高中数学同步测试卷
全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.将1枚硬币抛2次,恰好出现1次正面的概率是()A.B.C.D.02.高一(1)班有60名学生,其中女生有24人,现任选1人,则选中男生的概率是()A.B.C.D.13.任意说出星期一到星期日中的两天(不重复),其中恰有一天是星期六的概率是()A.B.C.D.4.某银行储蓄卡上的密码是一种4位数字号码,每位上的数字可在0,1,2,…,9这10个数字中选取,某人未记住密码的最后一位数字,若按下密码的最后一位数字,则正好按对密码的概率是()A.B.C.D.5.小红随意地从她的钱包中取出两枚硬币,已知她的钱包中有1分、2分币各两枚,5分币3枚,则她取出的币值正好是七分的概率是()A.B.C.D.二、填空题1.连续3次抛掷一枚硬币,则正、反面交替出现的概率是.2.在坐标平面内,点在x轴上方的概率是.(其中)3.先后抛掷3枚均匀的1分、2分、5分硬币.(1)一共可能出现种不同结果;(2)出现“2枚正面,1枚反面”的结果有种;(3)出现“2枚正面,1枚反面”的概率是.三、解答题1.在箱子里装有10张卡片,分别写有1到10的10个数字,从箱子中任取一张卡片,记下它的读数x,然后再放回箱子中;第二次再从箱子中任意取出一张卡片,记下它的读数y.求:(1)是10的倍数的概率;(2)是3的倍数的概率.2.已知集合,在平面直角坐标系中,点的,且,计算(1)点不在x轴上的概率;(2)点正好在第二象限的概率.3.某学校成立三个社团,共60人参加,A社团有39人,B社团有33人,C社团有32人,同时只参加A、B社团的有10人,同时只参加A、C社团的有11人,三个社团都参加的有8人.随机选取一个成员.(1)他至少参加两个社团的概率为多少?(2)他参加不超过两个社团的概率为多少?4.从一副扑克牌(没有大小王)的52张牌中任取两张,求:(1)两张是不同花色牌的概率;(2)至少有一张是红心的概率.全国高一高中数学同步测试答案及解析一、选择题1.将1枚硬币抛2次,恰好出现1次正面的概率是()A.B.C.D.0【答案】 A【解析】将1枚硬币抛2次,总的结果数为4,其中恰好出现1次正面的情况有2种正反,反正,所以恰好出现1次正面的概率是,故选A。
2023-2024学年山东省高中数学人教B版 必修二统计与概率同步测试-3-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山东省高中数学人教B 版 必修二统计与概率同步测试(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1616.3216.3415.961. 矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为 ( )A. B. C. D.2. 甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,, 分别表示甲、乙两名运动员这项测试成绩的标准差,则有( )A. B. C. D.6306156005703. 某中学高一年级共有学生1200人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高一年级共有女生( )A. B. C. D. 1个2个3个4个4. 先后抛掷两枚质地均匀的骰子,甲表示事件“第一枚骰子掷出的点数是1”,乙表示事件“第二枚骰子掷出的点数是2”,丙表示事件“两枚骰子掷出的点数之和是8”,丁表示事件“两枚骰子掷出的点数之和是7”,则下列说法正确的有( )①甲与乙相互独立②乙与丁相互独立③乙与丙不互斥但相互独立④甲与丙互斥但不相互独立A. B. C. D.5. 盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也摸出新球的概率为( )A.B.C.D.6805854671596. 某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为8的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001,002,003……899,900.若采用随机数表法抽样,并按照以下随机数表进行读取,从第一行的第5个数开始,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.则样本编号的75%分位数为( )05 26 93 70 60 22 35 85 58 51 51 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48A. B. C. D. 100万元10万元7.5万元 6.25万元7. 一商场在某日促销活动中,对9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售为()A. B. C. D. 0.800.750.600.488. 周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( )A. B. C. D. 9. 如图,点是正方形两条对角线的交点.从这个正方形的四个顶点中随机选取两个,那么这两个点关于点对称的概率为()A. B. C. D.1210.右图实线是函数y=f (x )(0≤x≤2a )的图象,它关于点A (a ,a )对称.如果它是一条总体密度曲线,则正数a 的值为( )A. B. C. D.11. 容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2.则样本在区间(10,50]上的频率为( )0.50.70.250.05A. B. C. D. 2436464712. 从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为( )(注:表为随机数表的第1行与第2行)0347437386369647366146986371629774246792428114572042533237321676A. B. C. D. 13. 《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(" "表示一根阳线," "表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为.14. 