是球的两个平行截面)的高为h,球心到母线的距离为P,那么圆台的侧面积为2πPh.下一步,求半球面的面积.用n-1个平行于半球大圆面的平面将半球分为n个部分,使每一部分的母线都相等,则球心到它们的母线的距离都是p,而它们的高分别为h1,h2,h3,…,hn.如果平行平面无限增加,这些圆台、圆锥的侧面和就无限地接近于半球面,同时p无限地接近于R.当p变为R时,侧面积的和S变为2πR2,我们把这个和作为半球面的面积.例2 口答下面问题,并说明理由.(1)球的半径扩大n倍,它的面积扩大多少倍?(2)球的面积扩大n倍,它的半径扩大多少倍?(3)球大圆的面积扩大n倍,球面积扩大多少倍?(4)球的面积扩大n倍,球的大圆面积扩大多少倍?生:设球半径为R.(1)因球半径扩大n倍,S球面=4π(nR)2=n2×4πR2,即球面积扩大n2倍.四、小结在本节课内,我们讲了(1)球表面积等于它的大圆面积的4倍.(2)“以直代曲”的研究方法.(3)无限分割和逐次逼近的数学方法.五、作业1.课本p.92.6,2.课本p.92.7,3.课本p.92.8,4.两底面半径为r1和r2(r1<r2)的圆台中有一个内切球,求这个球的表面积.(4πr1r2)5.(思考题)球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球面的面积.(3πa2)(提示:把PA,PB,PC看成正方体内相交于一点的三条棱.因P,A,B,C在球面上,则此正方体内接于球.正方体的对角线恰为球的直径)课堂教学设计说明这堂课的知识量不算很大,主要任务就是完成球表面积公式的推导.作为生活常识,学生们大部分都已经知道了公式的内容.那么采用什么办法去吸引学生的注意力,激发学生的学习兴趣,使这堂课上得比较生动活泼呢?这是我在准备教案前首先想到的问题.其次,要想求出球的表面积,还需先证明一个引理.一部分学生在预习中可能会产生这样的疑问:为什么非要找一个球的内接圆台,而不是内接圆柱,内接圆锥?为什么此内接圆台还必须知道球心到母线的距离P,而不是底面圆的半径r?我为了处理好这两个大问题,就设计了一个教学过程的粗线条:先准备让学生自由讨论,(我借机,听取学生的想法,同时找一个没有预习课本,而又出现的是常见错误想法的同学,先汇报思考结果)再讲评总结的方式,一步步地引出学生们自行产生的无限分割和极限思想.由于学生更熟悉圆柱的结构,用圆柱的侧面积去逼近球表面的想法会很自然地产生.我在肯定此想法的基础上,引导学生去用圆台的侧面积逼近球的表面积的想法就容易了.对于球来说,它的基本元素是球半径,球面上任意一点到球心的距离都一样.所以,要找的球表面的相似体也要抓住这一性质.课堂习题的配备,主要想让学生了解到:要求球表面积只要抓住球半径即可.无论所给具体题目的条件如何变化,始终从公式出发,“缺什么,找什么,要什么,求什么”,紧紧围绕能求出球半径的目的而思考.。

认识多面体与旋转体教学流程

认识多面体与旋转体教学流程

认识多面体与旋转体教学流程好的呀,那咱们就开始聊聊这个多面体和旋转体的教学流程吧。

一、导入部分。

咱得先想个特别有趣的方式把这个话题引出来。

比如说,我可以拿着一些实物,像魔方(这可是典型的多面体哦),还有像圆柱形状的水杯(这就是旋转体啦)。

然后走进教室就问同学们,“宝子们,看看我手上拿的这些东西,有没有觉得很熟悉呀?”接着就开始引导他们观察这些物体的形状特点,“你们看这个魔方,它每个面都是方方正正的,再看这个水杯,它的上下底面都是圆的,侧面还是弯弯的呢。

