统计学6章客观题+答案
统计第6章答案解析

二、单选1-5ACBDC 6-10ACBDB 11-15ABBAC三、多选1.BCDE ;2.ABC ;3.BDE ;4.ACD ;5.CDE ;6.ABCE ;7.CDE ;8.ABCDE ;9.BCE ;10.AB ;11.ABE ;12.ABE ;13.ABCDE ;四、计算题1.解:已知200n =件,140n =件,2%n N = 则样本一级品率为1400.2200n p n ===或20% 样本一级品率的抽样平均误差:0.028p μ===或2.8% 2.解:已知1500N =亩,100n =亩,455x =斤,50σ=斤(1)在重复抽样条件下,抽样平均误差:5x μ===斤 (2)在不重复抽样条件下,抽样平均误差:4.83 μ===斤 3.解:已知500n =,17535%500p == (1)当195%α-=时, 1.96t =0.0213 p μ=== 1.960.02130.0417p p t μ∆==⨯=观众喜欢该影片的区间范围为35%±4.17%35% 4.17%35%+4.17%P -≤≤30.83%39.17%P ≤≤(2)当 4.26%p ∆=时,0.042620.0213pp t μ∆===,195.45%α-= 极限误差不超过4.26%时,把握程度为95.45%。
4.解:已知4500,450020%900, 1.96N n t ==⨯==(1) 4.94fx x f =⋅=∑∑次1.99σ===次0.059 μ===次 1.960.0590.12x x t μ∆==⨯=次4.940.12x X x =±∆=±4.825.06X ≤≤即平均每名学生每月上网约5次。
(2)402550.7100p ++==0.0137 p μ== 1.960.01370.0269p p t μ∆==⨯=0.70.0269p P p =±∆=±67.31%72.69%P ≤≤计算表明,在95%的可靠性,每月上网4次以上的学生比重为67.31%~72.69%。
统计学第六章作业参考答案

第六章抽样调查 一、单项选择 1、在抽样调查中,必须遵循( B )抽取样本 A、随意原则 B、随机原则 C、可比原则 D、对等原则 2、抽样调查的主要目的在于 ( C ) A、计算和控制抽样误差 B、了解全及总体单位的情况 C、用样本指标推断总体指标 D、对调查单位作深入的研究 3、在抽样调查中,无法避免的误差是 ( D ) A、登记误差 B、计算误差 C、记录误差 D、抽样误差 4、样本指标和总体指标 ( B ) A、前者是个确定值,后者是个随机变量 B、前者是个随机变量,后者是个确定值 C、两者均是确定值 D、两者均是随机变量 5、抽样平均误差反映了样本指标与总体指标之间的 ( B ) A、可能误差范围 B、平均误差程度 C、实际误差 D、实际误差的绝对值 6、抽样平均误差是 ( C ) A、全部样本指标的平均数 B、全部样本指标的平均差 C、全部样本指标的标准差 D、全部样本指标的标志变异系数 7、在其他条件保持不变的情况下,抽样平均误差 ( A ) A、随着总体标志变动程度的增加而加大 B、随着总体标志变动度的增加而减少 C、随着总体标志变动度的减少而加大 D、不随总体标志变动度的改变而改变 8、在其他条件保持不变的情况下,抽样平均误差 ( B ) A、随着抽样数目的增加而加大 B、随着抽样数目的增加而减少 C、随着抽样数目的减少而减少 D、不会随着抽样数目的改变而改变 9、在同等条件下,重复抽样和不重复抽样相比较,其抽样平均误差 ( B ) A、前者小于后者 B、前者大于后者 C、两者相等 D、无法确定哪一个大 10、从2000名学生中按不重复抽样方法抽取了100名进行调查,其中有女生45名,则样本成数的抽样平均误差为 ( B ) A、0.24% B、4.85% C、4.97% D、以上都不对 11、抽样极限误差反映了样本指标与总体指标之间的 ( D ) A、抽样误差的平均数 B、抽样误差的标准差 C、抽样误差的可靠程度 D、抽样误差的可能范围
统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
统计学课后答案第六章

统计学课后答案第六章【篇一:统计学第五版课后练答案(4-6章)】txt>4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:statisticsmean median mode std. deviation percentiles25 50 75 missing10 0 9.60 10.00 10 4.169 6.25 10.00单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 4120 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄1(2)根据定义公式计算四分位数。
mean=24.00;std. deviation=6.652 (4)计算偏态系数和峰态系数:skewness=1.080;kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
21、确定组数:lg?2?5?1?1k?1?lg(2)lg2lgn()1.398?5.64k=6 ,取0.30103网络用户的年龄 (binned)分组后的直方图:3客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。
