温度控制系统的设计与仿真

合集下载

本科毕业论文PID温控系统的设计及仿真

本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。

可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。

要对温度进行控制,有很多方案可选。

PID 控制简单且容易实现,在大多数情况下能满足性能要求。

模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。

研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。

本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。

仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。

由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。

参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。

因此本论文最终确定采用参数模糊自整定PID 控制方案。

本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。

关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。

PID温控系统的设计及仿真毕业论文

PID温控系统的设计及仿真毕业论文

PID温控系统的设计及仿真毕业论文摘要:本论文针对PID温控系统的设计和仿真展开研究。

首先,介绍了PID控制器的基本原理和工作方式,并分析了PID控制器在温控系统中的应用。

然后,基于MATLAB/Simulink软件,建立了PID温控系统的数学模型,并进行了系统的仿真。

通过对比分析不同PID参数的变化对温度控制系统的影响,最终得到了最优的控制参数。

关键词:PID控制器,温控系统,MATLAB,仿真1.引言温控系统在日常生活中被广泛应用,例如家用温度控制、工业生产过程中的温度控制等。

PID控制器作为一种经典的控制方法,被广泛应用于温控系统中。

本论文旨在设计一个PID温控系统,并通过仿真实验分析不同PID参数对系统性能的影响,从而得到最优的控制参数。

2.PID控制器原理及应用PID控制器是一种反馈控制器,根据控制量与设定值之间的差异来调整输出信号。

它由比例环节、积分环节和微分环节组成,可以有效地抑制温度偏差、提高控制系统的稳定性和精度。

PID控制器在温控系统中的应用十分广泛。

通过对温度传感器采集到的信号进行处理,PID控制器可以实时调整控制系统的输出信号,从而控制温度在设定范围内波动。

PID控制器的参数调整对于系统性能和稳定性具有重要影响。

3.温控系统的数学模型建立基于PID控制器的温控系统可以用数学模型来描述。

以温度T为控制对象,控制量为输出温度U,设定温度为R,PID控制器的输出为Y。

根据温控系统的动力学特性,可以建立如下的数学模型:T * dY(t)/dt = Kp * (R - Y(t)) + Ki * ∫(R - Y(t))dt + Kd * d(R - Y(t))/dt其中Kp为比例系数,Ki为积分系数,Kd为微分系数。

4.温控系统的仿真实验通过MATLAB/Simulink软件,搭建了PID温控系统的仿真模型。

根据数学模型,设定了温度的变化范围和输出的控制参数。

在仿真实验中,通过对比分析不同PID参数的变化对温度控制系统的影响。

课程设计说明书 温度控制系统的设计与实现

课程设计说明书 温度控制系统的设计与实现

课程设计说明书课程设计说明书题目:温度控制系统的设计与实现摘要温度控制系统是一种典型的过程控制系统,在工业生产中具有极其广泛的应用。

温度控制系统的对象存在滞后,它对阶跃信号的响应会推迟一些时间,对自动控制产生不利的影响,因此对温度准确的测量和有效的控制是此类工业控制系统中的重要指标。

温度是一个重要的物理量,也是工业生产过程中的主要工艺参数之一,物体的许多性质和特性都与温度有关,很多重要的过程只有在一定温度范围内才能有效的进行,因此,对温度的精确测量和可靠控制,在工业生产和科学研究中就具有很重要的意义。

本文阐述了过程控制系统的概念,介绍了一种温度控制系统建模与控制,以电热水壶为被控对象,通过实验的方法建立温度控制系统的数学模型,采用了PID算法进行系统的设计,达到了比较好的控制目的。

关键词:温度控制;建模;自动控制;过程控制;PIDAbstractIn industrial production with extremely extensive application, temperature control system is a typical process control system.Temperature control system has the larger inertia. It is the response signal to step off some of time.And it produces the adverse effect to the temperature measurement. The control system is the important industrial control index. Temperature is an important parameters in the process of industrial production. Also it is one of the main parameters of objects, many properties and characteristics of temperature, many important process only under certain temperature range can efficiently work. Therefore, the precise measurement of temperature control, reliable industrial production and scientific research has very important significance.This paper discusses the concept of process control system and introduces a kind of temperature control system .The electric kettle is the controlled object, PID algorithm is used for system design,through experience method to get the model of temperature control system and we can get the controlied response well.Keywords:Temperature control; Mathematical modeling; Automatic control;Process control; PID目录第一章概述 .......................................... 错误!未定义书签。

