6.1.1 认识多面体与旋转体

合集下载

《多面体与旋转体》知识点

《多面体与旋转体》知识点

《多面体与旋转体》知识点1、多面体:(1)棱柱的主要性质:①棱柱的所有侧棱都 ,直(正)棱柱的侧棱长等于 。

②棱柱的每一个侧面都是 形,直棱柱的每一个侧面都是形,正棱柱的各个侧面都是 形。

③棱柱中,过不相邻的两条侧棱的截面都是 形。

(2)填适当的符号,表示下列集合之间的关系:四棱柱 平行六面体 直平行六面体 长方体 正四棱柱 正方体(3)长方体中过一个顶点的三条棱长分别为a 、b 、c,则它的对角线长d= 。

(4)棱锥:① 叫做正棱锥。

②正棱锥各侧棱 ,各侧面是全等的 ,③s s 棱锥截棱锥底=④正棱锥的 、 和 组成一个直角三角形;正棱锥的高、侧棱、侧棱在底面的摄影也组成一个 。

(5)面积,体积公式:s 直棱柱侧= , v 棱柱= ,s 正棱锥侧= , v 棱锥= , 2、旋转体:(1)圆柱:平行于底面的截面是 ,轴截面是 ,s 轴截面= ,(2)圆锥:h, r, l 之间的关系式: 。

s s 圆锥截圆锥底= ,轴截面是 ,s 轴截面= ,(3)圆柱侧面展开图是 ,圆锥侧面展开图是 , s 圆柱侧= = , s 圆柱全= ,v 圆柱= , s 圆锥侧= = , s 圆锥全= ,v 圆锥= ,(4)球:①截面是 ,d, R, r, 之间的关系式 ,②球面上两点的距离:经过两点的大圆在这两点间的一段 的长度。

③ S 大圆= S 球= ,V 球=选择题:1、斜四棱柱的侧面为矩形的个数最多有 ( )A O 个B 1个C 2 个 D3个 2、若棱住的侧面是全等的矩形,则棱柱是( )A .直棱柱B .正棱柱C .正方体D .底面为菱形的直棱柱 3、若长方体的三条棱长分别是3、5、15,则长方体的对角线的长是( ) A .53 B 23 C .3 D .不同于以上答案 4、若两球的表面积之比为1:2,则其半径之比为( )A 1:2B 1:4C 1:2D 1:22 5、侧棱长为2,底面周长为3的正三棱锥的高是( )A .311 B .313 C .339 D .333 6、各棱长均为1的正三棱锥的全面积为 ( )A .2B .3C .2D .367、已知圆柱的轴截面是一个面积为4的正方形,则圆柱的侧面积是( )A .π2B .π4C .π6D .π8 8、圆锥侧面展开图是半径为a 的半圆,这个圆锥的高是( )A .aB .a 22 C .a 3 D .a 23 9、正方体的对角线长为L ,它的全面积是 ( )A .2L 2B .32L C .12L 2 D .18L 210、圆柱的一个底面面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ) A 4πS B 2πS C πS D 3πS11、轴截面为直角三角形的圆锥,侧面积与底面积之比为 ( )A 2:1B 3:1C 5:1D 2:1 12、正四棱锥底面边长为2,侧面积为8,它的体积为( )A334 B 23 C 43 D 83 13、若球的体积增大为原来的8倍,则它的表面积增大为原来的 ( )A2倍 B 4倍 C8倍 D16倍14、一个棱锥的底面面积为Q ,过它的高的中点作平行于底面的截面,那么截面面积 ( )A21Q B 31Q C 41Q D 22Q 15、各棱长均相等的正四棱锥的侧面与底面所成的二面角的余弦值为 ( )A63 B 33 C 23 D 36二、填空题:1、正方体一个面的对角线的长为a ,则正方体的对角线长是__________。

认识多面体和旋转体

认识多面体和旋转体

课题: 6.1.1 认识多面体和旋转
【教学目标】
了解多面体和旋转体的基本概念,认识多面体的面、棱、顶点、对角线及旋转体的轴和母线;通过学习认识空间几何体的结构特征,提高学生的归纳总结能力,培养学生由具体到抽象,由一般到特殊的思想方法。