”这时候就可以把多面体和旋转体的概念简单提一提,让同学们有个初步的印象。

二、知识讲解。

1. 多面体。

- 先给同学们讲啥是多面体。

“宝子们,多面体呢,就是由好多平面图形围成的立体图形。

就像刚刚的魔方,它有六个面,每个面都是正方形。

那多面体还有很多种类呢。

比如说三棱锥,它就像一个金字塔一样,底面是个三角形,然后还有三个三角形的侧面,一共四个面。

再看三棱柱,它有两个底面是三角形,三个侧面是长方形。

咱们在生活中也能看到很多多面体的例子哦,像房子的形状很多时候就是长方体(这也是多面体),还有咱们上课用的粉笔盒。

”- 然后再讲讲多面体的一些重要元素,像顶点、棱和面。

“宝子们,顶点呢,就是多面体上这些棱和棱相交的地方,棱就是两个面相交的线段,面就不用我多说啦,就是那些平平的部分。

比如说三棱锥有4个顶点,6条棱,4个面。

咱可以一起数一下,这样就会记得更清楚哦。

”2. 旋转体。

- 接下来讲旋转体啦。

“宝子们,旋转体就像是一个平面图形绕着一条直线旋转一周得到的立体图形。

就拿圆柱来说,咱们可以想象一个长方形绕着它的一条边旋转一周,就变成了圆柱。

那圆柱有两个底面是完全一样的圆,侧面是一个曲面。

还有圆锥,它是一个直角三角形绕着一条直角边旋转一周得到的。

圆锥就只有一个底面是圆,然后侧面也是曲面,还有一个尖尖的顶点呢。

球体也属于旋转体哦,它可以看成是一个半圆绕着直径旋转一周得到的,球体可是到处都圆圆的,没有棱没有角的。

立体几何教案 第二章 多面体与旋转体 球的直观图画法和球的表面积 教案_1

立体几何教案 第二章  多面体与旋转体 球的直观图画法和球的表面积 教案_1

立体几何教案第二章多面体与旋转体球的直观图画法和球的表面积教案教学目标1.掌握球的正等测画法;2.熟记球的表面积公式;3.激发学生研讨公式的兴趣和掌握推导方法,从而培养学生的空间想象能力,逻辑思维能力和转化能力.教学重点和难点重点:球的表面积及表面积公式的推导.难点:球表面积公式的推导.教学设计过程一、复习提问师:圆的直观图用什么方法画出的.生:(思考片刻,要求学生答出)一般不用斜二测,而用正等测画.师:用正等测画圆的直观图规则是什么?生:(要求思考1分钟后回答)1.在已知图形⊙O中,互相垂直的轴Ox,Oy画直观图时,把它们画成对应的轴O'x',O'y',使∠x'Oy'=120°(或60°).2.已知图形上平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段.3.平行于x轴或y轴的线段、长度不变.二、讲新课1.球的直观图的画法:师:我们学习了圆的直观图的画法,球和圆有何不同.生:球是立体图形,圆是平面图形.师:那么球的直观图是否和圆的直观图画法类似.生:(学生思考后,举手回答)应有三个坐标轴.师:你怎么考虑的.生:因为圆是平面图形,两条相交直线确定平面,球是立体图体,只有三条互相垂直的直线才能确定空间.师:以上同学回答得很好,球是立体图形,它需要在三维空间中完成.讲解课本p.84例2,画半径为R 的球的直观图.画法:(略)2.球的表面积.师:圆的面积是多少?生:(异口同声回答)S=πR2师:圆的面积S=πR2,是怎样得来的,你知道吗?生:书上告诉的.(全班学生大笑)师:对了,这个结论是书上直接给出的.因为我们所学的知识还无法来解决它的推导过程,待今后继续深造来解决.师:我们今天来学习球的面积公式.同学们要特别注意知识的形成过程.师:(让学生目测实心半球)是半球面积大,还是底面的大圆面积大?(培养学生的观察能力和估算能力)(全班学生积极发言,充分调动了回答问题的积极性,这个问题较易回答)师:(同学们再目测一下)看看上面的面积是大圆面积的几倍(估算一下),是6倍吗?(部分学生回答不可能)师:是4倍吗?(教室里肃静,仍有一部分学生回答说:可能性不大)师:是2倍吗?