过程控制课程设计-纸机温度控制系统设计与仿真

过程控制课程设计-纸机温度控制系统设计与仿真

等控制方法,设计至少 2 套控制系统,达到控制加热器的目的,使被控变量的波动在规 定的范围内。对于每一套控制方案,具体要求: 1) 说明所采用的控制方案以及采用该方案的原因,并在工艺流程上表明该控制系 统。 2) 确定所用控制器的正反作用(这里要求加热器内的混合物不能益处,且不能过 热) ,画出控制系统完整的方框图(需注明方框图各环节的输入输出信号) ,并选 择合适的 PID 控制规律。 3) 在 SIMULINK 仿真环境下,对所采用的控制系统进行仿真研究。具体步骤包括: a) b) c) d) e) 在对象特性参数的变化范围内,确定各环节对象的传递函数模型,并构造 SIMULINK 对象模型; 引入手动/自动切换环节,在手动状态下对控制通道、 干扰通道分别进行阶 跃响应试验,以获得“广义对象”开环阶跃响应曲线; 依据 PID 参数整定方法,确定各控制器的参数; 在控制系统处于“闭环”状态下,进行液位、温度设定值跟踪响应试验、 白水,冷水对系统输出的扰动响应试验,并获得相应的响应曲线; 在各控制器参数均保持不变的前提下,当对象特性在其变化范围内发生变 化时,重新进行液位、温度设定值跟踪试验与扰动响应试验,并获得相应 的响应曲线。 根据不同控制方案的闭环响应曲线,比较控制性能(包括是否稳定、衰减 比、超调量、过渡过程时间等) 。
第 2 页 共 51 页
第二部分 分析计算
2.1 参数及仪表的选择
f)
1.3 仿真研究要求
为使仿真研究结果具有可比性,要求:(外界干扰和给定干扰 10%) 1) 跟踪响应试验前控制系统达到稳态,液位、温度设定值与测量值一致,分别对 应 150 mmH2O,60℃;跟踪响应试验中,液位、温度设定值的阶跃变化幅度对 2) 应实际液位、温度分别为 15 mmH2O, +6℃。 扰动响应试验前控制系统达到稳态,液位、温度设定值与测量值一致,分别对应 150 mmH2O,60 ℃;扰动响应试验中,白水和冷水的阶跃变化幅度为±10 mmH2O。

温度控制系统的设计与实现

温度控制系统的设计与实现

温度控制系统的设计与实现汇报人:2023-12-26•引言•温度控制系统基础知识•温度控制系统设计目录•温度控制系统实现•温度控制系统应用与优化01引言目的和背景研究温度控制系统的设计和实现方法,以满足特定应用场景的需求。

