马尔科夫链模型
马尔可夫链模型简介

马尔可夫链模型简介设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ⋅⋅⋅⋅⋅⋅,2,1,2,1,两两互斥,则陈i E 为状态。
N i ⋅⋅⋅=,2,1。
称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。
定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关;(2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。
定义2 向量),,,(21n u u u u ⋅⋅⋅= 成为概率向量,如果u 满足:⎪⎩⎪⎨⎧=⋅⋅⋅=≥∑=nj jj u nj u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。
如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。
定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=3212222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。
转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(其中)(k P 为k 次转移矩阵。
定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。
(此处2≥m )定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。
马尔可夫链模型如下:设系统在0=k 时所处的初始状态 ),,()0()0(2)0(1)0(N S S S S ⋅⋅⋅=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ⋅⋅⋅=),2,1(⋅⋅⋅=k ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=NN N N N N k P P P P P P P P P S S 212222111211)0()( 此式即为马尔可夫链预测模型。
马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model)目录[隐藏]1 马尔可夫链模型概述2 马尔可夫链模型的性质3 离散状态空间中的马尔可夫链模型4 马尔可夫链模型的应用o 4.1 科学中的应用o 4.2 人力资源中的应用5 马尔可夫模型案例分析[1]o 5.1 马尔可夫模型的建立o 5.2 马尔可夫模型的应用6 参考文献[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
马尔可夫链模型

马尔可夫链模型一、基因遗传问题豆科植物茎的颜色有绿有黄,生猪的毛有黒有白,人会得一些先天性疾病等,这些都与基因遗传有关。
基因从一代到下一代的转移是随机的,并且具有马氏性。
因此马氏链模型是研究遗传学的重要工具之一。
生物的外部表征如豆科植物茎的颜色,人的皮肤或头发,是由生物体内相应的基因决定。
基因分优势基因与劣势基因,分别用d 和r表示。
每种外部表征由体内的两个基因决定,而每个基因都可以是d或r中的一个,于是可以得到三种基因类型,即dd、dr 和rr,分别称为优种、混种和劣种,用D、H和R表示。
含D、H 基因类型的个体,外部表征呈优势,如豆科植物的茎呈绿色,人的皮肤有色素;含劣种R基因类型的个体外部表征呈劣势,如豆科植物的茎呈黄色,人的皮肤无色素。
生物繁殖时,一个后代随机的继承父与母各自的两个基因中的一个,形成两个基因。
一般两个基因中哪个遗传下去是等概率的,所以父母的基因类型就决定了每一后代基因类型的概率。
下面我们以马氏链为工具讨论两个具体的基因遗传模型。
随机交配这是自然界中生物群体一种常见的、也是最简单的交配方式。
