全氧燃烧技术在玻璃生产中的应用

合集下载

玻璃生产中的全氧燃烧

玻璃生产中的全氧燃烧
口酗 (a)CIeanfire‘Gen 1 Burner:
(b)Cleanfire’H酽(具有较高的热传导效率,较大的火焰覆盖面积,较低的碹顶、胸墙 温度等特点):
(c)Cleanflre。HR,“
该系列烧咀是AirProducts最新研制的新型燃烧设备,它是在2004年第一季度在用户开始 使用。由于它具有:对玻璃液更好的传热效率(和其它烧咀相比,至少节能5%);维护方便(不 积磺):燃烧范围广(O 25--20kOd Btu/hr)等特点。受到用户的高度赞扬。
·改善质量: 减少气泡/夹杂
●提高热效率:—2-1—0%燃料节省
●减少污染排放: 5-20%减少(Ibs/吨玻璃)
3、Air Products全氧燃烧技术在中国应用的事例
a)某合资公司(产品为电子玻璃,燃料为:天然气):
普通空气助燃池炉
纯氧燃烧池炉
出料量
260TPD
272TPD
池炉面积
240
210
燃料用量
2950nm3/hr
1595nm3/hr
氧气用量 N0x
N/A 10.2
3190nm3/hr 2.4 Ib/ton
玻璃质量
Improved
燃料单耗
271.6nm3/hr
140.3nm3/hr
碎玻璃率
52%
32%
童丝
4.6% -12.5%
-46% N7K 一76%
-48.3% -38%
b)某外资玻璃公司进行氧枪助熔改造(产品为玻璃保温棉,燃料为:LPG)
】43
原普通空气助燃池 坦
完成氧枪助熔改造后池炉
出料量
40TPD
60TPD
池炉面积
28.6

全氧燃烧技术

全氧燃烧技术

全氧燃烧技术我们日常生活中,随处可见药用玻璃瓶的身影。

无论是饮料、药品,还是化妆品等等,药用玻璃瓶都是它们的好伙伴。

这些玻璃包装的容器,因其透明的美感,化学稳定性好,对内容物无污染,可以高温加热,旧瓶可回收再生利用等优点,一直被认为是最好的包装材料。

尽管如此,为了与金属罐、塑料瓶等包装材料竞争,药用玻璃瓶也在不断地提高其生产技术,使产品质量更好、外观更美、成本更低。

在蓄热式玻璃窑的建造技术之后,玻璃熔化技术迎来了第二次革命,这就是全氧燃烧技术。

在过去十年里,世界各国在玻璃熔窑上进行该技术改造的实践表明,全氧燃烧技术具有低投资、低能耗、低污染物排放等显著的优越性。

在美国、欧洲,轻量化的瓶罐已是玻璃瓶罐的主导产品,小口压吹技术(NNPB)、瓶罐的冷热端喷涂技术等,都是轻量化生产的先进技术。

德国公司已能生产出1公升的浓缩果汁瓶,仅重295克,瓶壁表面涂覆了有机树脂,可提高瓶子压力强度20%。

在现代工厂里,生产玻璃瓶可不是容易的事,有很多的科学难题需要解决。

全氧燃烧技术在玻璃熔炉的应用一、概论:改革开放以来, 国民经济迅速发展举世瞩目。

玻璃工业(平板玻璃、电子玻璃、玻璃纤维、日用玻璃、光学玻璃等)相应得到迅速发展,仅以浮法玻璃为例,截止2004年底,已建成投产126条浮法线(总产量已达到3亿重量箱,日熔量52930T),还有51条线在建、拟建。

熔化玻璃采用煤、煤焦油、重油、烊黄 ⒒虻?少量)作燃料。

目前我国熔化一公斤玻璃液(平板玻璃)平均指标在1500-1800大卡。

按此单位能耗测算,玻璃工业无疑是重要能耗大户之一。

当今世界石油价格上涨,我国进口石油逐年增加(中国生产力发展研究报告研究表明;中国石油进口率测算到2010、2015和2020年进口率下限将分别达到55.4%、57.4%、59.7%。