某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了了解普通话在该校教师中的推广普及情况,用分层随机抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是 .15. 利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为 .(保留两位小数)16. 设随机变量ξ只可能取5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ≥9)= ;P (6<ξ≤14)= .17. 某风景区对 , 两个旅游景点一周内的日游客数量(单位:千人)进行了一次调查,统计数据如下茎叶图所示.(1) 以各组平均数为依据,试比较哪个景点更加吸引游客;(2) 若 , 两个旅游景点的门票价格分别为20元/人和30元/人,以各景点平均日游客数量估计每日游客数量,预计该风景区在这两景点一个月(30天)的门票收入.18. 某科研课题组通过一款手机 软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表:周跑量(周)人数100120130180220150603010(1) 在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:(2) 根据以上图表数据,试求样本的中位数(保留一位小数).(3) 根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:周跑量小于20公里20公里到40公里不小于40公里类别休闲跑者核心跑者精英跑者装备价格(单位:元)250040004500根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?19. 顺义某商场举行有奖促销活动,顾客购买满一定金额商品后即可抽奖,每次抽奖都从装有8个红球、4个黑球的甲箱和装有6个红球、6个黑球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖,若没有红球,则不获奖.(Ⅰ)求顾客抽奖1次能获奖的概率;(Ⅱ)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X的分布列和数学期望.20. 现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1) 求这4个人中恰有2人去参加甲游戏的概率;(2) 求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3) 用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.21. 随着如今人们生活水平的不断提高,旅游成了一种生活时尚,尤其是老年人的旅游市场在不断扩大.为了了解老年人每年旅游消费支出(单位:元)的情况,相关部门抽取了某地区名老年人进行问卷调查,并把所得数据列成如下所示的频数分布表:组别频数1202603402502010(1) 求所得样本平均数(精确到元);(2) 根据样本数据,可近似地认为老年人的旅游费用支出X服从正态分布,若该地区共有老年人95000人,试估计有多少位老年人旅游费用支出在5000元以上;(3) 已知样本数据中旅游费用支出在范围内的10名老人中有7名女性,3名男性.现想选其中3名老人回访,记选出的男生人数为,求的分布列.附:若,,, .答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)19.20.(1)(2)(3)21.(1)(2)(3)。
2023-2024学年全国全部人教B版(2019)高中数学同步练习(含解析)

2023-2024学年全国高中数学同步练习考试总分:45 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )1. 如图正方体的棱长为,线段上有两个动点、,且,则下列结论中错误的是( )A.平面B.C.三棱锥体积为定值D.与面积相等2. 已知长方体中,,,分别是线段,的中点,若是在平面上的射影,点在线段上,,则 A.B.C.D.3. 如图,一个四棱柱形容器中盛有水,在底面中,,=,=,侧棱=,若侧面水平放置时,水面恰好过,,,的中点,那么当底面水平放置时,水面高为( )ABCD −A 1B 1C 1D 12B 1D 1E F EF =1EF //ABCDAC ⊥BEA −BEF △BEF △AEF ABCD −A 1B 1C 1D 1AB =2BC =2A =2A 1EF A 1D 1CC 1E ′E BDD 1B 1F ′BB 1F //BC F ′||=E ′F ′()215−−−√15215−−−√10430−−−√15430−−−√10ABCD AB //CD AB 3CD 1AA 14A B A 1B 1AD BC B 1C 1A 1D 1ABCDB.C. D.4. 在棱长为的正方体中,为线段的中点,在平面中取一个点,连接,,则 的最小值为( )A.B.C.D.5. 直三棱柱的底面是以为直角的等腰直角三角形,且==,在面对角线上存在一点使到和到的距离之和最小,则这个最小值是( )A.B. C. D.6. 如图,已知棱长为的正方体,是正方形的中心,是内(包括边界)的动点.满足=,则点的轨迹长度是( )A.B.C.D.32ABCD −A 1B 1C 1D 1E AB 1ABCD F EF FC 1|EF|+|F |C 122–√23–√14−−√33–√ABC −A 1B 1C 1C AC CC 11BC 1P P B 1P A 21+4ABCD −A'B'C'D'M BB'C'C P △A'C'D PM PD P 11−−√214−−√211−−√14−−√7. 已知长方体中,底面的长,宽,高,点,分别是,的中点,点在上底面中,点在上,若,则长度的最小值是( )A.B.C.D.二、 多选题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )8. 