得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟。
第二种排队方式的等待时间(单位:分钟)如下:5.5 6.6 6.7 6.8 7.1 7.3 7.47.8 7.8 要求:(1)画出第二种排队方式等待时间的茎叶图。
统计学第六章练习题答案

第六章 练习题参考答案一、填空题6.1.1 估计和假设检验 6.1.2 相对大小关系6.1.3 关于中位数对称的总体的中位数是否等于某个特定值6.1.4 )1(61)()())((21211221--=----=∑∑∑∑====n n d S S R RS S R Rr ni i ni ni i ini i is6.1.5 线性二、单项选择题三、多项选择题四、判断改错题6.4.1( ×,参数检验有时会利用分布情况如分布的对称性) 6.4.2( ×,已知具体分布形式时,使用非参数统计会损失信息) 6.4.3( √ )6.4.4( ×,卡方检验自由度受待估参数个数影响)6.4.5( ×,符号检验主要检验位置参数,符号秩检验主要检验分布是否对称)五、简答题6.5.1 答:(1)对总体依赖不同;(2)对参数的假定不同;(3)适用的数据类型不同;(4)适用的范围不同 6.5.2 答:(1)可能会浪费一些信息;特别当数据可以使用参数模型的时候。
Example: Converting Data From Ratio to Ordinal Scale (2)大样本手算相当麻烦;(3)一些表不易得到。
六、计算题6.6.1 解: 假设检验:H 0:喜欢A 品牌的客户和喜欢B 品牌的客户比例相同 H 1:喜欢A 品牌的客户和喜欢B 品牌的客户比例不相同 (005222005)0791196Z Z ==<=结论:证据不足不能拒绝零假设,没有证据显示喜欢A 品牌的客户和喜欢B 品牌的客户比例不相同。
6.6.2 解: 假设检验:H 0:酒精和反应时间无关 H 1:酒精和反应时间有关Brown-Mood 中位数检验,p-value = 0.2476289结论:证据不足不能拒绝零假设,没有证据显示酒精和反应时间有关。
Wilcoxon rank sum test with continuity correction data: x1 and x2W = 29.5, p-value = 0.1303alternative hypothesis: true location shift is not equal to 0结论:证据不足不能拒绝零假设,没有证据显示酒精和反应时间有关 6.6.3 解:Kendall’s tau 相关系数为 0.7222222 T = 31, p-value = 0.005886alternative hypothesis: true tau is not equal to 0 sample estimates:P −值小于0.05,所以拒绝原假设。
《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析第6章方差分析6.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。
6.2 579.48234.1501.0=>=F F (或01.000001.0=<=-αvalue P ),拒绝原假设。
6.3 4170.50984.1001.0=>=F F (或01.0000685.0=<=-αvalue P ),拒绝原假设。
6.4 6823.37557.1105.0=>=F F (或05.0000849.0=<=-αvalue P ),拒绝原假设。
6.5 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。
85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设;85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设;85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。
6.6554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。
第7章相关与回归分析7.1 (1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r 。
(3)检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
7.2 (1)散点图(略)。
(2)8621.0=r 。
7.3 (1)0?β表示当0=x 时y 的期望值。
(2)1?β表示x 每变动一个单位y 平均下降0.5个单位。
(3)7)(=y E 。
7.4 (1)%902=R 。
(2)1=e s 。
7.5 (1)散点图(略)。
统计学第6章习题答案精编版