大大超过30%理论上控制指标,按国际能源组织今年预测2030年中国石油对外依存度将达到74%的进口率)。

玻璃熔窑大部分采用重油做燃料,因此,对于玻璃工业的总量控制,尤其是高能耗玻璃熔窑的能耗限制,从节能、成本考虑采用新燃烧技术已是当务之急。

在玻璃窑炉中使用全氧燃烧

在玻璃窑炉中使用全氧燃烧

式中矾、、‰……空气、全氧燃烧的火焰传播速度
N2、c02~一一混合气体中N。、C(h所占的百分数
2、
全氧燃烧需要的氧气
全氧燃烧技术最早是在热效率较低的小型玻璃窑上使用。全氧燃烧带来的热效率的提高,降低了窑炉的
能耗,但需要消耗一定量的氧气,其节能效果会被燃烧中的氧气成本所抵消。因此,氧气的价格也直接影响 到玻璃液的熔化成本。寻找经济合适的氧源,对于能否推广使用全氧燃烧是~个十分关键的问题。 目前,每立米氧气的价格美国约合P4IBO.78元,日本企业自制氧的成本约为P,MBO.65元,而北京管道氧 气价格为1.28元,液氧价格为1.50’1.60元,自制氧价格为1.00元左右。显然,在中国,氧气的高价格制 约着全氧燃烧的应用,开发低成本的氧气是推广应用全氧燃烧必须解决的问题。 合适的氧源有以F 3种: (1)真空变压吸收法(VPSA) 合成分子筛分离也和N。,它可以安装在生产现场,制氧成本低,产量
25
4、
窑炉结构简单全氧燃烧窑结构近似单元窑.且比单元窑还简单,不需要金属换热器,实际上熔化
部只有熔化池单体,占地小,建窑费用低。圈l为全氧燃烧炉示意图。
娑鬻 一薹
俐戳匿隧德蚓
圈I全氧燃烧炉示意闰
5、
窑炉寿命长,大修时间短
全氧燃烧窑窑体都用电熔锆刚玉砖,窑内温度分布均匀,加上窑顶内
表面温度通常比空气助燃时要低25—50。C,故炉龄均在4年以上,而且没有蓄热室或换热室等砌筑工程,修 炉时间大大缩短。
一.
在玻璃熔窑中的使用全氧燃烧的情况
1、全氧燃烧的历史:1982年美国康宁公司首先开始试验,1983年第一座烧天然气的全氧燃烧窑在美国
康1j。公司诞生。1989年第一座烧油的全氧燃烧窑在美国康宁公司诞生。到九十年代末期全氧燃烧已遍及美国、

玻璃熔窑全氧燃烧技术的开发

玻璃熔窑全氧燃烧技术的开发

秦 皇 岛 玻 璃 工 业 研 究 设 计 院
图3 高碹顶技术与低碹顶对比
秦 皇 岛 玻 璃 工 业 研 究 设 计 院
图4 池炉平面布置图
秦 皇 岛 玻 璃 工 业 研 究 设 计 院
图5 土木结构、建造形式对比图
(2)高效的纯氧-燃料燃烧装备及全 秦 氧燃烧熔制技术
皇 岛 ①全氧喷枪系统及安装使用技术 玻 全氧喷枪它对火焰状况、温度分布、传 璃 工 热效果、窑炉耐火材料的寿命长短起着 业 很重要的作用。 研 究 氧枪在窑上布置要合理,根据分区供给 设 熔化所需的热量,确保窑宽上的温度均 计 匀性。 院
秦 皇 岛 玻 璃 工 业 研 究 设 计 院
3.全氧燃烧熔窑的结构特点 (1)窑炉结构和耐火材料配置
由于燃烧系统的改变,引起玻璃熔窑结构的变革, 全氧燃烧窑炉取消了蓄热室、小炉、换火系统, 如同单元窑但需要采用优质的耐火材料。为了避 免 硅质大 碹的烧 损,采 用高碹 顶全氧 熔窑结 构 (见图3)。全氧燃烧器位于熔池上部结构的侧墙 中,以便横跨玻璃液表面燃烧。燃烧产物通过窑 炉,在另一端离开窑炉,通过废气烟道,进入热 回收装置。池炉平面布置如图4、图5。
玻璃开辟新的途径。
秦 皇 岛 玻 璃 工 业 研 究 设 计 院
2.浮法玻璃熔窑全氧燃烧技术工艺简介及其优点
图1 全氧浮法玻璃熔窑生产工艺技术路线图
秦 皇 全氧燃烧时烟气中水汽含量较高, 岛 玻璃液与水汽发生反应,玻璃液中 玻 的OH含量增加,玻璃粘度降低,有 璃 工 利于澄清、均化,提高玻璃质量。 业 全氧燃烧火焰稳定,无换向,燃烧气 研 体在窑内停留时间长,窑内压力稳定 究 设 且较低,这些都有利于玻璃的熔化、 计 澄清,减少玻璃体内的气泡、灰泡及 院 条纹。