生:差不多!师:上面的面积正好是下面底面大圆的2倍.为什么是2倍呢?正是我们今天解决的问题.师:圆柱、圆锥、圆台的表面积公式,都是利用它的展开图求出的,由于球面不能展开成平面图形,所以球的表面积公式无法用展开图求出,为了求得球的表面积公式,我们先来证明一个预备定理:定理球面内接圆台(圆台上、下底面是球的两个截面)的高为h,球心到母线的距离为p,那么圆台的侧面积为2πph.已知:球面O的内接圆台的高O1O'=h,球心O到母线AD的距离OE=p求证:S圆台侧=2πph.师:同学们考虑上式是比例式,在平面几何中怎样证明比例呢?生:利用相似形或平行线分线段成比例定理.师:这个题用什么方法证好呢?生:相似三角形.师:证哪两个三角形相似?生:(学生沉思,教师提示)只要证明△ADD'∽△OEE'即可,(如图2)师:(大家观测)上面回答对吗?生:(部分学生回答)对的.师:哪位同学起来回答为什么?生:(一位中等成绩的学生回答说)师:这两个三角形相似是很容易证明的.(课本中“注意”二字,这个结果对于球的内接圆柱、圆锥同样成立.应引起教师的注意,要求学生练习)师:下面证明定理:球面面积等于它的大圆面积的4倍.即:S球面=4πR2(在投影片上画出课本图2-48,并且画得大些)师:将半球面上的半大圆ANB分成2n等分,用过各分点平行于半球大圆面的平面将半球分为多少部分,是2n部分吗?生:(个别学生答,是2n部分,即注意力不集中的学生)不是.师:那么是几部分呢?生:是n部分.师:这n部分是什么图形呢?生:(一少部分回答说n个圆台)n-1个圆台,一个圆锥.师:我们作这些圆台的高,分别为h1,h2,h3,…,hn.球心到它们母线的距离是否相等.生:(部分学生认为不相等,教师准备作好引导的作用)相等的.师:设这个距离为p,由预备定理可得这些圆台圆锥的侧面积的和是多少?生:(全班学生思考,教师提示)S=2πph1+2πph2+…+2πphn=2πp(h1+h2+…+hn)师:同学们认真分析,h1+h2+h3+…+hn和应是多少.生:ON,即球的半径R.师:所以S=2πp·R.师:如果分点无限增加,侧面积怎样变化.生:(这时教师需提示)侧面积无限地接近半球面.(教师对无限地应解释,学生第一次接触这个名词)师:分点无限增加,p与R有什么关系.生:p无限地接近R.师:此时侧面积的和S变为2πR2,我们把这个和作为半球面的面积,即S球面=4πR2.例已知:圆柱的底面直径与高都等于球的直径.求证:(1)球的表面积等于圆柱的侧面积.师:圆柱的侧面积是什么?生:底面周长乘以高,即S=c·h.师:在本题中底面周长是什么?生:c=2πR.师:高是什么.生:h=2R.师:所以圆柱侧面积为S=4πR2.(这样问题(1)得证,证明过程要求学生下去练习完成)师:圆柱的全面积是侧面积加两个底面积.那全面积是多少呢?练习:1.球的大圆面积扩大到原来的4倍,那么球的表面积扩大到原来的[ ]2.三个球半径之比是1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的[ ]作业:p.92.6,7.家庭作业:1.阅读课文.(巩固知识的形成过程加深理解记忆)2.对于课文把半球的半大圆ANB分成2n等分.如果对球半径n等分行不行.课堂教学设计说明1.本节课完成了两个内容,一是球的直观图画法,二是球表面积公式及其推导.教案整体构思是要突出教师为主导,学生为主体,学生参与整个教学过程,克服学生上课走神的现象.常此以往,能调动学生学习积极性和主动性.2.重视知识的形成过程,培养学生逻辑推理能力和大胆猜想能力,因为发现问题要比解决问题更重要.数学这门学科不能仅仅作为工具去教学.不能把知识的结论抛给学生,使学生记住结论会演算两道题就行了.而是要培养学生在提高思考能力上下功夫.教学上要力戒“奉送真理,灌注真理”的做法。