一、选择题1、在用样本的估计量估计总体参数时,评价估计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为(B)A、无偏性B、有效性C、一致性D、充分性2、根据一个具体的样本求出的总体均值95%的置信区间(D)A、以95%的概率包含总体均值B、有5%的可能性包含总体均值C、绝对包含总体均值D、绝对包含总体均值或绝对不包含总体均值3、估计量的无偏性是指(B)A、样本估计量的值恰好等于待估的总体参数B、所有可能样本估计值的期望值等于待估总体参数C、估计量与总体参数之间的误差最小D、样本量足够大时估计量等于总体参数4、下面的陈述中正确的是(C)A、95%的置信区间将以95%的概率包含总体参数B、当样本量不变时,置信水平越大得到的置信区间就越窄C、当置信水平不变时,样本量越大得到的置信区间就越窄D、当置信水平不变时,样本量越大得到的置信区间就越宽5、总体均值的置信区间等于样本均值加减估计误差,其中的估计误差等于所求置信水平的临界值乘以(A)A、样本均值的标准误差B、样本标准差C、样本方差D、总体标准差6、95%的置信水平是指(B)A、总体参数落在一个特定的样本所构造的区间内的概率为95%B、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为95%C、总体参数落在一个特定的样本所构造的区间内的概率为5%D、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为5%7、一个估计量的有效性是指(D)A、该估计量的期望值等于被估计的总体参数B、该估计量的一个具体数值等于被估计的总体参数C、该估计量的方差比其他估计量大D、该估计量的方差比其他估计量小8、一个估计量的一致性是指(C)A、该估计量的期望指等于被估计的总体参数B、该估计量的方差比其他估计量小C、随着样本量的增大该估计量的值越来越接近被估计的总体参数D、该估计量的方差比其他估计量大9、支出下面的说法哪一个是正确的(A)A、一个大样本给出的估计量比一个小样本给出的估计量更接近总体参数B、一个小样本给出的估计量比一个大样本给出的估计量更接近总体参数C 、一个大样本给出的总体参数的估计区间一定包含总体参数D 、一个小样本给出的总体参数的估计区间一定不包含总体参数10、用样本估计量的值直接作为总体参数的估计值,这一估计方法称为(A )A 、点估计B 、区间估计C 、无偏估计D 、有效估计11、将构造置信区间的步骤重复多次,其中包含总体参数真值的次数所占的比例称为(C )A 、置信区间B 、显著性水平C 、置信水平D 、临界值12、在总体均值和总体比例的区间估计中,估计误差由(C )A 、置信水平确定B 、统计量的抽样标准差确定C 、置信水平和统计量的抽样标准差确定D 、统计量的抽样方差确定13、在置信水平不变的条件下,要缩小置信区间,则(A )A 、需要增加样本量B 、需要减少样本量C 、需要保持样本量不变D 、需要改变统计量的抽样标准差14、估计一个正态总体的方差使用的分布是(C )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布15、当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是(B )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布16、当正态总体的方差未知,在大样本条件下,估计总体均值使用的分布是(A )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布17、在其他条件不变的条件下,要使估计时所需的样本量小,则应该(A )A 、提高置信水平B 、降低置信水平C 、使置信水平不变D 、使置信水平等于118、使用t 分布估计一个总体均值时,要求(D )A 、总体为正态分布且方差已知B 、总体为非正态分布C 、总体为非正态分布但方差已知D 、正态总体方差未知,且为小样本19、在大样本条件下,总体均值在(1-α)置信水平下的置信区间可以些为(C )A 、n t x σα2±B 、ns t x 2α± C 、n s z x 2α± D 、n s z x 22α±20、正态总体方差已知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(C )A 、n z x 22σα± B 、n s t x 2α±C 、n z x σα2±D 、n t x σα2±21、正态总体方差未知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(B )A 、n s z x 2α±B 、ns t x 2α±C 、n z x σα2±D 、n s z x 22α±22、指出下面的说法哪一个是正确的(A )A 、样本量越大,样本均值的抽样标准差就越小B 、样本量越大,样本均值的抽样标准差就越大C 、样本量越小,样本均值的抽样标准差就越小D 、样本均值的抽样标准差与样本量无关23、抽取一个样本量为100的随机样本,其均值为81=x ,标准差12=s 。
统计学第六章 假设检验课后答案
第六章假设检验一、单项选择题二、多项选择题三、判断题四、填空题1、原假设(零假设)备择假设(对立假设)2、双侧检验Z Z =xn︱Z︱<︱︱(或1-α)23、左单侧检验Z <-(或α)4、右单侧检验Z Z =xnZ >(或α)5、t t =︱t︱>︱︱(或α)sx2n6、弃真错误(或第一类错误)存伪错误(或第二类错误)7、越大越小8、临界值五、简答题(略)六、计算题1、已知:σx = 12 n = 400 x= 21 建立假设H0:X≤20H1:X>20右单侧检验,当α= 0.05时,Z0.05 = 1.645 构造统计量ZxZ =1.667>Z0.05 = 1.645,所以拒绝原假设,说明总体平均数会超过20。