随着工业自动化和智能制造的快速发展,温度控制系统的性能和稳定性对于产品质量、生产效率和能源消耗等方面具有重要影响。

03高效、节能的温度控制系统有助于降低生产成本、减少能源浪费,并提高企业的竞争力。

01温度是工业生产过程中最常见的参数之一,对产品的质量和性能具有关键作用。

02温度控制系统的稳定性、准确性和可靠性直接关系到生产过程的稳定性和产品质量。

温度控制系统的重要性02温度控制系统基础知识温度控制系统的性能指标包括控制精度、响应速度、稳定性和可靠性等,这些指标直接影响着系统的性能和效果。

温度控制原理是利用温度传感器检测当前温度,并将该信号传输到控制器。

控制器根据预设的温度值与实际温度值的差异,通过调节加热元件的功率来控制温度。

温度控制系统通常由温度传感器、控制器和加热元件组成,其中温度传感器负责检测温度,控制器负责控制加热元件的开关和功率,加热元件则是实现温度升高的设备。

温度控制原理温度传感器是温度控制系统中非常重要的组成部分,其工作原理是将温度信号转换为电信号或数字信号,以便控制器能够接收和处理。

常见的温度传感器有热敏电阻、热电偶、集成温度传感器等,它们具有不同的特点和适用范围。

选择合适的温度传感器对于温度控制系统的性能和稳定性至关重要。

温度传感器的工作原理加热元件的工作原理加热元件是温度控制系统中实现温度升高的设备,其工作原理是通过电流或电阻加热产生热量,从而升高环境温度。

常见的加热元件有电热丝、红外线灯等,它们具有不同的特点和适用范围。

选择合适的加热元件对于温度控制系统的性能和安全性至关重要。

控制算法是温度控制系统的核心部分,其作用是根据预设的温度值和实际温度值的差异,计算出加热元件的功率调节量,以实现温度的精确控制。

基于模糊PID的温度控制系统的设计与仿真

基于模糊PID的温度控制系统的设计与仿真

将模糊控制理论和 PID 控制系统结合起来,能够提
高 控 制 系 统 的 性 能 ,来 适 应 各 种 工 业 环 境 。 为 此 ,
设 计 了 一 种 模 糊 PID 控 制 系 统 ,以 炉 温 控ห้องสมุดไป่ตู้制 为 例 ,
应 用 模 糊 推 理 的 方 法 实 现 了 PID 参 数 的 自 适 应 调
(1)
Ts + 1
其中,K 为被控对象的静态增益;T 为系统的时
基金项目:河南省教育厅项目(17A413009)
作者简介:宋 璐(1984—),女,陕西咸阳人,硕士,讲师。研究方向:大学物理和电子教学以及实验。
- 51 -
《电子设计工程》2020 年第 21 期
K p = K p′ +{e,e c}K p = K p′ + ΔK p
systems of traditional PID and fuzzy PID are established based on Simulink respectively. The simulation
results show that compared with traditional PID, Fuzzy PID has obvious advantages in control
以炉温控制为例进行对象模型的建立,为适应不
以 适 应 不 同 的 场 合 [1-5] 。 而 模 糊 控 制 具 有 智 能 化 的
同的工作环境,炉温需要进行动态的调整并进行精确
特 点 ,能 够 根 据 被 控 对 象 特 性 的 变 化 来 调 整 参 数 ,
地控制。根据实验结果或文献可知,由于温度传感
糊 PID 在控制性能上具有明显的优越性,具有无静差无超调,抗干扰能力强和鲁棒性好等特点。

基于Matlab的PID温控系统的设计与仿真

基于Matlab的PID温控系统的设计与仿真

基于Matlab的PID温控系统的设计与仿真摘要在Matlab6.5环境下,通过Matlab/Simulink提供的模块,对温度控制系统的PID控制器进行设计和仿真。

结果表明,基于Matlab的仿真研究,能够直观、简便、快捷地设计出性能优良的交流电弧炉温度系统控制器。

关键词温度系统数学模型;参数整定;传递函数在钢铁冶炼过程中,越来越多地使用交流电弧炉设备,温控系统的控制性能直接影响到钢铁的质量,所以炉温控制占据重要的位置。

PID控制是温控系统中一种典型的控制方式,是在温度控制中应用最广泛、最基本的一种控制方式。

随着科学发展,各行各业对温控精度要求越来越高,经典PID控制在某些场合已不能满足要求,因而智能PID控制的引入是精密温控系统的发展趋势。

为了改善电弧炉系统恒温控制质量差的现状,研制具有快速相应的、经济性好的、适合国情的恒温控制装置具有十分重要的意义。

1温控系统模型的建立在Matlab6.5环境下,通过Simulink提供的模块,对电弧炉温控系统的PID控制器进行设计和仿真。

由于常规PID控制器结构简单、鲁棒性强,被广泛应用于过程控制中。

开展数字PID控制的电弧炉控制系统模型使应用于生产实际的系统稳定性和安全性得到迅速改善。

1.1温控系统阶越响应曲线的获得在高校微机控制技术实验仪器上按以下步骤测得温度系统阶越响应曲线:1)给温度控制系统75%的控制量,即每个控制周期通过X0=255×75%=191个周波数,温度系统处于开环状态。

