降压IC芯片如何选型,降压IC芯片有哪些种类

合集下载

SM7075-12非隔离电源降压IC芯片 12V 0.3A

SM7075-12非隔离电源降压IC芯片 12V 0.3A

SM7075-12特点◆输入电压:85Vac~265Vac◆拓扑结构支持:低成本BUCK、BUCK-BOOST等方案◆采用650V单芯片集成工艺◆待机功耗小于60mW@220Vac ◆集成高压启动电路◆集成高压功率开关◆45KHz固定开关频率◆电流模式PWM控制方式◆内置抖频技术,提升EMC性能◆内置过温、过流、过压、欠压等保护功能◆内置软启动◆内置智能软驱动技术(提高EMC性能)◆封装形式:TO252-2、TO251应用领域◆电磁炉、电饭煲、电压力锅等小家电产品电源内部功能框图HVDD管脚说明订购信息极限参数(注1)若无特殊说明,T A=25°C。

注1:最大输出功率受限于芯片结温,最大极限值是指超出该工作范围,芯片有可能损坏。

在极限参数范围内工作,器件功能正常,但并不完全保证满足个别性能指标。

注2:RθJA在T A=25°C自然对流下根据JEDEC JESD51热测量标准在单层导热试验板上测量。

注3:温度升高最大功耗一定会减小,这也是由T JMAX,RθJA和环境温度T A所决定的。

最大允许功耗为P D = (T JMAX-T A)/ RθJA或是极限范围给出的数值中比较低的那个值。

电气工作参数(注4、5)若无特殊说明,T A=25°C。

注4:电气工作参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数。

对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

注5:规格书的最小、最大参数范围由测试保证,典型值由设计、测试或统计分析保证。

注6:过温保护温度为芯片内部设定温度145°C。

功能表述LN◆ 电路图说明上图为典型的BUCK-BOOST 电路,其中C1、C2、L1组成π型滤波,有益于改善EMI 特性;R1电阻为浪涌抑制元件;D1为整流二极管,构成半波整流电路。

输出部分L2为储能电感,D2为HVDD 供电二极管;D3为续流二极管,在芯片关断期间提供输出电流通路。

DC-DC升降压产品选型表

DC-DC升降压产品选型表

效率
最大98% 最大98% 最大98% 最大98% 最大98% 最大98% 最大98%
调光功能
使能调光 使能调光 使能调光 使能调光 使能调光 PWM PWM
IVER DC-DC降压恒流
输出功率范围 ≤40W ≤20W ≤30W ≤15W ≤15W ≤10W ≤40W ≤30W ≤20W ≤15W ≤15W ≤10W ≤40W ≤25W ≤20W ≤25W ≤20W ≤40W 驱动方式 外置MOS 内置MOS 内置MOS 内置MOS 内置MOS 内置MOS 外置MOS 效率 最大95% 最大95% 最大95% 最大95% 最大95% 最大95% 最大95% 调光功能 PWM调光,线性调光 PWM调光,线性调光 PWM调光,线性调光 PWM调光,线性调光 PWM调光,线性调光 PWM调光,线性调光 支持100%-50%分档调光 支持100%-50%分档调光 支持100%-50%分档调光 支持100%-50%分档调光 支持100%-50%分档调光 支持100%-50%分档调光 PWM调光 PWM调光 PWM调光 PWM调光/线性调光 PWM调光/线性调光 PWM调光/线性调光
LED DRIVER DC-DC降压恒
型号 OC5021B OC5020B OC5022B OC5028B OC5038 OC5036 OC5121 OC5122 OC5120 OC5128 OC5138 封装 SOT23-6 ESOP8 ESOP8 ESOP8 ESOP8 SOT23-6/ ESOP8 SOT23-6 ESOP-8 ESOP-8 ESOP8 ESOP8 SOT23-6/ ESOP8 SOT23-6 ESOP8 ESOP-8 ESOP-8 ESOP-8 SOT23-6 输入电压范围 3.1~150V 3.1~100V 3.1~60V 3.1~100V 3.1~90V 3.1~90V 4.1~150V 4.1~60V 4.1~100V 4.1~90V 4.1~90V 3.8~90V 5~40V 5~40V 5~40V 5~40V 5~40V 5~40V 输出电压范围 ≤Vi-1V ≤Vi-1.2V ≤Vi-1.2V ≤Vi-1.2V ≤Vi-1.2V ≤Vi-1.2V ≤Vi-0.6V ≤Vi-0.8V ≤Vi-0.8V ≤Vi-0.8V ≤Vi-0.8V ≤Vi-0.8V ≤Vi-1V ≤Vi-1V ≤Vi-1V ≤Vi-1V ≤Vi-1V ≤Vi+1V 输出电流范围 ≤5A ≤2A ≤2.5A ≤1.2A ≤1.2A ≤800mA ≤5A ≤2.5A ≤2A ≤1.2A ≤1.2A ≤800mA ≤5A ≤3A ≤2.2A ≤2.5A ≤2.2A ≤5A