已知正四棱柱的底面边长为,侧棱=,为上底面上的动点,给出下列四个结论中正确结论为( )A.若=,则满足条件的点有且只有一个B.若,则点的轨迹是一段圆弧C.若平面,则长的最小值为D.若平面,且,则平面截正四棱柱的外接球所得平面图形的面积为9. 如图,在正方体中,,为棱的中点,为棱上的一动点,过点,,作该正方体的截面,则该截面可能是( )A.平行四边形B.等腰梯形C.五边形D.六边形ABCD −A 1B 1C 1D 1ABCD AB =4BC =4A =3A 1M N BC C 1D 1P A 1B 1C 1D 1Q N A 1PM =13−−√PQ −25–√325–√−2655–√355–√ABCD −A 1B 1C 1D 12AA 11P A 1B 1C 1D 1PD 3P PD =3–√P PD //ACB 1DP 2PD //ACB 1PD =3–√BDP ABCD −A 1B 1C 1D 19π4ABCD −A 1B 1C 1D 1AB =2E BC F A 1D 1A E FA.平面B.C.平面D.异面直线与所成的角为卷II (非选择题)三、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )11. 如图,正方体 的棱长为,,分别为线段,上的点,且,,则平面截该正方体的面所得的线段的长度为________.12. 在如图所示的正方体中,,分别是棱和上的点,若,,则________.13. 如图,正方体的棱长为,,分别为线段,上的点,且,.则平面 截该正方体的面所得的线段的长度为________.BD //CB 1D 1A ⊥BDC 1A ⊥C 1CB 1D 1AD CB 160∘ABCD −A 1B 1C 1D 13E F AB BC BE =AB 35FC =2BF EFC 1ABB 1A 1ABCD −A 1B 1C 1D 1M N AA 1AB M ⊥MN C 1=M A 1AA 125=AN AMABCD −A 1B 1C 1D 13E F AB BC BE =AB 35FC =2BF EFC 1ADD 1A 114. 如图,棱长为的正方体中,为线段上的动点,则下列结论正确的序号是________.①②平面平面③的最大值为④的最小值为.15. 长方体中,,,,点是中点,点,,则长度最小值为________.1ABCD −A 1B 1C 1D 1P B A 1D ⊥PC 1D 1P ⊥D 1A 1APA 1∠APD 190∘AP +PD 12+2–√−−−−−−√ABCD −A 1B 1C 1D 1AB =1BC =2A =3A 1M BC P ∈AC 1Q ∈MD |PQ |参考答案与试题解析2023-2024学年全国高中数学同步练习一、 选择题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )1.【答案】D【考点】棱柱的结构特征空间中直线与平面之间的位置关系【解析】在中,由,得平面;在中,由平面,得;在中,由,,得三棱锥体积为定值;在中,与底都是,但高不相等,故面积不相等.【解答】解:在中:∵正方体的棱长为,线段上有两个动点、,∴,平面,平面,∴平面,故正确;在中:如图,正方体中,,,,∴平面.又平面,∴,故正确;在中:∵,∴,设,则平面,,∴三棱锥体积,∴三棱锥体积为定值,故正确;在中:,,∴与面积不相等,故错误.故选:.2.【答案】DA EF //BD EF //ABCDB AC ⊥BD B 1D 1AC ⊥BE C EF =1=1S △BEF A −BEF D △BEF △AEF EF A ABCD −A 1B 1C 1D 12B 1D 1E F EF //BD BD ⊂ABCD EF ⊂ABCD EF //ABCD A B AC ⊥BD AC ⊥BB 1BD ∩B =B B 1AC ⊥B D B 1D 1BE ⊂B D B 1D 1AC ⊥BE B C EF =1=×EF ×B =×1×2=1S △BEF 12B 112AC ∩BD =O AO ⊥BEF AO ==124+4−−−−√2–√A −BEF V =××AO =×1×=13S △BEF 132–√2–√3A −BEF C D =×EF ×B =×1×2=1S △BEF 12B 112=××1=S △AEF 123–√3–√2△BEF △AEF D D此题暂无解析【解答】解:过点作,垂足为,取的中点,连接,如图所示,则.故选.3.【答案】B【考点】棱柱的结构特征点、线、面间的距离计算【解析】此题暂无解析【解答】此题暂无解答4.【答案】CE E ⊥E ′B 1D 1E ′BB 1F ′FF ′=E ′F ′+B 1E ′2B 1F ′2−−−−−−−−−−−−√=(−+B 1D 1D 1E ′)2B 1F ′2−−−−−−−−−−−−−−−−−−−−√=(−×+(5–√15–√12)212)2−−−−−−−−−−−−−−−−−−−−√=(+(95–√10)212)2−−−−−−−−−−−−√=430−−−√10D此题暂无解析【解答】解:将正方体补成如图所示长方体,点关于平面的对称点为,连接交平面于一点.即为所求点,使得最小,其最小值为.连接,,由题意可得,,所以,,所以是直角三角形,,所以.即的最小值为.故选.5.【答案】D【考点】棱柱的结构特征点、线、面间的距离计算ACBCD −A 1B 1C 1D 1C 1ABCD C 2EC 2ABCD F F ||+||EF −→−FC 1−→−|E |C 2AC 2B 1C 2||=4A 1A 2|A |=||=2B 1A 2C 22–√|A |=2C 23–√=2B 1C 25–√△AB 1C 2∠A =B 1C 290∘|E |==C 2|A +(|A |C 2|212B 1)2−−−−−−−−−−−−−−−−√14−−√|EF|+|F |C 114−−√C此题暂无解析【解答】此题暂无解答6.【答案】D【考点】棱柱的结构特征【解析】满足=的点的轨迹是过的中点,且与垂直的平面,根据是内(包括边界)的动点,可得点的轨迹是两平面的交线.在中点,在等分点,利用余弦定理,求出即可.【解答】满足=的点的轨迹是过的中点,且与垂直的平面,∵是内(包括边界)的动点,∴点的轨迹是两平面的交线.在中点,在等分点时,=,,满足=∴=,=∴.7.