考察一个群体,假设雄性和雌性的比例永远相等,并且有相同的基因类型分布,即雄性和雌性的D 、H 、R 的数量比例相等。
所谓随机交配是指对于每一个不论属于D 、H 或R 的雌性(或雄性)个体交配,都以D :H :R 的数量比例为概率与一个属于D 、H 或R 的雄性(或雌性)个体交配,其后代则按照前面所说的方式等概率地继承其父母亲的各一个基因,来决定它的基因类型。
假定在初始一代的群体中,三种基因类型的数量比是D :H :R =a :2b :c ,满足21a b c ++=。
记,p a b q b c =+=+,则群体中优势基因d 与劣势基因r 的数量比例为:p q ,且1p q +=。
讨论随机交配方式产生的一系列后代群体中的基因类型分布。
用1,2,3n X =分别表示第n 代的一个体属于D 、H 及R 基因类型,即三种状态,0,1,2,.()i n a n = 表示个体属于第i 种状态的概率,1,2,3i =可视为第n 代的群体属于第i 种基因类型的比例。
马尔可夫链模型及其应用领域

马尔可夫链模型及其应用领域马尔可夫链模型是一种描述随机过程的数学工具,它以马尔可夫性质为基础,描述了一个系统在不同状态之间转移的概率。
马尔可夫链模型在各个领域都有广泛的应用,包括自然科学、金融、计算机科学等。
本文将介绍马尔可夫链模型的基本原理,并探讨其在不同应用领域中的具体应用。
马尔可夫链模型的基本原理是基于马尔可夫性质。
马尔可夫性质指的是一个系统在给定当前状态下,其下一个状态只依赖于当前状态,而与过去的状态无关。
这种性质使得马尔可夫链模型成为处理许多问题的理想模型。
首先,我们来了解一下马尔可夫链模型的基本概念。
一个马尔可夫链由一组状态和状态转移矩阵组成。
状态表示系统可能处于的情况,状态转移矩阵描述了状态之间的转移概率。
状态转移矩阵是一个方阵,其元素表示从一个状态到另一个状态的转移概率。
在实际应用中,马尔可夫链模型可以用于解决许多问题。
其中一个常见的应用是预测未来状态。
根据当前的状态和状态转移矩阵,我们可以计算下一步系统处于不同状态的概率。
通过不断迭代计算,我们可以预测未来系统状态的分布。
另一个常见的应用是基于马尔可夫链模型的推荐系统。
推荐系统通过分析用户的历史行为,预测用户未来的喜好,并向其推荐相关的内容。
马尔可夫链模型可以用于建模用户的行为转移过程,推断用户下一步的行为。
在金融领域,马尔可夫链模型被广泛应用于股票市场的预测和风险评估。
通过分析历史股票价格的变化,我们可以建立一个马尔可夫链模型,来预测股票未来的涨跌趋势。
此外,马尔可夫链模型还被用于计算资产组合的风险价值,帮助投资者制定合理的投资策略。
在自然科学领域,马尔可夫链模型可以用于模拟复杂系统的行为。
例如,生态学家可以使用马尔可夫链模型来模拟生物群落的动态变化,预测不同物种的数量和分布。
此外,马尔可夫链模型还可以用于研究气象系统、生物化学反应等的动态特性。
另一个马尔可夫链模型的应用领域是自然语言处理。
马尔可夫链模型可以用于根据已有的语料库生成新的文本。
马尔科夫链模型简介

马 氏 链 模 型 简 介1、随机过程的概念。
定义:设集合{}T t t ∈:ξ是一族随机变量,T 是一个实数集合,如果对于任意T t ∈,t ξ是一个随机变量,则称{}T t t ∈:ξ是一个随机过程。
其中:(1)t 为参数可以认为是时间,T 为参数集合。
(2)随机变量t ξ的每一个可能值,称为随机过程的一个状态。
其全体可能值构成的集合,称为随机过程的状态空间,用E 表示。
(3)当参数集合T 为非负整数集时,随机过程又称为随机序列。
随机序列可用{} ,3,2,1:=n n ξ表示。
当T 为时间时,该随机序列就是一个时间序列。
如:(1)用t ξ表示“t 时刻,某商店的库存量”,则{}),0[:+∞∈t t ξ就是一个随机过程。
(2)用t ξ表示“在一天中t 时刻,某地区的天气状况”,则{}]24,0[:∈t t ξ是一个随机过程。
(3)用t ξ表示“在一天中t 时刻(整数),某城市的出租汽车的分布状况”,则{}24,,2,1,0: =t t ξ是一个随机时间序列。
马氏链,也称为马尔可夫链,就是一个特殊的随机时间序列,也为随机序列。