【教学重点】
多面体和旋转体的有关概念
【教学难点】
多面体和旋转体的基本概念,初步形成空间想象力
【教学方法】
观察演示探究
【教学过程】
教学
环节教学内容师生活动二次修改
导入
PPT展示:在现实生活中,我们周围存在着很多
形状各异的几何体,让学生观察它们的结构特点
圆形的方形的,多面的,旋转的都有
教师展示图形,并
分析这些图形的结构特
点,学生认真观察,并
回答老师提出的问题:
这些图形各有什么特
点?
估计学生认识到:方的,
圆的,有尖的等多面体
教师分析所展示图形并
板书多面体。

高三立体几何复习讲义:多面体与旋转体

高三立体几何复习讲义:多面体与旋转体

多面体与旋转体一、棱柱1、 由几个多边形围成的封闭的几何体叫做多面体。

2、 两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。

棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。

棱柱的基本性质:(1) 棱柱的侧面都是平行四边形。

(2) 棱柱的两个底面及平行于底面的截面都是全等的多边形。

3、 侧棱与底面不垂直的的棱柱叫做斜棱柱。

侧棱与底面垂直的棱柱叫做直棱柱。

底面是正多边形的直棱柱叫做正棱柱。

性质:(1) 直棱柱侧面都是矩形。

(2) 直棱柱侧棱与高相等。

(3) 正棱柱的侧面都是全等的矩形。

4、 底面是平行四边形的棱柱叫做平行六面体。

底面是矩形的直棱柱是长方体。

长方体的对角线平方等于三边长的平方和。

5、 夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。

6、 h V S =⋅棱柱底. 二、棱锥1、有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。

相邻的两个侧面的公共边叫做棱锥的侧棱。

各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。

棱锥的基本性质:如果一个棱锥被平行于底面的一个平面所截,那么: (1) 侧棱和高被这个平面分成比例线段; (2) 截面和底面都是相似多边形;(3) 截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。

2、如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这个棱锥叫做正棱锥。

正棱锥的性质:(1) 各侧棱相等,各侧面都是全等的等腰三角形。

(2) 正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形。

正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

最新认识多面体与旋转体教案

最新认识多面体与旋转体教案

二、探索新知
探究1:多面体的相关概念
新知1:由若干个平面围成的几何体几何体叫做多面体.围成每个多面体的多边形叫做多面体的面,如面ABCD ; 两个面的公共边叫多面体的棱,如棱AB ;棱和棱的公共点叫多面体的顶点,如顶点A .连结不在同一平面上的两个顶点的线段叫做多面体的对角线,
具体如下图所示:
生回答问题,教师总结。

面 顶


A B 'C 'D 'A 'C B
目,
探究2:旋转体的相关概念
生回答问题,教师
总结。

新知2:
由一条平面曲线绕一条定直线旋转所形成的曲面叫
旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定
直线叫旋转体的轴.这条曲线叫做旋转体的母线。

如下图
的旋转体:
目,。

简单旋转体与多面体PPT课件

简单旋转体与多面体PPT课件

A' D
B'
L
c
C
=A B 2A D 2D D 2
=a2b2c2
A
a
b
B
L= a2b2c2
第36页/共38页
B组---2、
第37页/共38页
感谢您的观看!
第38页/共38页

半圆 直径 所在的直线
第31页/共38页
二、多面体的结构特征
多面体
结构特征
棱柱
有两个面 互相平行 ,其余各面都是四边形,并 且每相邻两个面的交线都_平__行__且__相_等___
有一个面是 多边形 ,而其余各面都是有一个公共 棱锥 __顶__点
的三角形
棱台
棱锥被平行于 底面 的平面所截, 截面 和 底面 之间的部分
三棱锥 四面体 直棱锥
四棱锥 正棱锥
第27页/共38页
五棱锥
2. 棱台
用一个平行于棱锥底面的平面去截棱锥 ,底面与截面之间的部分的多面体叫做棱台.
A1
D1
C1
B1
上底面
侧棱 侧面
下底面
正棱台:用正棱椎截得的棱 台叫正棱台
四棱台ABCD--A'B'C'D'
顶点
第28页/共38页
几何体的分类
柱体
锥体
D.圆锥所有的轴截面是全等的等腰三角形
2. 下列命题是真命题的是( )
A 以直角三角形的一直角边所在的直线为轴旋转所得 的几何体为圆锥;
B 以直角梯形的一腰所在的直线为轴旋转所得的旋转 体为圆柱;
C 圆柱、圆锥、棱锥的底面都是圆;
D 有一个面为多边形,其他各面都是三角形的几何体 是棱锥。