2)ATMEGA32L内部A/D每隔0.8s采样一次温度传感器输出的电压值,换算成实际温度值,再通过串口通讯将温度值送到电脑上保存。

使用通用串口调试助手“大傻串口调试软件-3.0AD”作为上位机接收数据并保存到文件“S曲线采集.txt”中。

3)在采集数据过程中,不时的将已经得到的数据通过“MicrosoftExcel”文档画图,查看温度曲线是否已经进入了稳态区;根据若曲线在一个较长时间里基本稳定在一个小范围值内即表明进入稳态区了,此时关闭系统。

飞机温控系统的建模与仿真

飞机温控系统的建模与仿真

飞机温控系统的建模与仿真飞机温控系统是飞机上不可缺少的一部分,它能够调节飞机内部的空气温度和湿度,在确保舒适乘坐的前提下,还能保障飞机内部系统的正常运行。

本文将从建立飞机温控系统的数学模型、利用Matlab进行仿真分析等方面进行讲解。

一、建立温控系统的数学模型1、空气温度的建模通过对飞机内部空气流动和传热现象进行分析,温度的变化可以用以下式子描述:Cp*dT/dt = h*A(Ts-T)-Md*(T-Ta) (1)其中,Cp为空气的热容量,Ts为散热器表面温度,T为空气温度,Ta为大气温度,M 为空气质量流量,d为散热器的厚度,h为传热系数,A为散热器的面积。

对式子进行简化可得:dT/dt = (h*A*(Ts-T)-Md*(T-Ta))/Cp (2)该式子可以用于模拟飞机在不同外界环境温度下的温度变化。

2、热交换器的建模在温控系统中,热交换器是用来控制飞机内部空气温度的重要组件,热交换器的性能会影响整个温控系统的效能。

热交换器的工作原理可以用以下式子描述:Cw*(Tw2-Tw1)/Lw = h*A*(T1-T2) (3)其中,Cw为水的热容量,Tw1为水的入口温度,Tw2为水的出口温度,Lw为水流的长度,h为传热系数,A为热交换器的面积,T1为空气入口温度,T2为空气出口温度。

对于热交换器,我们需要利用以上模型来分析其性能和控制参数。

3、模拟控制器的建模在一个完整的温控系统中,控制器起到了至关重要的作用,它能够根据传感器的反馈信息和实际环境参数进行调控,以维持飞机内部空气的舒适温度。

控制器的数学模型可以用以下式子表示:u = Kp*(e+1/Ti*∫(e)dt+Td*(de/dt)) (4)其中,u为控制器的输出,Kp为控制器的比例系数,Ti为控制器的积分时间常数,Td 为控制器的微分时间常数,e为控制量与设定值之间的偏差,de/dt为偏差的变化率。

该式子可以用于分析温控系统控制器的开环性能和闭环性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:远程与继续教育学院本科毕业论文(设计)题目:温控系统的设计及仿真(MATLAB) 、学习中心:学号:姓名:专业:机械设计制造及自动化指导教师:"2013 年 2 月 28 日)摘要温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。

温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。

温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。

一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。

如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。

实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。

本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。

关键词:1、单片机;2、PLC;3、MATLAB&(目录1单片机在炉温控制系统中的运用 (6)1、1系统的基本工作原理 (6)2温控系统控制算法设计 (7)温度控制算法的比较 (7)数字PID算法 (11)、3 结论 (21)致谢 (22)参考文献 (23)[@一、单片机在炉温控制系统中的运用单片机具有集成度高,运算快速快,体积小、运行可靠,价值低廉,因此在过程控制、数据采集、机电一体化、智能化仪表、家用电器以及网络技术等方面得到广泛应用,本文主要介绍单片机在炉温控制中的应用。

(一)系统的基本工作原理整个炉温控制系统由两大部分组成。

一部分由计算机和A/D和D/A转换电路组成。

主要完成温度采集,PID运算,产生可控硅的触发脉冲。

另外一部分由传感器信号放大,同步脉冲形成,以及触发脉冲放大等组成。

炉温控制的基本原理是:改变可控硅的导通角即改变电热炉加热丝两端的有效电压,有效电压可在0~140V内变化。

可控硅的导通角为0~5bH。

温度传感器是通过一只热敏电阻及其放大电路组成,温度越高其输出电压越小。

外部LED灯的亮灭表示可控硅的导通与关断的占空比时间,如果炉温低于设定值则可控硅导通,系统加热,否则系统停止加热,炉温自然冷却到设定值。

温度控制电路原理图如图所示。

<图温度控制电路原理图二、温控系统控制算法设计(一)、温度控制算法的比较1、.经典控制算法经典控制方法是指针对时滞系统控制问题提出并应用得最早的控制策略,主要包括PID控制、Smith预估控制、大林算法这几种方法。