9.4 多面体与旋转体-教学设计

9.4 多面体与旋转体-教学设计

9.4.6 多面体与旋转体的体积(一)【教学目标】1.理解祖暅原理,掌握柱体的体积公式.2.会用柱体的体积公式解决相关问题,培养学生应用数学知识解决实际问题的能力.3.通过教学,培养学生的数学应用意识.【教学重点】柱体的体积公式.【教学难点】用柱体的体积公式解决实际问题.【教学方法】这节课采用实物操作与讲练结合法.首先采用实物操作,让学生理解祖暅原理,在此基础上由长方体的体积公式推导一般棱柱、圆柱的体积公式,然后讲练结合,使学生熟练应用公式解决实际问题.环节教学内容师生互动设计意图导入在生产实际中,经常遇到体积的计算问题,如兴修水利、修建道路需要计算土方,修建粮仓、水池需要计算建材数量和容积.因此有必要研究几何体的体积计算.(1) 上左图是一个圆柱形的器皿,底面半径为3cm,高度为8 cm,那么怎样计算它的容积呢?(2) 上右图是一个长方体的游泳池,长是50 m,宽是21 m,深是2 m,那么这个游泳池能容纳多少立方水?几何体占空间部分的大小叫做它的体积.师:生活中经常遇到关于物体体积的问题,这些问题与各种几何体的体积有关.这一节我们就来研究几何体的体积问题.由实际问题引发思考,让学生意识到数学来源于生活.新课1. 长方体体积公式初中学过的计算长方体的体积公式为V长方体=abc 或V长方体=Sh.如图,体积公式V=Sh是否对其他两个几何体也成立?2.进行数学实验,引入祖暅原理取一摞面积相等的课本堆放在水平桌面上,然后用手推一下以改变其形状.复习初中知识,然后探究一般棱柱的体积公式.师:底面积相等、高也相等的棱柱、圆柱,它们的体积是否一样?师:推斜以后体积变化了吗?通过动画演示提高学生学习的兴趣,活跃学生的思维.引发学生学习积极性,由2829309.4.6多面体与旋转体的体积(二)【教学目标】1.理解并掌握锥体的体积公式,掌握球的体积公式.2.会用体积公式解决相关问题,培养学生应用公式运算的能力.3.通过教学,培养学生的数学应用意识.【教学重点】掌握锥体的体积公式.【教学难点】运用锥体和球体的体积公式解决实际问题.【教学方法】这节课采用讲练结合法.教师引导学生探究三棱锥与同底等高的三棱柱体积之间的关系,得到椎体体积公式,教材直接给出球体的体积公式,讲练结合,使学生熟练应用公式解决实际问题.3132339.4.1棱柱【教学目标】1.理解并掌握棱柱的有关概念及性质,会计算长方体的对角线长度.2.通过大量的实物及模型,让学生认识空间几何体的结构特征,提高学生分类讨论、归纳总结的能力.3.通过教学,渗透由具体到抽象,由一般到特殊的思想方法.【教学重点】棱柱的有关概念及性质,长方体对角线的计算公式.【教学难点】棱柱的分类与性质.【教学方法】这节课主要采用实物展示与讲练结合法.纵观本节内容,由多面体到棱柱,然后到直棱柱、正棱柱,再到平行六面体和长方体,一直贯穿由一般到特殊的分类思想.教授时,教师结合学生身边的实际物体以及图片,让学生直观理解各个概念及其分类,并设计问题引导学生自己总结出它们的一般性质.最后学习重要的平行六面体和长方体时,推导出它们的两个定理.通过练习,让学生掌握这个重要定理.环节教学内容师生互动设计意图导入什么样的几何体叫做多面体?学生结合图片以及实际生活经验讨论问题.演示实物与图片,提高学生学习的兴趣,活跃学生的思维.新课1.多面体由若干个多边形围成的封闭的空间图形,叫做多面体;围成多面体的各个多边形叫多面体的面,两个相邻面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连接不在同一面上的两个顶点的线段叫多面体的对角线.一个多面体至少有四个面,多面体依照它的面数分别叫做四面体、五面体、六面体等.练习一请你判断下面的多面体分别是几面体?2. 棱柱和它的性质(1)棱柱的定义问题:什么样的多面体叫做棱柱?它们有什么共同特征?一个多面体,如果有两个面互相平行,其余每相邻两个面的交线都互相平行,这样的多面体叫做学生小组合作,对照模型说一说多面体的面、棱、顶点、对角线各是什么.