2、(离散时间)马尔可夫链——马氏链。
定义:设{} ,3,2,1:=n n ξ是一个随机序列,状态空间E 为有限或可列集。
若对于任意正整数m 、n 。
如果E i ∈、E j ∈、E i k ∈ (1,,2,1-=n k )满足)(),,,(1111i j P i i i j P n m n n n n m n =======+--+ξξξξξξ 成立,则称随机序列{} ,3,2,1:=n n ξ为一个马尔可夫链,简称为马氏链。
(时间、状态均为离散的随机转移过程) 从该定义可知:(1)如果将随机变量n ξ的下角标n ,理解为步数。
则随机变量n ξ就是从起始点经过n 步,到达的随机变量。
(2)随机变量)(i n =ξ,是指第n 步时的随机变量n ξ所处的状态i 。
(3)条件概率)(i j P n m n ==+ξξ是指,第n 步时的随机变量n ξ所处的状态i 发生的条件下,第m n +步时的随机变量m n +ξ所处的状态j ,发生的条件概率。
马尔可夫链模型

状态与 状态与状态转移
1, 第n年健康 状态X n = 2, 第n年疾病
状态概率ai (n) = P( X n = i ), i = 1,2, n = 0,1,L
0.8 0.2 0.3
转移概率 pij = P ( X n +1 = j X n = i ), i, j = 1,2, n = 0,1, L
正则链 ⇔ ∃N , P > 0
P >0
2
正则链
稳态概率分布 w 满足 wP=w
w = ( w1 , w2 , w3 ) = ( 0.285 ,0.263,0.452 )
n→∞, 状态概率 a ( n ) = ( 0.285 ,0.263 ,0.452 ) →
模型求解
1. 估计在这种策略下失去销售机会的可能性 第n周失去销售机会的概率 周失去销售机会的概率 充分大时 = ∑ P( Dn > i Sn = i)P(Sn = i) n充分大时 P(Dn > Sn)
基本方程
a i ( n + 1) =
∑ a ( n ) p , i = 1, 2 , L , k
j =1 j ji
k
a(n) = (a1 (n), a2 (n),L, ak (n)) a ( n + 1) = a ( n ) P ~ 状态概率向量 P = { pij }k ×k ~ 转移概率矩阵 a ( n ) = a ( 0 ) P n
模型假设
钢琴每周需求量服从波松分布,均值为每周 架 钢琴每周需求量服从波松分布,均值为每周1架 存贮策略:当周末库存量为零时,订购 架 存贮策略:当周末库存量为零时,订购3架,周 初到货;否则,不订购。 初到货;否则,不订购。 以每周初的库存量作为状态变量, 以每周初的库存量作为状态变量,状态转移具有 无后效性。 无后效性。 在稳态情况下计算该存贮策略失去销售机会的概 和每周的平均销售量。 率,和每周的平均销售量。
马尔可夫链模型
马尔可夫链在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。
例如,微分方程的初值问题描述的物理系统属于这类随机性现象。
随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。
在贝努利过程(){},1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。
在维纳过程(){},0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。
在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。
易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进入商店的顾客无关。
一、马尔可夫过程定义:给定随机过程(){},X t t T ∈。