电源管理芯片常见分类及基础介绍

电源管理芯片常见分类及基础介绍

电源管理芯片常见分类及基础介绍电源管理芯片电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。

主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。

常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。

基本类型主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。

它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。

常见电源管理IC芯片在日常生活中,人们对电子设备的依赖越来越严重,电子技术的更新换代,也同时意味着人们对电源的技术发展寄予厚望,下面就为大家介绍电源管理技术的主要分类。

电源管理半导体从所包含的器件来说,明确强调电源管理集成电路(电源管理IC,简称电源管理芯片)的位置和作用。

电源管理半导体包括两部分,即电源管理集成电路和电源管理分立式半导体器件。

在日常生活中,人们对电子设备的依赖越来越严重,电子技术的更新换代,也同时意味着人们对电源的技术发展寄予厚望,下面就为大家介绍电源管理技术的主要分类。

电源管理半导体从所包含的器件来说,明确强调电源管理集成电路(电源管理IC,简称电源管理芯片)的位置和作用。

电源管理半导体包括两部分,即电源管理集成电路和电源管理分立式半导体器件。

电源管理集成电路包括很多种类别,大致又分成电压调整和接口电路两方面。

电压凋整器包含线性低压降稳压器(即LDO),以及正、负输出系列电路,此外不有脉宽调制(PWM)型的开关型电路等。

因技术进步,集成电路芯片内数字电路的物理尺寸越来越小,因而工作电源向低电压发展,一系列新型电压调整器应运而生。

15V降压5V18V降压5V的IC和LDO芯片的方案

15V降压5V18V降压5V的IC和LDO芯片的方案

15V降压5V18V降压5V的IC和LDO芯片的方案在设计数电路降压电源的过程中,需要选择适当的电压降低IC和LDO芯片来实现所需的降压功能。

以下是两种实现15V降压到5V和18V 降压到5V的方案。

方案一:15V降压到5V的IC和LDO芯片在15V降压到5V的设计中,我们可以选择LM7805稳压芯片作为LDO 芯片。

LM7805是一种三端稳压器,具有过热保护和过载保护功能,能够将高电压输入稳定到5V输出。

接下来,我们需要选择适当的降压IC来实现15V到5V的降压功能。

一种常用的降压IC是LM2596,它是一种开关稳压器,可以使用外部电感和电容实现高效的降压转换。

LM2596具有宽输入电压范围和可调输出电压功能,非常适合这种应用。

通过将15V输入连接到LM2596的输入引脚,将5V输出连接到LM7805的输入引脚,然后将LM7805的输出引脚连接到所需的负载,就可以实现15V降压到5V的功能。