教师引导,学生口答.完成练习一.学生根据呈现的图片以及实物,总结出棱柱的特点,得出棱柱的定义.巩固多面体的相关概念.34新课棱柱.两个互相平行的面叫做棱柱的底面(简称底);其余各面叫做棱柱的侧面;两个侧面的公共边叫做棱柱的侧棱;两个底面所在平面的公垂线段或它的长度,叫做棱柱的高.(2)棱柱的表示用棱柱两底面的字母表示,如棱柱ABC-A'B'C'.(3)棱柱的分类侧棱不垂直于底面的棱柱叫做斜棱柱.侧棱垂直于底面的棱柱叫做直棱柱.底面是正多边形的直棱柱叫做正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……(4)棱柱的性质观察下列几何体,回答下列问题:(1)两个底面多边形间的关系是什么?(2)上下底面对应边间的关系是什么?(3)侧面是什么平面图形?(4)侧棱之间的关系是什么?棱柱的性质:(1)棱柱的每一侧面都是平行四边形,所有的侧棱都相等;直棱柱的每一个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.(2)两个底面与平行于底面的截面是对应边相互平行的全等多边形.(3)过不相邻的两条侧棱的截面都是平行四边形.3.平行六面体和长方体底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.学生对照课件,指出棱柱各部分的名称.教师呈现各种实物,结合直观图,体会各种棱柱之间的区别.按照不同的标准,对多面体进行分类.教师呈现多个棱柱,提出四个问题,学生进行讨论回答,逐步总结出一般棱柱的性质.对于直棱柱和正棱柱的性质,采用教师提问,学生回答的形式,总结出来.通过课件演示,让学生总结出性质(2)(3).教师采用呈现直观图,让学生对四种棱柱进行类比,观察各个棱柱的特点.找出相同点和不同点.学生自己总结棱柱的共性,由具体到抽象,加深对定义的理解.从棱柱到长方体,正方体,让学生体会由一般到特殊的思想.35369.4.2棱锥【教学目标】1.掌握棱锥的有关概念及性质,并能运用定理解决相应的问题.2.通过实物及模型,让学生认识棱锥的结构特征,提高学生分类讨论、归纳总结的能力.3.通过教学,渗透由具体到抽象,由一般到特殊的思想方法.【教学重点】理解棱锥的概念及性质.【教学难点】理解棱锥的性质.【教学方法】这节课主要采用实物展示与讲练结合法.教师结合学生身边的实物及图片,让学生直观理解棱锥的概念及其分类,总结出棱锥的一般性质.最后由一般到特殊,学习正棱锥的相关知识.37389.4.5 球【教学目标】1.理解球的旋转生成过程,掌握球的定义、性质以及表面积公式.2.能够运用球的表面积公式解决相关问题,培养学生应用数学知识解决实际问题的能力.3.通过教学,渗透把立体几何问题转化为平面几何问题的数学思想.【教学重点】球的定义、性质以及球的表面积公式.【教学难点】球面距离的理解.【教学方法】这节课采用实物操作与讲练结合法.首先采用实物展示,体会球体动态生成的过程.类比圆的知识,理解球的定义及其性质.然后结合地球仪上的经线和纬线,理解大圆与小圆的知识.识记球的表面积公式,并能应用公式解决相应的问题.【教学过程】环节教学内容师生互动设计意图导入问题下面的物体呈什么形状?教师呈现有关球的图片.学生结合图片以及实际生活经验,举出更多关于球的例子.由丰富的图片和实物出发,激发学生兴趣.新课1.球的概念与性质半圆以它的直径为旋转轴,旋转一周所形成的曲面叫做球面.球面所围成的几何体,叫做球体,简称球.球的各个元素(如图所示):(1)球心;(2)球的半径;(3)球的直径;球的表示方法:用表示球心的字母表示,如球O.球面可以看作空间中与定点(球心)距离等于定长(半径)的点的全体构成的集合(轨迹),同样,球体也可以看作空间中与定点距离等于或小于定长的点的全体构成的集合.师:球是由什么图形旋转而来的?生:圆,半圆.教师结合直观图讲解球的各个元素.师:仿照初中圆的定义,你能给出球面的另一种定义吗?强调注意球体与球面的联系与区别.理解定义,体会旋转体动态形成的过程.