全氧燃烧玻璃熔窑的结构和应用第一章概述

全氧燃烧玻璃熔窑的结构和应用第一章概述
(7)生产成本总体下降:举例来说,600t/d优质浮法玻璃熔窑采用 全氧燃烧技术,油价按照3500元/吨测算,每年可为企业创造1600多万 元的附加直接经济效益,而且从长远看燃料价格的进一步上升是必然趋 势。
(8) 天然气/氧气预热技术。 可以通过利用废气余热把天然气和氧气预热到400℃以上进行燃烧, 在普通全氧窑炉的基础上还能再节约 5-10%能耗。 (9)热化学蓄热技术。 利用废气中 H2O、CO2与 燃料CH4热裂解反应生成CO和H2,然后再进 入窑炉内燃烧。相当于给燃料预热,同时提高火焰辐射能力。
1、概述
1.2 全氧燃烧技术的基本原理
纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少 NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧 技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在 节能、环保、质量、投资等方面的优势。
对于日用玻璃和建材行业,以前多采用低热值燃料如发生炉煤气,由 于燃料本身含有大量N2和CO2,用它做全氧窑炉燃料时节能减排效果大 打折扣,同时由于燃料成本低廉,节省的燃料费用难以抵消氧气的制备 费用,因此很少采用全氧燃烧技术。当前环保要求玻璃窑炉采用清洁燃 料天然气,由于天然气成本居高不下,采用全氧燃烧窑炉的优势越来越 明显。
1、概述
表1光伏压延玻璃全氧燃烧和空气燃烧的窑炉对比(燃料为天然气)
1、概述
1.2 全氧燃烧技术的基本原理
在玻璃熔制过程中所需要的热量主要是通过燃料和氧气在高温下进行 燃烧反应而获得,传统的燃料燃烧反应所需要的氧气是从空气中获得, 这样大量的氮气被无谓地加热,并在高温下排入大气,同时,氮气在高 温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境 污染。甲烷的燃烧反应: 空气-燃料:CH4+2O2+8N2→2H2O+CO2+8N2 每Mcal热需1.97Nm3空气 氧气-燃料:CH4+2O2 →2H2O+CO2 每Mcal热需0.22Nm3氧气

国内外浮法玻璃全氧燃烧调研报告

国内外浮法玻璃全氧燃烧调研报告

全氧燃烧技术在浮法玻璃生产中应用的调研报告国内浮法玻璃行业能耗过高、污染排放量大等问题正随着国家对低碳节能要求的增加而日益受到重视。

技术革新正在成为本行业继续健康发展的强劲动力。

为了改善浮法玻璃行业能源消耗过高的现状,也为了提升本院的科学技术水平提高自身竞争力,我院于2010年10月成立了全氧燃烧课题研究小组。

目前,研究小组已经完成了为期三个月的前期调研工作。

调研目的在于收集国内外关于玻璃熔窑全氧燃烧的应用情况的相关资料,并整理资料提取有用信息,为全氧燃烧课题研究小组提供全氧窑方案设计依据。

调研期间,研究小组检索查阅了近十年来国内核心玻璃期刊上有关全氧玻璃熔窑应用的大部分学术论文及优秀硕士毕业论文,并咨询了巨石集团、秦皇岛玻璃研究设计院、蚌埠玻璃工业设计研究院、杭州杭氧集团、美国普莱克斯公司等相关企业。

为了丰富信息资料,研究小组还与多位玻璃行业的技术专家进行了交流,并出席了由中国硅酸盐学会玻璃分会主办的2010全国玻璃技术交流研讨会,从中获得了许多有价值的信息。