认识多面体和旋转体课件

认识多面体和旋转体课件
感谢观看
体积计算
对于多面体,体积可以通过计算各个 面的体积之和得到。对于旋转体,体 积可以通过计算底面圆的体积或整个 旋转体的体积得到。
角度和弧度的计算
角度计算
在多面体中,角度可以通过测量各个 面之间的夹角得到。在旋转体中,角 度可以用来描述旋转体的旋转角度。
弧度计算
在旋转体中,弧度可以用来描述旋转 体的旋转程度,通常用于旋转轴的角 度测量。
旋转体的建模
旋转体的建模可以使用旋转几何公式进行,例如圆柱和圆锥可以使用旋转面的几何公式进行建模。
建模方法的比较和选择
01 02
精度和复杂性
使用CAD软件进行建模可以获得高精度的模型,但需要一定的技能和经 验。而使用数学公式进行建模可以创建相对简单的模型,但对于复杂模 型可能不够精确。
适用范围
CAD软件适用于各种类型的多面体和旋转体建模,而数学公式适用于某 些特定类型的模型,例如正多面体和旋转体。
在科学研究和教学中的应用
多面体和旋转体的科学研究价值
多面体和旋转体的研究涉及到几何学、拓扑学、物理学等多个学科领域,对于推动数学 和科学的发展具有重要意义。
多面体和旋转体的教学价值
在数学和工程学科的教学中,多面体和旋转体是重要的教学素材,有助于培养学生的空 间思维、几何直觉和解决实际问题的能力。
THANKS
该直线称为旋转轴, 平面图形称为旋转面 。
旋转体的分类
根据旋转面的形状,旋转体可以 分为圆柱、圆锥、圆台等类型。
根据旋转轴的方向,旋转体可以 分为正轴和斜轴两类。
根据旋转轴与旋转面的关系,旋 转体可以分为直纹和单叶两类。
旋转体的性质
旋转体的侧面是曲面,其展开 后是平面图形。
旋转体的体积和表面积与旋转 面和旋转轴的形状、大小和位 置有关。

多面体和旋转体

多面体和旋转体

第二章多面体和旋转体一多面体§2.1 棱柱一、素质教育目标(一)知识教学点1、棱柱的概念及性质。

2、平等六面体,长方体的概念及长方体的性质。

3、直棱柱直观图的画法4、棱柱侧面积的计算(二)能力训练点1、在学习棱住概念和性质过程中,努力提高学生的观察、抽象和概括能力。

2、通过直棱柱直观图的画法的教学,进一步提高学生的作图和识图能力。

3、通过直棱柱侧面积公式的教学,进一步增强学生把空间形转化为平面图形的意识,使学生进一步掌握化归的数学思想和方法,以提高学生分析问题、解决问题的能力。

(三)德育渗透点1、棱柱概念的形成,是从特殊到一般、具体到抽象的过程;通过教学使学生初步认识辩证唯物主义认识论的观点。

2、通过四面体、平行六面体、直平行六面体、长方体、正方体之间相互关系的教学,使学生树立普遍联系的唯物主义观点。

3、通过运用侧面积公式计算生产实践中具体零件的面积,使学生懂得数学对工、农业生产的意义,激励学生努力学好数学,将来为祖国的“四化”建设做出更大的贡献。

二、教学重点、难点、疑点及解决办法1、教学重点:理解棱柱的概念,掌握棱柱的性质及直棱柱侧面积公式,能利用性质及侧面积公式解决有关问题。

2、教学难点:直棱柱直观图的画法3、教学疑点:直棱柱的判断,注意引导学生严格按定义三、课时安排本课题建议安排3课时四、教与学过程设计第一课时节棱柱的概念及性质(一)引入将画有图2-1、图2-2、图2-3的小黑板挂出师:今天这一节课我们学习棱柱的概念和性质(给出课题),以上三个图形所表示的模型均为棱柱,下面我们一起来研究它们的共同特点。