【答案】C【考点】棱柱的结构特征【解析】取的中点,则为直角三角形,即点在以为圆心,半径为的圆在正方形内的弧上,长度的最小值等于圆心到的距离减去半径,【解答】取的中点,则为直角三角形,∵,∴,即点在以为圆心,半径为的圆在正方形内的弧上,长度的最小值等于圆心到的距离减去半径,PM PD P MD MD P △A'C'D P ST T S 4ST PM PD P MD MD P △A'C'D P ST T S 4SD 32–√SM ==3+242−−−−−√2–√SD SM SD 32–√TD 22–√ST ==18+8−2×3×2×2–√2–√12−−−−−−−−−−−−−−−−−−−−−−−√14−−√B 1C 1O △POM P O 2A 1B 1C 1D 1PQ N A 12B 1C 1O △POM PM =13−−√OP =2P O 2A 1B 1C 1D 1PQ N A 12又的面积.∴,∴长度的最小值是.二、 多选题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )8.【答案】A,B,D【考点】棱柱的结构特征【解析】由题意画出图形,求出与上底面点的最大值判断;由,求得为定值判断;找出满足平面的的轨迹,求出长的最小值判断;由已知求出正四棱住的外接球的半径,进一步求出大圆面积判断.【解答】如图∵正四棱柱的底面边长为,∴,又侧棱=,∴,则与重合时=,此时点唯一,故正确;∵,=,则,即点的轨迹是一段圆弧,故正确;连接,,可得平面平面,则当为中点时,有最小值为,故错误;由知,平面即为平面,平面截正四棱柱的外接球所得平面图形为外接球的大圆,其半径为,面积为,故正确.9.【答案】A,B,C【考点】棱柱的结构特征【解析】无【解答】△NO A 1S =×N ×d =612A 1d =65–√5PQ −265–√5D A PD =3–√PD 1B PD //ACB 1P DP C D ABCD −A 1B 1C 1D 12=2B 1D 12–√AA 11D ==3B 1(2+2–√)212−−−−−−−−−−√P B 1PD 3P A PD =∈(1,3)3–√DD 11P =D 12–√P B DA 1DC 1D //A 1C 1ACB 1P A 1C 1DP =(+2–√)212−−−−−−−−−√3–√C C BDP BDD 1B 1BDP ABCD −A 1B 1C 1D 1=12++222212−−−−−−−−−−√329π4D即与重合时,取 的中点,截面为矩形;当时,截面为平行四边形;当时,截面为五边形;当,即与重合时,截面为等腰梯形.故选.10.【答案】A,B,C【考点】异面直线及其所成的角空间中直线与平面之间的位置关系棱柱的结构特征【解析】由,得到平面;由,,得到;异面直线与角为;由,,得到平面.【解答】解:连接,,如图:在选项中,∵,平面,平面,∴平面,故正确;在选项中,∵是正方形,∴,∵为正方体,∴,∵,∴平面,∴,故正确;在选项中,∵是正方形,∴,∵为正方体,∴,∵,∴平面,∵,∴,同理,,∵,∴平面,故正确;在选项中,∵,∴是异面直线与所成角,∵是正方形,∴,∴异面直线与角为,故错误.故选.三、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )F A 1B 1C 1AEGA 10<F ≤1A 1AEGF 1<F <2A 1AEGHF F =2A 1F D 1AEGF ABC BD //B 1D 1BD //CB 1D 1AC ⊥BD C ⊥BD C 1A ⊥BD C 1AD CB 145∘A ⊥C 1B 1D 1A ⊥C C 1B 1A ⊥C 1CB 1D 1AC A 1C 1A BD //B 1D 1BD ⊂CB 1D 1⊂B 1D 1CB 1D 1BD //CB 1D 1A B ABCD AC ⊥BD ABCD −A 1B 1C 1D 1C ⊥BD C 1AC ∩C =C C 1BD ⊥ACC 1A 1A ⊥BD C 1B C A 1B 1C 1D 1⊥A 1C 1B 1D 1ABCD −A 1B 1C 1D 1C ⊥C 1B 1D 1∩C =A 1C 1C 1C 1⊥B 1D 1A C A 1C 1A ⊂平面A C C 1A 1C 1A ⊥C 1B 1D 1A ⊥C C 1B 1∩C =B 1D 1B 1B 1A ⊥C 1CB 1D 1C D AD //BC ∠BCB 1AD CB 1BCC 1B 1∠BC =B 145∘AD CB 145∘D ABC11.【答案】【考点】点、线、面间的距离计算棱柱的结构特征【解析】【解答】解:连接交的延长线于点,连接交于点,设平面与棱的交点为,连接,,则五边形即为平面截该正方体所得的截面,平面截该正方体的面所得的线段为.设直线与直线的交点为,在线段上取一点,使,易证得四边形为平行四边形,,,,由,得,所以,则,由,得,所以,于是得.故答案为:.12.【答案】61−−√5F C 1B B 1I IE AA 1H EFC 1A 1D 1G GC 1GH EF GH C 1EFC 1EFC 1ABB 1A 1EH GH AD J AD K DK =2AK JK G D 1K =GJ D 1=F ==C 1C +C F 2C 21−−−−−−−−−−√13−−√AE =AB ×=2565BE =AB ×=3595BC//B 1C 1==BI IB 1BF B 1C 113=BI BB 112BI =32BI//AH ==BI AH BE AE 32AH ==12BI 3EH ==A +A E 2H 2−−−−−−−−−−√61−−√561−−√525【考点】点、线、面间的距离计算棱柱的结构特征【解析】此题暂无解析【解答】解:因为在正方体中,平面,平面,平面,所以.因为,,所以平面.因为平面,所以,所以.因为,,,所以,,所以,所以.故答案为:.13.【答案】【考点】点、线、面间的距离计算棱柱的结构特征【解析】此题暂无解析【解答】解:如图,连接交的延长线于点,连接交于点,设平面 与棱的交点为,连接,,⊥C 1B 1A B A 1B 1MN ⊂A B A 1B 1⊂C 1B 1A B A 1B 1⊥MN C 1B 1M ⊥MN C 1∩M =C 1B 1C 1C 1MN ⊥M C 1B 1M ⊂B 1M C 1B 1M ⊥MN B 1∠AMN +∠M =A 1B 190∘=M A 1AA 125A =A 1A 1B 1∠M +∠M =A 1B 1A 1B 190∘=M A 1B A 125∠M =∠AMN A 1B 1△M ∽△ANM A 1B 1==AN AM M A 1B A 12525213−−√3F C 1BB 1I IE AA 1H EFC 1A 1D 1G GC 1GH则五边形,即为平面截该正方体所得的截面,平面截该正方体的面,所得的线段为线段,由,得,,由,得,.