如果对任意正整数3n ≥,任意的12,,1,,n i t t t t T i n <<<∈=,任意的11,,,n x x S -∈S 是()X t 的状态空间,总有()()()1111|,n n n n P X x X t x X t x --≤==()()11|,n n n n n P X x X t x x R --=≤=∈ 则称(){},X t t T ∈为马尔可夫过程。
在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12,,n t t -是“过去”。
马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122,,n n X t x X t x --==无关。
马尔可夫链模型
马尔可夫链模型(重定向自马尔可夫链)马尔可夫链模型(Markov Chain Model)[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中Pij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
对于任意i∈s,有。
3)是系统的初始概率分布,qi是系统在初始时刻处于状态i的概率,满足。
[编辑]马尔可夫链模型的性质马尔可夫链是由一个条件分布来表示的P(Xn + 1 | X n)这被称为是随机过程中的“转移概率”。
投资学中的马尔可夫链模型分析
投资学中的马尔可夫链模型分析马尔可夫链模型是投资学中一种常用的分析工具,它可以帮助投资者预测市场走势、制定投资策略以及评估投资风险。
本文将从马尔可夫链模型的基本原理、应用案例以及优缺点等方面进行分析。
一、马尔可夫链模型的基本原理马尔可夫链模型是基于马尔可夫过程的一种数学模型,它假设未来的状态只与当前的状态有关,与过去的状态无关。
换句话说,马尔可夫链模型认为市场的走势是随机的,且未来的状态只与当前的状态有关。
马尔可夫链模型的基本原理可以用一个简单的例子来说明:假设有一个投资者,他的投资策略只有两种状态,即买入和卖出。
如果他当前的状态是买入,那么下一个状态可能是买入或卖出,而与他之前的操作无关。
同样,如果他当前的状态是卖出,那么下一个状态也可能是买入或卖出,而与他之前的操作无关。
这种状态之间的转移关系就构成了一个马尔可夫链模型。
二、马尔可夫链模型的应用案例马尔可夫链模型在投资学中有着广泛的应用。
例如,在股票市场中,投资者可以利用马尔可夫链模型来预测股票价格的走势。
他们可以根据过去一段时间的股票价格数据,构建一个马尔可夫链模型,然后利用这个模型来预测未来的股票价格走势。
此外,马尔可夫链模型还可以用于量化投资中的策略制定。
量化投资是一种利用数学和统计方法进行投资决策的方法,它可以帮助投资者制定更科学、更有效的投资策略。
马尔可夫链模型可以作为量化投资中的一个重要工具,帮助投资者分析市场走势,找到适合的投资机会。
三、马尔可夫链模型的优缺点马尔可夫链模型具有一些优点和缺点。
首先,马尔可夫链模型能够较好地描述随机过程,对于市场的走势预测有一定的准确性。
其次,马尔可夫链模型的计算比较简单,可以快速得出结果。
再次,马尔可夫链模型可以用于分析多个状态之间的转移关系,对于复杂的市场情况也能够进行有效的建模。
然而,马尔可夫链模型也存在一些缺点。
首先,马尔可夫链模型的预测结果受到初始状态的影响较大,如果初始状态选择不当,可能会导致预测结果的偏差。
随机过程中的马尔可夫链模型
随机过程中的马尔可夫链模型马尔可夫链是一种描述随机过程的数学模型,它具有“无记忆性”的特点,即未来状态仅受当前状态的影响,与过去状态无关。
在这篇文章中,我们将探讨随机过程中的马尔可夫链模型及其应用。
一、什么是马尔可夫链模型马尔可夫链是一种随机过程,指的是一系列的随机事件,其中每个事件的发生仅依赖于前一个事件的状态。
这种“无记忆性”使得马尔可夫链具有简洁的数学描述和计算特性。
马尔可夫链由五个基本要素组成:状态空间、状态转移概率、初始概率分布、时间步长和转移矩阵。
1. 状态空间:马尔可夫链的状态空间表示系统可能处于的所有状态的集合。
例如,掷骰子的状态空间是{1, 2, 3, 4, 5, 6}。
2. 状态转移概率:状态转移概率表示从一个状态转移到另一个状态的概率。
通常用转移矩阵表示,其中每个元素表示从一个状态到另一个状态的转移概率。