方案二:18V降压到5V的IC和LDO芯片在18V降压到5V的设计中,我们同样可以选择LM7805作为LDO芯片来稳定输出电压。

与此同时,我们可以选择TPS5430作为降压IC来实现18V到5V的降压功能。

TPS5430是一款效率高的非同步降压DC-DC转换器,可以根据需要调整频率和占空比。

TPS5430具有宽输入电压范围和大输出电流能力,非常适合这种应用。

将18V输入连接到TPS5430的输入引脚,将5V输出连接到LM7805的输入引脚,然后将LM7805的输出引脚连接到所需的负载,就可以实现18V降压到5V的功能。

需要注意的是,在设计降压电源时,除了选择适当的芯片之外,还需要合理布局电路板、选择合适的电感和电容,并考虑散热和过载保护等因素,以确保电路的可靠性和稳定性。

5V降压2.8V,3.7V降压2.8V,3V降压2.8V芯片选型

5V降压2.8V,3.7V降压2.8V,3V降压2.8V芯片选型

5V降压2.8V,3.7V降压2.8V,3V降压2.8V降压芯片,稳压IC选型,稳压芯片,的几款稳压IC,电路图,芯片5V降压2.8V和3.7V降压2.8V和3V降压2.8V可根据电流来选用1,LDO线性芯片,2,DC-DC降压芯片1,LDO线性芯片一般我们都追求极简的外围电路和元器件的芯片,对于电流小的,不追求效率的,LDO 芯片就是第一个选择了。

LDO芯片一般推荐用PW6566即可。

成本低,还要更多其他输出电压的选择。

三极管的封装形式。

如果输入电压需要更高时,则需要选择其他LDO了。

LDO产品输入电压输出电压输出电流静态功耗封装PW6566 1.8V~5.5V 1.2V~5V多250mA2uA SOT23-3PW62184V~18V3V,3.3V,5V100MA3uA Sot23-3PW6206 4.5V~40V 3V,3.3V,5V 150MA 4.2uA Sot23/89PW8600 4.5V~80V 3V,3.3V,5V 150MA 2 uA Sot23-32,DC-DC降压芯片DC-DC降压芯片如果是3V或者3.7V输入的话,则不需要考虑以上的原因。

在5V输入时,有2钟情况,如果是稳定的5V供电电压则可以选择PW2058,PW2051,PW2052,PW2053等等。

如果输入的5V是不稳定的,会有瞬间的6V,7V等电压出现时,则需要把7V最高电压纳算入输入电压范围了。

需要选择PW2162,PW2163,PW2203等。

PW2162是一颗DC-DC同步降压降压换器芯片,输入电压范围4.5V-16V,最大可负载电流2A,可调输出电压,频率600kHZ高频率,可采用贴片电感,节省空间,采用SOT23-6封装形式。

PW2312是一颗DC-DC同步降压降压换器芯片,输入电压范围4V-30V,最大负载电流1.2A,可调输出电压,频率1.4MHZ高频率,可采用贴片电感,节省空间,采用SOT23-6封装形式。

LED降压恒流驱动IC

LED降压恒流驱动IC

LED降压恒流驱动IC大功率LED驱动IC-TAC7135 价格为:1.2元TAC Microtech(台创科技)针对大功率LED(发光二极管)的不同应用推出一款解决方案TAC7135。

TAC7135是一款输入电压2.7V-6V 的350mA超低压差稳流器。

350mA恒定电流输出推动1W的大功率LED,达到稳定亮度、增加电池总输出功率的效果,输出电流分别有300mA、330mA、350mA、380mA,其超低压差、低静态电流特性更延长了电池使用时间。