由,得,所以,所以,由,得,所以, .由平面平面,平面平面,平面平面,得,又,所以,所以,所以,所以.所以.故答案为:.14.【答案】①②④【考点】棱柱的结构特征【解析】对于①,利用线面垂直的判定定理可证面,而平面,故可判断①正确;对于②,平面,而平面,就是平面,故平面平面,EF GH C 1EFC 1EFC 1ADD 1A 1GH BE =AB 35AE =AB ×=2565BE =AB ×=3595FC =2BF BF =1FC =2BC//B 1C 1=BI IB 1BF B 1C 1=13=BI BB 112BI =32BI//AH ==BI AH BE AE 32AH ==12BI 3H =2A 1ABCD//A 1B 1C 1D 1EF ∩C 1ABCD =EF EF ∩C 1=G A 1B 1C 1D 1C 1EF//GC 1AB//D 1C 1∠FEB =∠GC 1D 1==G D 1D 1C 1BF BE 59G =D 153G =A 143GH ==+A 1H 2A 1G 2−−−−−−−−−−−√213−−√3213−−√3D ⊥C 1BC A 1D 1P ⊂D 1DC D 1C 1⊥D 1A 1AB A 1B 1AB A 1B 1AP A 1P ⊥D 1A 1AP A 1从而可判定②正确;对于③,当时,为钝角,故可判断③错误;对于④,将面与面沿展成平面图形,线段即为的最小值,通过解三角形可求得,可判断④正确.【解答】解:对于①,∵平面,平面,∴,又,,∴面,平面,∴,故①正确对于②,∵平面即为平面,平面 即为平面,且平面,∴平面平面,∴平面平面,故②正确;对于③,在中,由余弦定理可知,当时,为钝角,故③错误;对于④,将面与面沿展成平面图形,线段即为的最小值,在中,利用余弦定理解三角形得,故④正确.故答案为:①②④.15.【答案】【考点】点、线、面间的距离计算棱柱的结构特征【解析】以为坐标原点,,,分别为,,轴正方向建立空间直角坐标系,求出,两点的坐标,利用向量法,求出当为和的公垂线时的坐标,代入两点之间距离公式,可得答案.【解答】解:以为坐标原点,,,分别为,,轴正方向建立空间直角坐标系,∵,,,∴,,,,,则,0<P <A 12–√2∠APD 1A B A 1BC A 1D 1B A 1AD 1AP +PD 1AA 1D 1A =D 12+2–√−−−−−−√⊥A 1D 1DC D 1C 1D ⊂C 1DC D 1C 1⊥D A 1D 1C 1B ⊥D A 1C 1∩B =A 1D 1A 1A 1D ⊥C 1BC A 1D 1P ⊂D 1DC D 1C 1D ⊥P C 1D 1P D 1A 1BC D 1A 1AP A 1AB A 1B 1⊥D 1A 1AB A 1B 1BC ⊥D 1A 1AB A 1B 1P ⊥D 1A 1AP A 1△AP D 10<P <A 12–√2∠APD 1A B A 1BC A 1D 1B A 1AD 1AP +PD 1△AA 1D 1A =D 12+2–√−−−−−−√23–√3A AB AD AA 1x y z P Q PQ AC 1MD PQ A AB AD AA 1x y z AB =1BC =2A =3A 1A(0,0,0)B(1,0,0)C(1,2,0)(1,2,3)C 1M(1,1,0)D(0,2,0)=(1,2,3)AC 1−→−=(1,−1,0)DM −→−λ=(λ,2λ,3λ)−→−−→−设,则点的坐标为,,设,点的坐标为,,则,由且得:,解得:,此时.故答案为:.=λ=(λ,2λ,3λ)AP −→−AC 1−→−P (λ,2λ,3λ)λ∈[0,1]=μ=(μ,−μ,0)DQ −→−DM −→−Q (μ,2−μ,0)μ∈[0,1]=(u −λ,2−μ−2λ,−3λ)PQ −→−⊥PQ −→−AC 1−→−⊥PQ −→−DM −→−{u −λ+2(2−μ−2λ)+3(−3λ)=0u −λ−(2−μ−2λ)=0 λ=29μ=89P ==Q min (λ−μ+(2λ−2+μ+9)2)2λ2−−−−−−−−−−−−−−−−−−−−−−−−√23–√323–√3。
全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列命题正确的是( )A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S2.集合A={1,2,3,4},B ⊊A ,且1∈A∩B ,4∉A∩B ,则满足上述条件的集合B 的个数是( )A .1B .2C .4D .83.已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( )A .{0,1}B .{(0,1)}C .{1}D .以上均不对4.设A={x|2x 2﹣px+q=0},B={x|6x 2+(p+2)x+5+q=0},若A∩B={},则A ∪B 等于( )A .{ ,,﹣4}B .{,﹣4}C .{,}D .{ }5.若A={1,3,x},B={x 2,1},A ∪B={1,3,x},则这样的x 的不同值有( )A .1个B .2个C .3个D .4个二、填空题1.集合P={(x ,y )|x+y=0},Q={(x ,y )|x ﹣y=2},则P∩Q=2.若{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3},则m= .3.某班级50人,开设英语和日语两门外语课,规定每人至少选学一门,估计报英语的人数占全班80%到90%之间,报日语的人数占全班干32%到40%之间,设M 是两门都学的人数的最大值,m 是两门都学的人数的最小值,则M ﹣m= .三、解答题1.某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.2.集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={a ,b ,c}的不同分拆种数为多少?全国高一高中数学同步测试答案及解析一、选择题1.