3. 初始概率分布:初始概率分布表示系统在初始时刻处于各个状态的概率分布。
通常用向量形式表示,其中每个元素表示系统处于对应状态的概率。
4. 时间步长:时间步长表示系统从一个状态转移到下一个状态所经过的时间。
5. 转移矩阵:转移矩阵是一个方阵,其中的每个元素表示从一个状态到另一个状态的转移概率。
转移矩阵的每一行之和为1。
二、马尔可夫链模型的应用马尔可夫链模型在许多领域都有广泛的应用,包括自然语言处理、金融市场分析、生物信息学、网络传播模型等。
1. 自然语言处理:在自然语言处理中,马尔可夫链模型被用于文本生成、机器翻译和语音识别等任务。
通过建立一个马尔可夫链模型,可以根据已知的文本数据生成具有相似特征的新文本。
2. 金融市场分析:马尔可夫链模型被广泛应用于金融市场的分析和预测。
通过分析历史数据,建立一个马尔可夫链模型,可以预测未来的市场变化趋势,帮助投资者做出决策。
3. 生物信息学:在生物信息学中,马尔可夫链模型被用于基因序列分析、蛋白质结构预测等任务。
通过构建一个马尔可夫链模型,可以识别基因序列中的编码区域和非编码区域,进而对基因功能进行推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所研究的时间是无限的,是连续变量,其数值是连续不 断的,相邻两个值之间可作无限分割。马尔柯夫过程所 研究的状态也是无效的。而马尔柯夫链的时间参数取离 散数值如日、月、季、年,其状况是有限的只有可到个 状态
马尔柯夫链表明事物的状态由过去转变到现在,
由现在转变到将来,一环接一环,象一根链条。其
3
特点是“无后效应性”
犏 犏 P 11 P 11 P 11 (k ) (0) 犏 S = S 犏 犏 犏 P 犏 11 P 11 P 11 臌
此式即为马尔可夫预测模型。
2、市场占有率预测
例 设有甲乙丙三家企业,生产同一种产品, 共同供应1000家用户,各用户在各企业间自 由选购,但不超出这三家企业,也无新用户。 假定在10月末经过市场调查得知,甲乙丙三 家企业拥有的客户分别是250户,300户, 450户,而11月份用户可能的流动情况如下:
从 甲 到 甲 230 乙 10 丙 10 ∑ 250
乙
丙 ∑
20
30 280
250
10 270
30
410 450
300
450 1000
问题: 假定该产品用户的流动按上述方向继 续变化下去(转移矩阵不变),预测12月 份三家企业市场用户各自的拥有量,并计 算经过一段时间后,三家企业在稳定状态 下该种产品的市场占有率。
2
12月份三个企业市场用户拥有量分别为: 甲: 1000? 0.306 306 户 乙: 1000? 0.246 246 户 丙: 1000? 0.448 448 户
现在假定该产品用户的流动情况按上述 方向继续变化下去,我们来求三个企业的该 种产品市场占有的稳定状态概率。 易证 P 为正规矩阵,设t = ( x, y,1- x - y) 令 tP = t ,则
解得
(x,y, 1- x - y) = ( 1 , 1 , 1 ) ? (0.50, 0.167, 0.333) 2 6 3
3、项目选址预测
某汽车维修公司在合肥有A、B和C3个维修厂。
由于公司注重对员工技术的提高,树立顾客至上、
信誉第一的理念,采用先进的管理模式。
16
由于资金的原因,公ห้องสมุดไป่ตู้目前打算只对其中的
一个维修厂进行改造,并扩大规模。试分析 应选择哪一个维修厂。
公司在本行业具有良好的形象,形成了一定 规模的、稳定的客户群。的客户的调查显示,
矩阵中每一行的元素,代表着各企业保 持和失去用户的概率。
第三步:利用马尔科夫链模型进行预测。显 然,12月份三家企业市场占有率为
S (2) = ( S1(2) , S2(2) , S3(2) ) = S (0) P 2 轾 0.92 0.04 0.04 犏 = (0.25 0.3 0.45) 犏 0.067 0.833 0.1 犏 犏 0.067 0.022 0.911 臌 = (0.306 0.246 0.448)