为使接下去的研究工作能够更顺利的进行,现就本次调研工作做一个详细的总结。

一、玻璃熔窑全氧燃烧技术的必要性我国玻璃工业产能已经高居世界首位,到2009年末,全国已建成投产的浮法玻璃生产线208条,平均熔化能力约540t/d。

在2009年投产的19条浮法玻璃生产线熔化能力都在500t/d以上。

与上世纪相比,我国平板玻璃熔窑的大型化水平和单位产品能耗有了显著的提高,一定程度上降低了污染物和二氧化碳的排放水平,并且大大提高了玻璃行业的产品质量。

尽管如此,我国的平板玻璃行业依然存在着能耗大、成品率低(85%左右)、NO x排放量高等问题,和国外先进水平仍有一定的差距。

而且随着重油价格的走高,燃料在玻璃制造成本中所占的比例也越来越大,严重影响了行业的经济效益。

因此,节约能耗缓解能源短缺、提高成品率以及降低污染物排放依然是平板玻璃行业需要继续努力的课题。

试析全氧燃烧对玻璃硬度的影响

试析全氧燃烧对玻璃硬度的影响

试析全氧燃烧对玻璃硬度的影响前言从本质上说,全氧燃烧技术相比其他的燃烧技术具有明显的优势,可以极大降低各种化学物质的排放,进一步优化环境,节约性能源,同时,还能够逐步增强传热,极大降低玻璃的熔融温度,同时也会降低玻璃成本,进一步提升我国玻璃产品的质量和产量。

相比西方的发达国家来说,全氧燃烧技术可以取代传统的技术的发展趋势。

全氧燃烧在我国玻璃制造行业还处在停留阶段,作为一项全新的创新技术,在国内外已经得到诸多从业者的认可。

但是,全氧燃烧技术在我国只有几座熔窑才在使用这项全新技术。

从这些全氧窑的运行实践中我们可以知道,全氧窑的运行实践为我国玻璃技术工作提供了全新的设计以及材料配置和产品质量等各个方面。

同时,在实际的生产过程中,我们也应该要能够遇到玻璃硬度和气泡稳定性等工艺特征与空气燃烧条件下产生的明显差异。

为此,本文笔者就从我国空气燃烧和全氧燃烧之间的进行比较,同时结合相应的硬度影响因素,提出了全氧的燃烧条件下如何改进玻璃工艺控制方向。

1、全氧燃烧玻璃窑内的气体变化及其影响总的来说,在玻璃生产的过程中,温度一般是达到1400摄氏度以上,这是由于熔化玻璃需要大量的能量,并且这些大部分能量都是来源与天然气和煤炭等燃料,如果是燃料所需要的氧气由空气提供,这样就会使得玻璃中产生大量的氮氧物和氧化物等一些有害的物质,尤其是在氮气的存在对整个燃烧过程显得毫无用处,相反,在经过高温处理后,蓄热室和烟囱等部位排入大气中,这样就会对玻璃的硬度产生一定的影响。

2、不同燃烧条件下玻璃硬度的对比以及解决措施经过试验证明,全氧燃烧经过浮法成形,还是使得玻璃中的各种杂质变得更多,从某种方面看,这也就会增加其对玻璃网络结构的断网能力,尤其是二氧化钠含量较高时,玻璃“断网”的作用就会进一步加剧。

显然,这就在一定程度上降低玻璃黏度上起着非常重要的作用。

从另外一方面来看,由此引起的玻璃硬度在不断下降的同时,对后续的玻璃在机械加工过程中的抗划伤能力产生了不利的影响。

浮法玻璃窑炉的有效节能三种途径

浮法玻璃窑炉的有效节能三种途径

随着社会经济的不断发展,我国玻璃工业的竞争也越来越激烈,节约能耗、降低成本已成为企业的核心竞争力。

而玻璃生产具有资源消耗多、污染严重和能耗高等特点,不仅影响到企业的生存,也制约了整个行业的发展。

节能降耗是企业降低成本、提高效益的最佳途径。

燃烧技术的节能1、全氧燃烧技术为了降低浮法玻璃窑炉烟气中的NOx污染,欧美国家开发推广出新型的全氧燃烧技术,主要是通过全氧来代替助燃空气,气体中不含有N₂,只有极少量的NOx,浮法玻璃窑炉烟气污染的总体积可减少80%,并且会降低废弃带走的热量。

全氧燃烧技术工艺的核心在于全氧燃烧喷枪,为加强燃料与氧气混合的接触面积,全氧燃烧喷枪整体成矩形,能更为精准地控制火焰覆盖率,在燃烧过程中进行分阶段全氧燃烧,能将燃烧喷枪的更多能量转化为热辐射,并产生更多碳黑,加强火焰亮度,充分利用浮法玻璃窑炉的传热均匀性,加强黑体辐射的传热效率,提高更短波段热辐射在玻璃液中的穿透效率。

使用全氧燃烧技术的浮法玻璃窑炉能提高20%的热效率,但采用这项工艺时,需要重视对浮法玻璃窑炉耐火材料的选择,烟气中水蒸气的浓度会因全氧燃烧而增加,会在浮法玻璃生产过程中,产生浓度较大的碱性蒸汽,加速耐火材料的侵蚀,影响窑龄和生产规模。