PID控制器由于具有算法简单,鲁棒性好和可靠性高等特点,因而在实际控制系统设计中得到了广泛的应用。

PID控制的难点在于如何对控制参数进行整定,以求得到最佳控制效果。

然而PID在时滞过程中的应用受到一定的限制,由于PID算法只有在系统模型参数为非时变的情况下,才能获得理想效果。

当一个调好参数PID控制器被应用到模型参数时变系统时,系统的性能会变差,甚至不稳定。

|Smith预估器是得到广泛应用的时滞系统控制方法,该方法是一个时滞预估补偿算法。

它通过估计对象的动态特性,用一个预估模型进行补偿,从而得到一个没有时滞的被调节量反馈到控制器,使得整个系统的控制就如没有时滞环节,减小超调量,提高系统的稳定性并且加速调节过程,提高系统的快速性。

理论上Smith预估器可以完全消除时滞的影响,但是在实际应用中却不尽人意,主要原因在于:Smith预估器需要确知被控对象的精确数学模型,当估计模型和实际对象有误差时,控制品质就会严重恶化,因而影响了Smith预估器在实际应用中的控制性能。

大林算法是由美国IBM公司的Dahlin于1968年针对工业过程控制中的纯滞后特性而提出的一种控制算法。

该算法的目标是设计一个合适的数字调节器D(z),使整个系统的闭环传递函数相当于一个带有纯滞后的一阶惯性环节,而且要求闭环系统的纯滞后时间等于被控对象的纯滞后时间。

大林算法方法比较简单,只要能设计出合适的且可以物理实现的数字调节器D(z),就能够有效地克服纯滞后的不利影响,因而在工业生产中得到了广泛应用。

但它的缺点是设计中存在振铃现象,且与Smith算法一样,需要一个准确的过程数字模型,当模型误差较大时,控制质量将大大恶化,甚至系统会变得不稳定。

2、.智能控制算法智能控制是一类无需人的干预就能够独立地驱动智能机器实现其目标的自动控制,它包括模糊控制、神经网络控制、遗传算法等。

模糊控制是智能控制较早的形式,它吸取了人的思维具有模糊性的特点,从广义上讲,模糊逻辑控制指的是应用模糊集合理论,统筹考虑系统的一种控制方式,模糊控制不需要精确的数学模型,是解决不确定性系统控制的一种有效途径。

模糊控制是一种基于专家规则的控制方法。

在时滞过程中,模糊控制一般是针对误差和误差变化率而进行的,将输入量的精确值模糊化,根据输入变量和模糊规则,按照模糊推理合成规则计算控制量,再将它清晰化,得到精确输出控制过程,其中模糊规则是最重要的。

但是,模糊控制存在控制精度不高、算法复杂等缺点。

神经网络控制是研究和利用人脑的某些结构机理以及人的知识和经验对系统的控制。

人们普遍认为,神经网络控制系统的智能性、鲁棒性均较好,能处理高维、非线性、强耦合和不确定性的复杂工业生产工程的控制问题,其显著特点是具有学习能力。

神经网络的主要优势在于能够充分逼近任意复杂的非线性系统,且有很强的鲁棒性和容错性。

一般来说,神经网络用于控制有两种方法,一种是用来实现建模,一种是直接作为控制器使用。

与模糊控制一样,神经网络也存在算法复杂的缺点,同时神经网络学习和训练比较费时,对训练集的要求也很高。

经典控制方法由于具有结构简单、可靠性及实用性强等特点,在实际生产过程中得到了广泛的应用。

但它们都是基于参数模型的控制方法,因而自适应性和鲁棒性差、对模型精确性要求高、抗干扰能力差。

而智能控制是非参数模型的控制方法,因而在鲁棒性、抗干扰能力方面有很大的优势。

但智能控制也有其不足之处,即理论性太强,算法过于复杂,大多数方法还仅局限于理论和仿真研究,能在试验装置上和工业生产中应用的并不多。

根据这两类控制方法的特点,将它们结合起来进行复合控制是一种有效的时滞系统控制策略,成功的应用有模糊PID控制、模糊Smith控制、神经元Smith预估控制、Smith-NN预估控制等。