由具体的实物到抽象的直观图,培养学生的空间想象能力.O直径半径球心39新课用一个平面去截一个球,截面是圆面:(1)球心和截面圆心的连线垂直于截面;(2)球心到截面的距离d与球的半径r,有下面的关系:d=R2-r2.球面被经过球心的平面截得的圆叫做球的大圆,被不经过球心的平面截得的圆叫做球的小圆.知识拓展:过南北极的半大圆是经线,平行于赤道的小圆是纬线.球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离.例1 我国首都北京靠近北纬40︒纬线上,求北纬40︒纬线的长度.(地球半径约为6 370 km)解:如图,设A是北纬40︒圈上的一点,AK 是它的半径,所以OK⊥AK.设 c 是北纬40︒的纬线长,因为∠AOB=∠OAK=40︒,所以c=2π·AK=2π·OA cos∠OAK结合图形,引导学生作出辅助线,利用勾股定理得到结论.教师可借助地球仪,帮助学生理解概念.师:假如你要乘坐从济南直飞广州的飞机,设想一下,它应该沿着怎样的航线飞行呢?航程大约是多少呢?(1)济南和广州间的距离是一条线段的长吗?(2)经过球面上的这两点有多少条弧呢?(3)这无数条弧中,长度最短的是哪条?教师分析,从立体图形中抽象到平面图形,引导学生用初中所学知识解决问题.学生在教师的引导下,逐步完成证明过程.看懂球的截面直观图要求学生有较高的空间想象能力,教师可以利用模型帮助学生理解.借助这个例题,教师再次强调将立体几何问题转化为平面几何问题的思路.αOO'dRrPOAKB40 °40419.4.4 圆柱、圆锥(一)【教学目标】1.理解并掌握圆柱、圆锥的有关概念及性质,掌握圆柱、圆锥的侧面积公式,并能运用公式解决相应的问题.2.通过教学,培养学生运用公式计算的能力.3.理解侧面积公式的推导过程及其主要思想,渗透把立体几何问题转化为平面几何问题解决的思想方法.【教学重点】圆柱、圆锥的定义以及性质,圆柱、圆锥的侧面积公式.【教学难点】圆柱、圆锥侧面积公式的运用.【教学方法】这节课采用实物操作与讲练结合法.首先采用实物展示,用旋转的观点定义圆柱、圆锥,在教师问题的引导下推导其性质.学生根据纸制模型的侧面展开图,自己推导侧面积公式,体会把立体问题转化为平面问题的思想方法.在理解公式的基础上,运用公式解决实际问题.【教学过程】4243449.4.4圆柱、圆锥(二)【教学目标】1.掌握正等测画法,能够画出圆柱、圆锥的直观图.2.通过画直观图的过程,体会由具体到抽象、由立体到平面的转换过程,培养学生的空间想象能力.3.培养学生作图、识图和运用图形语言交流的能力,培养学生严谨规范的作图习惯.【教学重点】正等测画法.【教学难点】理解正等测画法.【教学方法】这节课主要采用讲练结合法.通过立体图形的照片入手,体会立体与平面之间的关系.从画水平放置的圆的直观图入手,总结出正等测画法的具体规则.类比棱柱、棱锥直观图的画法,掌握圆柱和圆锥的直观图画法.【教学过程】环节教学内容师生互动设计意图导入呈现实物,设置问题情境:怎样作出圆柱、圆锥的直观图?教师呈现图片.学生对比图片与实物,体会立体形与直观图的关系.新课例1 画水平放置的圆的直观图.画法:(1)在圆上取一对相互垂直的直径AB,CD,分别以它们所在的直线为x轴,y轴.画对应的x'轴和y'轴,使∠x'O'y'=120°.(2)将圆O的直径AB分为n等份,过分点画平行于y轴的弦CD,EF,….在x'轴上以O'为中点画线段A'B',使A'B'= AB,将A'B'也分为n等份,以各分点为中点画y'轴的平行线段C'D',E'F',…,使C'D'= CD,E'F' = EF,….(3)用平滑的曲线顺次连接A',D',F',B',E',C'…,A'就得到圆的直观图,它是一个椭圆.总结一般步骤:(1)在已知图形中取相互垂直的轴Ox,Oy,把它们画成对应的O'x'轴和O'y'轴,∠x'O'y'=120°(或60°),它们确定的平面表示水平平面;(2)已知图形上平行于x轴或y轴的线段,在直观图中分别画成平行于xˊ轴或yˊ轴的线段;(3) 平行于x轴或y轴的线段长度不变.