使用两个380mA并联则可直接驱动3W大功率LED,无须任何外接组件,并具有输出短路/开路保护与内建过热保护装置。

SOT-89-3封装。

应用范围:大功率LED手电筒、大功率LED矿灯、低压降压模块、汽车LED灯、LED灯箱、LED台灯照明, 并可直接代替AMC7135。

规格书下载:TAC7135大功率LED驱动IC-TAC7136 价格为:1.5元TAC7136 是一款低静态电流、低压差的LED恒流驱动器。

输入电压2.7V-6V,使用一个外接电阻,可使输出电流能在100mA到400mA范围内进行调节。

仅仅需要一个外接电阻就可构成一个完整的LED恒流驱动电路。

内部自带软启动、过热保护、低压保护。

提供一个可以用于扩压和扩流的DR脚。

外接一个MOS 场效应管或NPN三极管,可以扩大输出电流和输出电压范围,最大电流可达2A。

SOT-89-5封装。

应用范围:大功率LED手电筒、大功率LED矿灯、低压降压模块、汽车LED灯、LED灯箱、LED台灯照明,LED 显微镜灯。

规格书下载:TAC7136大功率LED驱动IC-TAC9920 价格为:1.5元TAC9920 是一款高效率,稳定可靠的大功率LED驱动IC,内置高精度比较器,off-time控制电路,恒流驱动控制电路等,特别适合大功率,多个大功率LED灯串恒流驱动。

TAC9920采用固定off-time控制方式,其工作频率可高达2.5MHz,可使外部电感和滤波电容,体积减少,效率提高。

5V转3.7V转3.3V转2.8V转1.8V转1.2V降压芯片选型表

IC 代理商:5V 或锂电池输入等,降压输出的选型和芯片介绍通俗来说就是,5V 转3.3V ,5V 转3V ,5V 转2.8V ,5V 转2.7V ,5V 转2.5V ,5V 转2V 5V 转1.8V ,5V 转1.5V ,5V 转1.2V ,5V 转1.1V ,5V 转1V ;3.7V 锂电池转3.3V ,3.7V 锂电池转3V ,3.7V 锂电池转2.8V ,3.7V 锂电池转2.7V ,3.7V 锂电池转2.5V ,3.7V 锂电池转2V ,3.7V 锂电池转1.8V ,3.7V 锂电池转1.5V ,3.7V 锂电池转1.2V ,3.7V 锂电池转1V ;4.2V 转3.3V 转3V 转2.8V 转2.7V 转2.5V 转2V 转1.8V 转1.5V 转1.2V 转1.2的降压IC 。

针对不同的应用,输出电流要求也是各有不同。

下图列表参数就能帮助大家进行选择合适的芯片。

IC 的典型应用原理图PL5900A/PL5902: 输入电压范围2.5V-5.5V ,输出电压:可调,脚位PIN 对PINPL5900A 的最大输出电流是1.2A ,PL5902的最大输出电流是2AV INV OUTR1PL5903:输入电压范围2.7V-5.5V ,输出电压:可调PL5903的最大输出电流是3A 。

PL3501 /PL3502:输入电压:2.0V-5.5V ,输出电压固定值:3.3V,3.0V,2.8V,1.8V 等 PL3501是DFN 小封装,低功耗,蓝牙手表等PCB 空间小应用, PL3502适合300MA 以下电流应用,均带EN 开关控制脚,性能高。

VV OUTV INV OUT。

3.7V降压3.3V芯片,5V降压3.3V的升降压IC

3.7V降压3.3V,5V降压3.3V降压IC,3A降压芯片,降压芯片和LDO,高效率稳压芯片,低功耗LDO和DC芯片,稳压固定3.3V芯片,升降压3.3V芯片,芯片选型说明,3.7V降压3.3V,5V降压3.3V可选择:1升降压芯片,2单降压芯片,3LDO稳压芯片。

1,升降压芯片:3.7V电压一般都是锂电池多,锂电池的标称电压是3.7V,锂电池满电电压是达到4.2V,一般带保护板的话,最低放电电压是3V,所以锂电池的输入电压是3V-4.2V直接。

如何将3V-4.2V的电压稳压成固定3.3V呢?里面包含了升压3V降压3.3V和降压3.3V-4.2V 降压3.3V.1-1:PW5410B,输入电压1.8V-5V之间,宽于并可满足3V-4.2V的输入电压。