正规概率矩阵: m P P 对概率矩阵 ,若幂次方 的所有元素皆 为正数,则称矩阵P为正规概率矩阵(m 2) 。 定理: 正规概率矩阵 P 幂次方P, P2 , P3 ,... 趋近于某 T 的每一行均为同一概率向量 t ,且 一方阵 T , 满足tP = t 。
马尔可夫链模型: 设系统在k = 0 时所处的初始状态 S (0) = (S1(0) , S2(0) ,..., SN (0) )为已知的,经过 k 次转移 后所处的状态向量S (k ) = (S1(k ) , S2(k ) ,..., SN (k ) ) (k 1, 2,...) 轾 P 则 11 P 12 P 11
客户在A、B和C3个维修厂之间的转移概率为:
17
甲 0 .8 0 . 2 0 p 乙 0 .2 0 0 .8 丙 0 .2 0 .2 0 .6
易证 P 为正规矩阵,设 t = ( x, y,1- x - y) 令 tP = t ,则
轾 0.8 0.2 0 犏 ( x, y,1- x - y ) 犏 0.2 0 0.8 = ( x, y ,1- x - y ) 犏 犏 0.2 0.2 0.6 臌
转移矩阵: 系统由状态 Ei 经过一次转移到状态E j 的概 率记为Pij ,称矩阵
轾 P 11 P 12 P 11 犏 犏 P 11 P 11 P 11 犏 P= 犏 犏 犏 P 犏 11 P 11 P 11 臌
为一次(一步)转移矩阵。 转移矩阵的性质:
(1) P( k ) = P( k- 1) P (2) P( k ) = Pk 其中P( k ) 为 k 次转移矩阵。
马尔柯夫链: (1)无后效性,即系统的第n次试验结果出现 的状态,只与第n-1时系统所处的状态有关, 而与它以前所处的状态无关; (2)具有稳定性,该过程逐渐趋于稳定状态, 而与初始状态无关。
概率向量: 向量u = (u , u ,...u ) 称为概率向量,如果 u 满足:
1 2 n
ì u j ? 0, j 1, 2,..., n ï ï ï ï í n ï uj = 1 å ï ï j= 1 ï î 概率矩阵: 如果方阵P的每行都为概率向量,则称此方 阵为概率矩阵。
马尔柯夫链模型
张俊丽
马尔柯夫预测法
马尔柯夫(Markov)法是以俄国数学家 A· A· Markov名字命名的一种方法.它将时 间序列看作一个随机过程,通过对事物不
2
同状态的初步概率和状态之间转移概率的
研究,确定状态变化趋势,以预测事物的
未来,马尔可夫法和博克斯一詹金斯法都
是随机时间序列分析法。
马尔柯夫过程就是时间转移和状态转移的过程。马尔 柯夫链是马尔柯夫过程的一种特殊情况。马尔柯夫过程
轾 230 10 10 犏 犏 250 250 250 轾 0.92 0.04 0.04 犏 犏 20 250 30 犏 P= 犏 = 犏 0.067 0.833 0.1 犏 300 300 300 犏 犏 0.067 0.022 0.911 犏 臌 30 10 410 犏 犏 450 450 450 臌
轾 0.92 0.04 0.04 犏 ( x, y,1- x - y ) 犏 0.067 0.833 0.1 = ( x , y ,1- x - y ) 犏 犏 0.067 0.022 0.911 臌
解得 x = 0.4558, y =
0.1598
,故
( x, y,1- x - y) = (0.4558,0.1598,0.3844)
问题分析与求解 第一步:确定初始状态概率向量,这里
S (0) = ( S1(0) , S2 (0) , S3(0) ) 250 300 450 = ( , , ) 1000 1000 1000 = (0.25, 0.3, 0.45)
第二步:确定一次转移概率矩阵。此例由用 户可能流动情况调查表可知,一次转移概率 矩阵为:
1、马尔柯夫链模型简介
设考察对象为一系统,若该系统在某一 时刻可能出现的事件集合为{E1 , E2 ,..., EN },且 E1 , E2 ,..., EN 两两互斥,则称Ei (i 1, 2,..., N ) 为 Ej Ei 到另一状态 状态。称该系统从一种状态 的过程为状态转移,并把整个系统不断实现 状态转移的过程称为马尔柯夫过程。