教师边演示,边讲解.学生和教师同步完成直观图.教师引导学生总结出正等测画法的步骤.通过动画演示提高学生学习的兴趣,活跃学生的思维.让学生体会“化曲为直”的解决问题的方法.让学生总结画法的步骤,加深对正等测画法的理解.45新课练习一画一个水平放置的半径等于4 cm圆的直观图.例2 画底面圆半径为0.8 cm,高为2.5 cm的圆锥的直观图.画法:(1)画轴:取x 轴、y 轴、z 轴,使它们两两相交成120°;(2)画底面:以O为中心,按x轴、y轴画半径等于0.8 cm的圆的直观图,然后在z轴上,取线段OS=2.5 cm.(3)成图:画圆锥的两条母线SA,SB与底面椭圆相切.再加以整理就得到所画的圆锥直观图.练习二已知一个圆柱的底面半径为 2 cm,高为6 cm,画出它的的直观图.学生仿照例题进行练习,教师巡视指导.类比棱柱,棱锥直观图的画法,学生完成例2.教师强调应注意的问题.师生总结作旋转体直观图的一般步骤.学生仿照例题进行练习,教师巡视指导.小结1. 正等测画法的一般步骤.2. 旋转体直观图的画法.师生共同总结.作业1. 画一个水平放置的半径等于2 cm圆的直观图.2. 已知一个圆锥的底面半径为 3 cm,高为4 cm,画出它的直观图.469.4.3直棱柱和正棱锥的侧面积【教学目标】1.理解并掌握直棱柱和正棱锥的侧面积公式,并能运用公式解决相应的问题.2.通过教学,培养学生运用公式计算的能力.3.理解侧面积公式的推导过程及其主要思想,渗透把立体几何问题转化为平面几何问题解决的思想方法.【教学重点】用公式求直棱柱和正棱锥的侧面积.【教学难点】用直棱柱和正棱锥的侧面积公式解决实际问题.【教学方法】这节课采用实物操作与讲练结合法.学生根据纸制模型的侧面展开图,自己推导侧面积公式,体会把立体问题转化为平面问题解决的思想方法.在理解公式的基础上,运用公式解决实际问题.【教学过程】环节教学内容师生互动设计意图导入问题:某工厂有一个排风管,管身为中空的正五棱柱,尺寸如图所示.计算出制作管身所需的平板下料面积.(不考虑排风管的壁厚)解所求排风管一个侧面的面积为10×30=300(cm2).那么制作管身所需的平板下料面积为5×300=1 500(cm2).教师设置实际场景,学生运用初中知识解决问题.教师给出侧面展开图,引出课题.根据实际生活的问题,设置情境,引发学生积极思考.提出新的解决方案,引发新的思考.新1.直棱柱的侧面积把直棱柱的侧面沿一条侧棱剪开后展在一个平面上,展开图的面积就是棱柱的侧面积.直棱柱的侧面展开图是矩形,这个矩形的长等于直棱柱的底面周长C,宽等于直棱柱的高h,因此直棱柱的侧面积是S直棱柱侧=Ch.练习一一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为.师:棱柱的侧面展开图是什么?如何计算它的侧面积?学生用课前准备的纸制棱柱模型沿侧棱展开.学生自己推导直棱柱侧面积公式.通过动手操作,提高学生学习的兴趣,更容易理解记忆侧面积公式.巩固知识.ch47第九章立体几何48数学基础模块下册49。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、探索新知
探究1:多面体的相关概念
新知1:由若干个平面围成的几何体几何体叫做多面体.围成每个多面体的多边形叫做多面体的面,如面ABCD ; 两个面的公共边叫多面体的棱,如棱AB ;棱和棱的公共点叫多面体的顶点,如顶点A .连结不在同一平面上的两个顶点的线段叫做多面体的对角线,
具体如下图所示:
生回答问题,教师总结。

面 顶


A B 'C 'D 'A 'C B
目,
探究2:旋转体的相关概念
生回答问题,教师
总结。

新知2:
由一条平面曲线绕一条定直线旋转所形成的曲面叫
旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定
直线叫旋转体的轴.这条曲线叫做旋转体的母线。

如下图
的旋转体:
目,。

相关文档
最新文档