下列命题正确的是( )A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断; 解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确;故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.2.集合A={1,2,3,4},B ⊊A ,且1∈A∩B ,4∉A∩B ,则满足上述条件的集合B 的个数是( )A .1B .2C .4D .8【答案】C【解析】利用已知条件确定B 中的元素,以及确定B 中可能的元素,即可推出集合B 的个数.解:集合A={1,2,3,4},B ⊊A 且1∈A∩B ,4∉A∩B ,所以B={1};B={1,2};B={1,3};B={1,2,3}.则满足上述条件的集合B 的个数是4.故选C .点评:本题考查元素与集合关系的判断,考查计算能力.3.已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( )A .{0,1}B .{(0,1)}C .{1}D .以上均不对【答案】C【解析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N .解;集合M={y|y=x 2+1,x ∈R}=[1,+∞),N={y|y=﹣x 2+1,x ∈R}=(﹣∞,1], ∴M∩N={1}故选C .点评:此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.4.设A={x|2x 2﹣px+q=0},B={x|6x 2+(p+2)x+5+q=0},若A∩B={},则A ∪B 等于( )A .{ ,,﹣4}B .{,﹣4}C .{,}D .{ }【答案】A【解析】根据A∩B="{" },得到 ∈A ,B ;即 是方程2x 2﹣ppx+q=0,6x 2+(p+2)x+5+q=0的根,代入即可求得p ,q 的值,从而求得集合A ,集合B ,进而求得A ∪B .解:∵A∩B="{" }∴∈A ,∴2( )2﹣p ( )+q=0…①又 ∈B∴6( )2+(p+2)+5+q=0…②解①②得p=﹣7,q=﹣4;∴A="{" ,﹣4};B="{" ,}∴A ∪B={﹣4,,}.故选A .点评:此题是中档题.考查集合的交集的定义和一元二次方程的解法,体现了方程的思想和转化的思想,同时考查了运算能力.5.若A={1,3,x},B={x2,1},A∪B={1,3,x},则这样的x的不同值有()A.1个B.2个C.3个D.4个【答案】C【解析】根据题意得到x2可能等于3或x,所以求出x解的个数即为所求的x个数.解:因为A∪B={1,3,x},所以x2=3或x∴x=±,0,1(舍去)共3个,所以x有3个.故选C点评:本小题主要考查并集及其运算、方程的解法等基础知识,解答时必须注意集合中元素的互异性.属于基础题.二、填空题1.集合P={(x,y)|x+y=0},Q={(x,y)|x﹣y=2},则P∩Q=【答案】{(1,﹣1)}.【解析】根据题意,P∩Q即由集合P={(x,y)|x+y=0}与Q={(x,y)|x﹣y=2}表示的直线的交点,可得,解之即可得出答案.解:由集合P={(x,y)|x+y=0},Q={(x,y)|x﹣y=2},∴,解得,∴P∩Q={(1,﹣1)},故答案为:{(1,﹣1)}.点评:本题考查了交集及其运算,属于基础题,关键是掌握交集的定义.2.若{3,4,m2﹣3m﹣1}∩{2m,﹣3}={﹣3},则m= .【答案】1【解析】由题意可得 m2﹣3m﹣1=﹣3,解得 m=1,或 m=2,经检验 m=1满足条件.解:∵{3,4,m2﹣3m﹣1}∩{2m,﹣3}={﹣3},∴m2﹣3m﹣1=﹣3,解得 m=1,或 m=2.当m="2" 时,2m=4,{3,4,m2﹣3m﹣1}∩{2m,﹣3}={﹣3,4},故不满足条件,舍去.当 m=1,{3,4,m2﹣3m﹣1}={3,4,﹣3},{2m,﹣3}={2,﹣3},满足条件.故答案为 1.点评:本题主要考查集合关系中参数的取值范围问题,注意检验 m的值是否满足条件,这是解题的易错点,属于中档题.3.某班级50人,开设英语和日语两门外语课,规定每人至少选学一门,估计报英语的人数占全班80%到90%之间,报日语的人数占全班干32%到40%之间,设M是两门都学的人数的最大值,m是两门都学的人数的最小值,则M ﹣m= .【答案】9【解析】根据两门都学的人数的最大值就是有尽可能多的人学习,两门都学的人数的最小值则是尽可能少,求得M和m,从而得出答案即可.解:两门都学的人数的最大值就是有尽可能多的人学习,两门都学的人数的最小值则是尽可能少:故最大:M=(90%+40%﹣100%)×50=15人最小:(80%+32%﹣100%)×50=6人则M﹣m=15﹣6=9.故答案为:9.点评:本小题主要考查交、并、补集的混合运算等基础知识,考查运算求解能力,考查集合思想.属于基础题.三、解答题1.某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.【答案】172【解析】由于有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,则这三个组共有75+68+61人,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座,根据容斥原理可知,听讲座的共有68+75+61﹣(17+12+9)+6人.解:68+75+61﹣(17+12+9)+6=204﹣38+6,=172(人).答:听讲座的人数172人.故答案为:172点评:A 类和B 类和C 类元素个数总和=A 类元素个数+B 类元素个数+C 类元素个数﹣既是A 类又是B 类的元素个数﹣既是A 类又是C 类的元素个数﹣既是B 类又是C 类的元素个数+既是A 类又是B 类而且是C 类的元素个数.2.集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={a ,b ,c}的不同分拆种数为多少?【答案】27种【解析】考虑集合A 1为空集,有一个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A 1为A 时,A 2可取A 的任何子集,此时A 2有8种情况,故拆法为8种;总之,共27种拆法.解:当A 1=φ时,A 2=A ,此时只有1种分拆;当A 1为单元素集时,A 2=∁A A 1或A ,此时A 1有三种情况,故拆法为6种;当A 1为双元素集时,如A 1={a ,b},A 2={c}、{a ,c}、{b ,c}、{a ,b ,c},此时A 1有三种情况,故拆法为12种; 当A 1为A 时,A 2可取A 的任何子集,此时A 2有8种情况,故拆法为8种;综上,共27种拆法.点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.。