2、已知:P0 = 2% n = 500 p = 建立假设H0:P ≥ 2%H1:P <2%左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-1.597∣Z∣=1.597<∣Z0.05∣= 1.645,所以接受原假设,说明该产品不合格率没有明显降低。
3、已知:σx = 2.5 cm n = 100 X0 =12 cm x= 11.3 cm 建立假设H0:X≥12H1:X<12左单侧检验,当α= 0.01时,Z0.01 = -2.33 构造统计量Zx-2.8 2.5 ∣Z∣= 2.8>∣Z0.01∣= 2.33,所以拒绝原假设,说明所伐木头违反规定。
4、已知:P0 = 40% n = 60 p = 建立假设H0:P ≥ 40%H1:P <40% 21= 35% 60左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-0.791∣Z∣= 0.791<∣Z0.05∣= 1.645,所以接受原假设,说明学生的近视率没有明显降低。
5、已知:X0 =5600 kg/cm2 σx = 280 kg/cm2 n = 100 x= 5570 kg/cm2 建立假设H0:X= 5600 H1:X≠5600双侧检验,当α= 0.05时,∣Z0.025∣= 1.96 构造统计量Z∣Z∣∣Z∣=1.07<∣Z0.025∣= 1.96,所以接受原假设,说明这批车轴符合要求。
统计学第6章习习题答案
欢迎阅读一、选择题1、在用样本的估计量估计总体参数时,评价估计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为(B)A、无偏性B、有效性C、一致性D、充分性2、根据一个具体的样本求出的总体均值95%的置信区间(D)A、以95%的概率包含总体均值B、有5%的可能性包含总体均值C、绝对包含总体均值D3ABCD4A、95%BCD5乘以(AABCD6、95%ABCD7ABC、该估计量的方差比其他估计量大D、该估计量的方差比其他估计量小8、一个估计量的一致性是指(C)A、该估计量的期望指等于被估计的总体参数B、该估计量的方差比其他估计量小C、随着样本量的增大该估计量的值越来越接近被估计的总体参数D、该估计量的方差比其他估计量大9、支出下面的说法哪一个是正确的(A)A、一个大样本给出的估计量比一个小样本给出的估计量更接近总体参数B、一个小样本给出的估计量比一个大样本给出的估计量更接近总体参数C 、一个大样本给出的总体参数的估计区间一定包含总体参数D 、一个小样本给出的总体参数的估计区间一定不包含总体参数10、用样本估计量的值直接作为总体参数的估计值,这一估计方法称为(A )A 、点估计B 、区间估计C 、无偏估计D 、有效估计11、将构造置信区间的步骤重复多次,其中包含总体参数真值的次数所占的比例称为(C )A 、置信区间B 、显着性水平C 、置信水平D 、临界值12、在总体均值和总体比例的区间估计中,估计误差由(C )A 、置信水平确定B 、统计量的抽样标准差确定CD 13A C 14A C 15A C 16A C 17A C 18、使用A B C D 19A 、nt x α2±n 2αC 、n s z x 2α± D 、n s z x 22α±20、正态总体方差已知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(C )A 、n z x 22σα±B 、n s t x 2α±C 、n z x σα2±D 、n t x σα2±21、正态总体方差未知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(B )A 、n s z x 2α±B 、ns t x 2α±C 、n z x σα2±D 、n s z x 22α±22、指出下面的说法哪一个是正确的(A )AB C D 23的置A 、81±C 、81±24均值μ的A 、33±C 、33±25、μ的95%A 、40±C 、40±26、有18A 、%11C 、%1127、在对A 、078.064.0± B 、028.064.0±C 、035.064.0±D 、045.064.0±28、税务管理官员认为,大多数企业都有偷税漏税行为。
统计学课后习题第六章-贾俊平等
第六章统计量及其抽样分布6。
1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。
随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=~,因此,样本均值不超过总体均值的概率P为:====2—1,查标准正态分布表得=0。
8159因此,=0。
63186。
2 =====0。
95查表得:因此n=436。
3 ,,……,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构成的:设Z1,Z2,……,Z n是来自总体N(0,1)的样本,则统计量2分布,记为χ2~ χ2(n)服从自由度为n的χ因此,令,则,那么由概率,可知:b=,查概率表得:b=12.596。
4 在习题6。