这些方法既能利用经典控制方法结构简单、可靠性和实用性强的特点,又能发挥智能控制自适应性和鲁棒性好,抗干扰能力强的优势,弥补了各自的不足,在大时滞控制系统中具有很好的应用前景。

PID调节是连续系统中技术最成熟的、应用最广泛的一种控制算方法。

它结构灵活,不仅可以用常规的PID调节,而且可以根据系统的要求,采用各种PID的变型,如PI、PD控制及改进的PID控制等。

它具有许多特点,如不需要求出数学模型、控制效果好等,特别是在微机控制系统中,对于时间常数比较大的被控制对象来说,数字PID完全可以代替模拟PID调节器,应用更加灵活,使用性更强。

所以该系统采用PID控制算法。

【系统的结构框图如图所示:图 系统结构框图该系统利用单片机可以方便地实现对PID 参数的选择与设定,实现工业过程中PID 控制。

它采用温度传感器热电偶将检测到的实际炉温进行A/D 转换,再送入计算机中,与设定值进行比较,得出偏差。

对此偏差按PID 规律进行调整,得出对应的控制量来控制驱动电路,调节电炉的加热功率,从而实现对炉温的控制。

利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID 控制和键盘终端处理(各参数数值的修正)及显示。

在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长, 否则会使干扰无法及时消除,使调节品质下降。

(二)、数字PID 算法1、模拟数字算法 规律: 01()()[()()]t p D Id e t u t K e t e t d t T T d t =++⎰ (3-1) >对式(3-1)取拉普拉斯变换,并整理后得到模拟PID 调节器的传递函数为:()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s D D I p 11 (3-2) 式中:()()()e t r t y t =-称为偏差值,可作为温度调节器的输入信号,其中()r t 为给定值,()y t 为被测变量值;p K 为比例系数;I T 为积分时间常数;D T 为微分时间常数;()u t 为调节器的输出控制电压信号。

由式(3-1)、式(3-2)可以看出,在PID 调节中,比例控制能迅速反应误差,从而减小误差,但比例控制不能消除稳态误差,p K 的加大,会引起系统的不稳定;积分控制的作用是:只要系统存在误差,积分控制作用就不断地积累,输出控制量以消除误差,因而,只要有足够的时间,积分控制将能完全消除误差,积分作用太强会使系统超调加大,甚至使系统出现振荡;微分控制可以使减小超调量,克服振荡,提高系统的稳定性,同时加快系统的动态响应速度,减小调整时间,从而改善系统的动态性能。

将P 、(3)采用增量型算法时所用的执行器本身都具有寄存作用,所以即使计算机发生故障,执行器仍能保持在原位,不会对生产造成恶劣影响。

最佳控制PID系统参数测定系统结构图如图所示,图中)1/(1)(/)1()()/1()(+=-=++=-TssGsesGsKsKKsGpTshdipc图系统结构图3、PID参数整定方法】(1) Ziegler-Nichols整定方法Ziegler-Nichols整定方法是根据给定对象的瞬间响应特性来确定PID控制器的参数。

Ziegler-Nichols法首先通过实验,获得控制对象单位阶跃响应,如果单位阶跃响应曲线看起来是一条S形的曲线,则可以用该方法,否则不能用。

(2)临界比例度法整定临界比例度法适用于已知对象传递函数的场合。

在闭合的控制系统里,将调节器置于纯比例作用下,从小到大逐渐改变调节器的比例度,得到等幅振荡周期kT。

采用临界比例度法时,系统产生临界振荡的条件是系统的阶数是3阶或3阶以上。

(3)衰减曲线法整定衰减曲线法根据衰减频率特性整定控制器参数。

先把控制系统中调节器置于纯比例作用下(0,=∞=τiT),使系统投入运行,再把比例度从小到大逐渐改变调节器的比例度,得到4:1衰减过程曲线。

相关文档
最新文档