2023-2024学年山东省高中数学人教B版 必修一等式与不等式同步测试-5-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山东省高中数学人教B 版 必修一等式与不等式同步测试(5)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 不等式对于一切 恒成立,那么的取值范围( )A. B. C. D.2. 已知函数 , ,若存在 ,使得 ,则实数 的取值范围是( )A. B. C. D.19183. 已知函数 ,若正实数 , 满,则 的最小值是( )A. B. C. D. 4. 《九章算术·商功》:“斜解立方,得两堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一.”下图解释了这段话中由一个长方体得到堑堵、阳马、鳖臑的过程.在一个长方体截得的堑堵和鳖臑中,若堑堵的内切球(与各面均相切)半径为1,则鳖臑体积的最小值为( )A. B. C. D.5. 已知a ,b 是任意实数,且a>b ,则下列结论正确的是( )A. B. C. D.6. 若a >0,b >0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是( )①ab≤1; ②+≤; ③a 2+b 2≥2; ④①②③④①③④③④②③④≥2A. B. C. D. 或 或7. 已知不等式 的解集是 ,则不等式 的解集是( )A. B. C. D. 98548. 若正数满足 ,则 的最小值为( )A. B. C. D. 9. 设x 是实数,且满足等式 , 则实数等于( )(以下各式中)A. B. C. D.-12010. 已知 ,则 的最小值为( )A. B. C. D. 11. 已知 ,则函数 的图象的是( )A. B. C. D.12. 若对任意,不等式 恒成立,则实数 的取值范围为( )A. B. C. D.13. 若曲线有两条过坐标原点的切线,则实数a 的取值范围为 .14. , 则的取值范围为 .15. 已知x ,y 为正数,且x+y=20,则m=lgx+lgy 的最大值为 .16. 已知 , ,则 的最小值是 .17. 已知椭圆的离心率为,且椭圆经过点,过右焦点作两条互相垂直的弦和.(1) 求椭圆的方程;(2) 当四边形的面积取得最小值时,求弦所在直线的方程.18. 已知函数 .(1) 当时,求不等式的解集(2) 若对于任意,恒成立,求实数的取值范围.19. 十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划,2020年某企业计划引进新能源汽车生产设备看,通过市场分析,全年需投入固定成本万元,每生产(百辆)需另投入成本(万元),且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.(1) 求出2020年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额—成本)(2) 当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润.20. 某企业用180万元购买一套设备,该设备预计平均每年能给企业带来100万元的收入,为了设备的正常运行,企业需要对设备进行维护,已知年的总维护费用与使用年数满足函数关系式,且第二年需要维护费用20万元.(1) 求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2) 试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?21. 已知函数的解析式为 .(1) 求;(2) 画出这个函数的图象,并写出函数的值域;(3) 若 ,有两个不相等的实数根,求的取值范围.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.(1)(2)(3)第 11 页 共 11 页。
全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( ) A .sin (α+θ)=sinα B .sin (α+θ)=﹣cosα C .cos (α+θ)=﹣cosα D .cos (α+θ)=﹣sinα2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).3.已知点A (2,0),B (0,2),点C (x ,y )在单位圆上. (1)若|+|=(O 为坐标原点),求与的夹角; (2)若⊥,求点C 的坐标.4.如图,已知A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,点A 的坐标为,点B 在第二象限,且△AOB 为正三角形.(Ⅰ)求sin ∠COA ; (Ⅱ)求△BOC 的面积.5.如图,以Ox 为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(,).(1)求sin2α的值; (2)若β﹣α=,求cos (α+β)的值.全国高一高中数学同步测试答案及解析一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( )A .sin (α+θ)=sinαB .sin (α+θ)=﹣cosαC .cos (α+θ)=﹣cosαD .cos (α+θ)=﹣sinα【答案】B【解析】根据三角函数的定义和题意,分别求出角α、α+θ的正弦值和余弦值,再对比答案项即可. 