PW5410是电荷升压芯片,外围仅3个电容,使用于200MA以下电流应用。

1-2:PW2228A和PW2224,输入电压1.8V-5V之间,宽于并可满足3V-4.2V的输入电压,可以调节输出电压2.8V-5V的范围之间。

PW2228A是1.5A最大规格,PW2224是3A最大规格。

2单降压芯片5V作为一个常见和常用的电压值,他并无固定在那个电池或者产品等。

5V输入,降至到 3.3V比较简单,不需要用到升降压芯片,选择也是很多。

如:PW2057,PW2051,WP2052,PW2053等等。

输入电压输出电压输出电流频率封装DC-DC降压产品PW2058 2.0V~6.0V 1V~5V 0.8A 1.5MHz SOT23-5PW2051 2.5V~5.5V 1V~5V 1.5A 1.5MHz SOT23-5PW2052 2.5V~5.5V 1V~5V 2.0A 1.0 MHz SOT23-5PW2053 2.5V~5.5V 1V~5V 3.0A 1.0 MHz SOT23-5PW2162 4.5V~16V 1V~15V 2A 600KHZ SOT23-6PW2163 4.5V~16V 1V~15V 3A 600KHZ SOT23-6PW2205 4.5V~20V 1V~15V 5A 340KHZ SOP8-EPPW2312 4.0V~30V 1V~28V 1.2A 1.4 MHz SOT23-6PW2330 4.5V~30V 1V~28V 3A 130KHz SOP8PW2431 4.5V~40V 1V~30V 3A 340KHz SOP8-EPPW2558 4.5V~55V 1.25V~30V 0.8A 1.2 MHz SOT23-6PW2608 5.5V~60V 1.5-30V 0.8A 0.3-1Mhz SOP8-EPPW2815 4.5V~80V 1.5V~30V 1.5A 400KHZ SOP8-EPPW2906 12V~90V 1.25V~20V 0.6A 150KHZ SOP8-EPPW2902 8V~90V 5V~30V 2A 140KHZ SOP8-EPPW2153 8V~140V 5V~30V 4A 140KHZ SOP8。

降压IC芯片如何选型,降压IC芯片有哪些种类

降压IC芯片如何选型,降压IC芯片有哪些种类LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为PNP。

这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为200mV 左右;与之相比,使用NPN 复合电源晶体管的传统线性稳压器的压降为2V 左右。

负输出LDO 使用NPN 作为它的传递设备,其运行模式与正输出LDO 的PNP设备类似。

更新的发展使用CMOS 功率晶体管,它能够提供低的压降电压。

使用CMOS,通过稳压器的电压压降是电源设备负载电流的ON 电阻造成的。

如果负载较小,这种方式产生的压降只有几十毫伏。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~LDO VS DCDCDCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。

但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。

LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。

它需要的外接元件也很少,通常只需要一两个旁路电容。

新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA,电压降只有100mV。

LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。

P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流;另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力,输入和输出之间的电压降不可以太低;而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。

由於MOSFET的导通电阻很小,因而它上面的电压降非常低。

如果输入电压和输出电压很接近,尽量是选用LDO稳压器,可达到很高的效率。

所以,在把锂离子电池电压转换为3V输出电压的应用中大多选用LDO 稳压器。

常用升降压芯片

常用升降压芯片
升降压芯片是一种电源管理芯片,用于实现电能的转换和优化。

在各种应用场景中,升降压芯片发挥着重要的作用,以下是几种常用的升降压芯片:
1. TPS63070RNMR:这是一款降压-升压转换器IC芯片,具有14%的复购率。

2. PT4121:这是一款高亮度恒流驱动IC芯片,适用于60V的降压应用,复购率为0%。

3. OC5021B:这是一款升降压型led恒流驱动芯片,适用于电动自行车等应用场景。

4. STI3508:这是一款SOT23-6封装的降压型DC转换器电源管理芯片,具有38%的复购率。

5. JW3651:这是一款高性能的升降压转换器芯片,具有23%的复购率。

此外,还有一些面向特定应用的升降压芯片,如水芯电子的M12239,这是一款面向双路独立的多串电芯大功率移动电源应用的专用SOC芯片,内部集成了同步升降压变换器、电池充放电管理模块、显示模块、电量计算模块等。