1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得解:更加样本方差的抽样分布知识可知,样本统计量:此处,n=10,,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3。
325,=19。
919,则=0。
369,=1.88。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章客观题
1、设n,...,,21是从总体X中抽取的一个样本,下面哪一个不是统计量(C)
A.niin11
B.niinS1221
C.nii12
D. SV
2、下列不是次序统计量的是(B)
A.中位数
B.均值
C.十分位数
D.极差
3、抽样分布是指(C)
A.一个样本各观测值的分布
B.总体中各观测值的分布
C.样本统计量的分布
D.样本数量的分布
4、根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其
分布的均值为(A)
A. B. C.2 D.n2
5、从均值为,方差为2(有限)的任意一个总体中抽取大小为n的样本,则(A)
A.当n充分大时,样本均值的分布近似服从正态分布
B.只有n<30时,样本均值的分布近似服从正态分布
C.样本均值的分布与n无关
D.无论n多大,样本均值的分布都为非正态分布
6、从一个均值10,标准差6.0的总体中随机选取容量n=36的样本。
假定该总体并不是很偏的,则样本均值小于9.9的近似概率为(A)
A.0.1587 B. 0.1268 C.0.2735 D.0.6324
7、假设总体服从均匀分布,从此总体中抽取样本容量为36的样本,则样本均值的抽样分
布(B)
A.服从非正态分布 B.近似正态分布C.服从均匀分布 D.服从2分布
8、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,
样本均值的标准差(C)
A.保持不变 B.增加 C.减小 D.无法确定
9、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽
样分布的均值和标准误差分别为(B)
A.50,8 ;B.50,1;C.50,4 D.8,8
10、某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标
准差为400元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从
这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是(B)
A.正态分布,均值为250元,标准差为40元;
B.正态分布,均值为2500元,标准差为40元;
C.右偏,均值为2500元,标准差为400元;
D.正态分布,均值为2500元,标准差为400元。
11、某班学生的年龄分布是右偏的,均值为22,标准差为4.45。如果采取重复抽样的方法
从该班抽取容量为100的样本,则样本均值的抽样分布是(A)
A.正态分布,均值为22,标准差为0.445;
B.分布形状未知,均值为22,标准差为4.45;
C.正态分布,均值为22,标准差为4.45;
D.分布形状未知,均值为22,标准差为0.445。
12、在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。如果
从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则样本均值的分布服从(A)
A.正态分布,均值为12分钟,标准差为0.3分钟;
B.正态分布,均值为12分钟,标准差为3分钟;
C.左偏分布,均值为12分钟,标准差为3分钟;
D.左偏分布,均值为12分钟,标准差为0.3分钟。
13、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。如果从中随机抽取30只
灯泡进行检测,则样本均值(D)
A.抽样分布的标准差为4小时;
B.抽样分布近似等同于总体分布;
C.抽样分布的中位数为60小时;
D.抽样分布近似等同于正态分布,均值为60小时。
14、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。如果随机抽取100
名学生,下列关于样本均值抽样分布不正确的是(A)
A.抽样分布的标准差等于3;
B.抽样分布近似服从正态分布;
C.抽样分布的均值近似为23;
D.抽样分布为非正态分布。
15、从均值为200,标准差为50的的总体中抽取容量为100的简单随机样本,样本均值的
数学期望是(B)
A.150 B.200 C.100 D.250
16、从均值为200,标准差为50的的总体中抽取容量为100的简单随机样本,样本均值的
标准差是(C)
A. 50 B.10 C.5 D.15
17、假设总体比例为0.55,从此总体中抽取容量为100的样本,则样本比例的标准差为(B)
A.0.01 B.0.05 C.0.06 D.0.55
18、假设总体比例为0.4 ,采取重复抽样的方法从此总体中抽取一个容量为100的简单随
机样本,则样本比例的期望是(B)
A.0.3 B.0.4 C.0.5 D.0.45
19、样本方差的抽样分布服从(D)
A.正态分布 B. 2分布 C.F分布D.未知
20、大样本的样本比例的抽样分布服从(A)
A.正态分布 B.t分布 C.F分布 D. 2分布