2、富氧燃烧技术采用富氧燃烧技术生产浮法玻璃的基本原理,主要是原料通过富氧燃烧减少了烟气的产生,燃烧产物中二氧化碳和水蒸气的分压和含量增加,NOx的含量降低,火焰黑度加大,火焰温度提升,加快了原料的燃烧过程,提高了火焰在配合料与玻璃液之间的传热效率,从而提高了浮法玻璃窑炉的熔化效率。

富氧燃烧技术对燃烧设备具有更高要求。

燃料在燃烧过程中需要氧气,这些氧气通常来源于空气,但氧气在助燃空气中仅占21%的比重,而空气中其余的氮气并不会参加燃烧,反而会吸收大量的热量,阻碍燃烧效率的提高,增加燃料消耗。

因此提高空气中的氧气含量,可以更好地保持热量,提高燃料利用效率。

用28%的富氧空气进行燃烧试验时,热量损失减少25%,热量损失的减少也降低了燃料消耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b)Cleanfire。

HRTH(具有较高的热传导效率.较大的火焰覆盖面积,较低的碹顶、胸墙温度等特点):
烧咀型号燃料种类燃烧范围
SmallCleanfire。

HRll天然气0.75—4肼Btu/hr
LargeCleanfire。

HR“天然气4—12删Btu/hr
JumboCleanfire。

HF天然气7—20删gtu/hr
LargeCleanfire。

HR“油2—12肼Btu/hr
(C)Cleanfire‘HR,”:
该系列烧咀是AirProducts最新研制的新型燃烧设备,它是在2004年第一季
度在用户开始使用。

由于它具有:对玻璃液更好的传热效率(和其它烧咀相比,
至少节能5%);维护方便(不积碳):燃烧范围广(0.25--20}tMBtu/hr)等特点。

受到J{{j户的高度赞扬。

烧咀型号燃料种类燃烧范围
MiniCleanfire。

HR,“天然气0.25—2.5删Btu/hr
sma-lCleanfire。

nn,w天然气0.75—8HMBtu/hr
}LargeC1eanfire。

HR,“天然气4—20姗Btu/hr
烧咀实物照片Cleanfire‘HR,“10m[Btu/hr,—70%St—aging
状况的燃烧试验
(2)AirProducts全氧燃烧在业内的优势:
(a)节能:AirProducts提供的燃烧设备在节能方面均为业内的佼佼者。

尤其,Clcanfire。

HR,“系列经实践检验,比其它全氧燃烧设备至少节能5%。

(b)安全:AirProducts是业内所有的同行安全纪录最好的。

(c)服务:AirProducts拥有本领域中最优秀的人员。

AirProducts专业的玻璃团队已经拥有了丰富的玻璃生产应用经验及20年以上的纯氧燃
烧经验。

无论是新的窑炉项目还是旧窑炉的改造项目,AirProducts的
专业人员将帮助您设计理想的系统来改善玻璃质量及降低熔化成本。

(3)AirProducts全氧燃烧服务范围:
AirProducts作为一家专业气体供应商.不仅能采用多种业务方式为客户供麻氧气、氨气和氢气等设备,还能提供先进的纯氧燃烧器(Cleanfire‘系列)、流量控制系统和丰富的纯氧燃烧经验。

在全氧燃烧池炉(Oxy-Fuel)、全氧助燃(Oxy—Boost)和全氧底吹等方面,AirProducts可以提供以下服务:
(a)安全论证:当客户的项目实施时,AirProducts会帮助您进行正式的安全评估以便识别,记录并传达在现场所有的风险及与纯氧燃烧应用相
关的操作问题。

AirProducts与您合作以评估窑炉,流量控制设备。


着项目的进展,AirProducts将在项目执行的每个关键点帮助您进行另
外的评估。

(b)设备选购:AirProducts的Cleanfire‘系统在全球已经成功安装超过100台窑炉。

AirProducts的Cleanfirel燃烧器创造了具优势的热传:莲
及较低的污染排放的纪录。

AirProducts能单独供应燃烧器及其它部件
全氧燃烧技术在玻璃生产中的应用
作者:黄胜训, 赵矩平
作者单位:黄胜训(Air Products Asia Inc.), 赵矩平(美国北方气体产品(天津)有限公司)被引用次数:1次
本文链接:/Conference_6020454.aspx。

相关文档
最新文档