以上信息仅供参考,建议咨询电子技术专家或查阅相关文献资料获取更多关于升降压芯片的准确信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

降压IC芯片如何选型,降压IC芯片有哪些种类LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为PNP。

这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为
200mV 左右;与之相比,使用NPN 复合电源晶体管的传统线性稳压器的压降为2V 左右。

负输出LDO 使用NPN 作为它的传递设备,其运行模式与正输出LDO 的PNP设备类似。

更新的发展使用CMOS 功率晶体管,它能够提供低的压降电压。

使用CMOS,通过稳压器的电压压降是电源设备负载电流的ON 电阻造成的。

如果负载较小,这种方式产生的压降只有几十毫伏。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
LDO VS DCDC
DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,
包括LDO。

但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。

LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,
这些是它的突出优点。

它需要的外接元件也很少,通常只需要一两个旁路电容。

新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,
静态电流6μA,电压降只有100mV。

LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。

P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流;另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力,输入和输出之间的电压降不可以太低;而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。

由於MOSFET的导通电阻很小,因而它上面的电压降非常低。

如果输入电压和输出电压很接近,尽量是选用LDO稳压器,可达到很高的效率。

所以,在把锂离子电池电压转换为3V输出电压的应用中大多选用LDO 稳压器。

虽说电池的能量,有百分之十是没有使用,LDO稳压器仍然能够保证电池的工作时间较长,同时噪音较低。

如果输入电压和输出电压不是很接近,就要考虑用开关型的DCDC了,应为从上面的原理可以知道,LDO的输入电流基本上是等于输出电流的,如果压降太大,耗在LDO上能量太大,效率不高。

DC-DC转换器包括升压、降压、升/降压和反相等电路。

DC-DC转换器的优点是效率高、可以输出大电流、静态电流小。

随著集成度的提高,许多新型DC-DC转换器仅需要几只外接电感器和滤波电容器。

但是,这类电源控制器的输出脉动和开关噪音较大、成本相对较高。

近几年来,随著半导体技术的发展,表面贴装的电感器、电容器、以及高集成度的电源控制芯片的成本不断降低,体积越来越小。

由於出现了导通电阻很小的MOSFET可以输出很大功率,因而不需要外部的大功率FET。

例如对于3V
的输入电压,利用芯片上的NFET可以得到5V/2A的输出。

其次,对于中小功率的应用,可以使用成本低小型封装。

另外,如果开关频率提高到1MHz,还能够降低成本、可以使用尺寸较小的电感器和电容器。

有些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。

总的来说,升压是一定要选DCDC的,降压,是选择DCDC还是LDO,要在成本,效率,噪声和性能上比较。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~`
LDO体积小,干扰较小,当输入与输出电压差较大的化,转换效率低。

DC-DC好处就是转换效率高,可以大电流,但输出干扰较大,体积也相对较大。

LDO一般是指线性的稳压器--Low Drop Out, 而DC/DC则是线性式和开关式稳压器的总称.
如果你的输出电流不是很大(如3A以内), 而且输入输出压差也不大(如3.3V 转2.5V等)就可以使用LDO的稳压器(优点是输出电压的ripple很小). 否则用开关式的稳压器, 如果是升压, 也只能用开关式稳压器(如果ripple控制不好,容易影响系统工作).
LDO的选择
当所设计的电路对分路电源有以下要求:
1.高的噪音和纹波抑制;
2.占用PCB板面积小,如手机等手持电子产品;
3.电路电源不允许使用电感器,如手机;
4.电源需要具有瞬时校准和输出状态自检功能;
微源半导体在降压芯片领域的持续发展,现为客户提供优质的解决方案:高压输入降压IC
低电压输入降压IC。

相关文档
最新文档