(二)棱柱及有关概念的定义师:大家注意到图2-1到图2-3所表示的几何本均由一些面围成,而面与面之间有交线,因此可以从“面”和“线”两个角度去找它们的特点,先观察图2-1。

(1)首先看面:从面和面的关系及面的开头引导学生讨论,得出结论;有两个面互相平行,其余各面为四边形。

(2)再看线:从线与线之间的引导学生得出结论:每相邻两个四边形的公共边都互相平行。

高中数学几何探究多面体与旋转体的性质

高中数学几何探究多面体与旋转体的性质

高中数学几何探究多面体与旋转体的性质在高中数学的几何领域中,多面体与旋转体是两个极为重要的概念,它们具有丰富而独特的性质,值得我们深入探究。

多面体,简单来说,就是由若干个平面多边形围成的几何体。

常见的多面体有四面体、六面体(也就是正方体和长方体)、八面体等等。

多面体的性质首先体现在其面、棱和顶点的数量关系上。

以最简单的四面体为例,它有四个面、六条棱和四个顶点。

而对于更复杂的多面体,我们可以通过欧拉公式来描述它们面、棱和顶点之间的关系,即:面数+顶点数棱数= 2。

多面体的表面积计算也是一个重要的方面。

对于规则的多面体,如正方体、长方体,我们可以直接通过其边长计算出各个面的面积,然后相加得到表面积。

而对于不规则的多面体,可能需要将其分割成若干个规则的部分,分别计算面积后再求和。

多面体的体积计算则需要根据其形状和特点选择合适的方法。

例如,正方体和长方体的体积可以通过长、宽、高的乘积来计算;三棱柱的体积是底面积乘以高;三棱锥的体积则是三分之一底面积乘以高。

再来看看旋转体。

旋转体是由平面图形绕着一条直线旋转所形成的几何体。

常见的旋转体有圆柱、圆锥、圆台、球等。

圆柱是由矩形绕着其中一边旋转一周得到的。

它的性质包括两个底面是全等的圆,侧面展开图是一个矩形。

圆柱的表面积由两个底面积和侧面积组成,底面积是圆的面积,侧面积则是矩形的面积,也就是底面圆的周长乘以圆柱的高。

圆柱的体积等于底面积乘以高。

圆锥是由直角三角形绕着其中一条直角边旋转一周得到的。

它只有一个底面,是一个圆,侧面展开图是一个扇形。

圆锥的表面积包括底面积和侧面积,侧面积的计算需要用到扇形的面积公式。

圆锥的体积是三分之一底面积乘以高。

圆台可以看作是一个大圆锥减去一个小圆锥得到的。

它有两个底面,侧面展开图是一个扇环。

圆台的表面积和体积的计算相对复杂一些,需要综合运用圆和圆锥的相关知识。

球是到定点的距离等于定长的点的集合。

球的表面积公式是4πr²,体积公式是三分之四πr³。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转体曲线曼妙, 她让建筑物婀娜多 姿,秀丽端庄
认识多面体
练习:课本第 117页第1题
由若干个平面多边形围成的几何体叫做多面体.
四面体
六面体
八面体
十二面体
二十面体
多面体的面数是几,我们就说它是几面体.
多面体上两个面的公共边叫做多面体的棱,棱和棱的公共点 叫做多面体的顶点.连结不在同一面上的两个顶点的线段叫 多面体的对角线.
认识旋转体
一条平面曲线绕其所在平面内的一条定直线旋转所 形成的曲面叫做旋转面.封闭的旋转面围成的几何 体叫旋转体
这条定直线叫做旋转体的轴,那条曲线叫做旋转体的母线。
认识旋转体
由一条封闭的平面曲线绕其一边所在的定直线旋转 一周所围成的几何体叫做旋转体.
这条定直线叫做旋转体的轴,那条曲线叫做旋转体的母线。
圆柱
O1 A
圆锥
S
圆台
O1 AΒιβλιοθήκη OBOA
O
B

练习:课本117 页试一试
母线
认识多面体 认识旋转体
课后作业:
• 1.学习指导与练习6.1. 1 • 2.手工制作:本节课课本上出现的几何体或 自由制作。 • 要求: • a:每人至少一个,可以合作完成,最 好不重复。 • b:模型大小:拿在手中,站在讲台上, 所有同学都能看清。
相关文档
最新文档