解:∵任意角α的终边与单位圆的交点为P 1(x ,y ), ∴由三角函数的定义得,sinα=y ,cosα=x , 同理sin (α+θ)=﹣x ,cos (α+θ)=y , 则sin (α+θ)=﹣cosα,cos (α+θ)=sinα, 故选:B .点评:本题考查任意角的三角函数的定义,属于基础题.2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .【答案】D【解析】利用单位圆的性质求解. 解:∵角α的终边与单位圆相交于点P (sin ,cos),∴sinα=cos =cos (2)=cos=.故选:D .点评:本题考查角的正弦值的求法,是基础题,解题时要认真审题,注意单位圆的性质的灵活运用.3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)【答案】D【解析】直接求出A ,B 的坐标,利用向量是数量积求解即可. 解:由题意可知A (cosα,sinα),B (cosβ,sinβ), 所以=cosαcosβ+sinαsinβ=cos (α﹣β). 故选D .点评:本题是基础题,考查向量的数量积的应用,两角差的余弦函数公式的推导过程,考查计算能力.二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .【答案】().【解析】首先求出点B 的坐标,将点B 沿单位圆逆时针旋转到达A 点,利用两角和与差的三角函数即可求出点A 的坐标.解:在平面直角坐标系xOy 中,锐角α的终边与单位圆交于B 点, 且点B 的纵坐标为, ∴sinα=,cosα=将点B 沿单位圆逆时针旋转到达A 点, 点A 的坐标A (cos (),sin ()),即A (﹣sinα,cosα),∴A ()故答案为:().点评:本题主要考查了任意角的三角函数的定义,属于基础题.2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .【答案】(1)32,(2)见解析【解析】(1)利用诱导公式、平方关系对条件和所求的式子化简后,代入值求解; (2)由S △OPA <S 扇形OPA <S △OAE ,分别表示出3个面积,可推得,所以sinx <x <tanx ,据此判断即可.解:(1)由sin (3π+θ)=,可得sinθ=﹣, ∴======32,(2)∵S △OPA <S 扇形OPA <S △OAE ,,,, ∴,∴sinx <x <tanx .点评:本题主要考查了同角三角函数的基本关系,三角函数线,以及单位圆的性质的运用,属于基础题.三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 【答案】(1),.(2)﹣【解析】(1)利用任意角的三角函数的定义,先找出x ,y ,r ,代入公式计算. (2)利用∠AOB=90°,cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣. 解:(1)∵A 点的坐标为,根据三角函数定义可知,,r=1;(3分) ∴,.(6分) (2)∵三角形AOB 为直角三角形, ∴∠AOB=90°, 又由(1)知sin ∠COA=,cos ∠COA=;∴cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣.(12分) 点评:本题考查任意角的三角函数的定义,诱导公式cos (+θ)=﹣sinθ 的应用.2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).【答案】见解析【解析】(1)利用单位圆中的三角函数线,通过面积关系证明sinx <x <tanx ; (2)利用(1)的结论,采用放缩法,求出=推出结果.证明:(1)如图,在单位圆中,有sinx=MA ,cosx=OM , tanx=NT ,连接AN ,则S △OAN <S 扇形OAN <S △ONT , 设的长为l ,则,∴,即MA <x <NT ,又sinx=MA ,cosx=OM ,tanx=NT , ∴sinx <x <tanx ; (2)∵均为小于的正数,由(1)中的sinx <x 得,,将以上2010道式相乘得=,即.点评:本题考查单位圆的应用,不等式的证明的方法,考查分析问题解决问题的能力,是中档题.3.已知点A(2,0),B(0,2),点C(x,y)在单位圆上.(1)若|+|=(O为坐标原点),求与的夹角;(2)若⊥,求点C的坐标.【答案】(1)30°或150°(2)点C的坐标为(,)或().【解析】(1)由已知得,从而cos<>===y=,由此能求出与的夹角.(2)=(x﹣2,y),=(x,y﹣2),由得,由此能求出点C的坐标.解:(1),,.且x2+y2=1,=(2+x,y),由||=,得(2+x)2+y2=7,由,联立解得,x=,y=.(2分)cos<>===y=,(4分)所以与的夹角为30°或150°.(6分)(2)=(x﹣2,y),=(x,y﹣2),由得,=0,由,解得或,(10分)所以点C的坐标为(,)或().(12分)点评:本题考查两向量的夹角的求法,考查点的坐标的求法,解题时要认真审题,注意单位圆的性质的合理运用.4.如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为,点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA;(Ⅱ)求△BOC的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点坐标时,这个点的纵标就是角的正弦值.(Ⅱ)根据第一问所求的角的正弦值和三角形是一个等边三角形,利用两个角的和的正弦公式摸到的这个角的正弦值,根据正弦定理做出三角形的面积.解:(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点是,∴sin∠COA=,(Ⅱ)∵∠BOC=∠BOA+∠AOC,∴sin∠BOC==∴三角形的面积是点评:本题考查单位圆和三角函数的定义,是一个基础题,这种题目解题的关键是正确使用单位圆,注意数字的运算不要出错.5.如图,以Ox为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(,).(1)求sin2α的值;(2)若β﹣α=,求cos(α+β)的值.【答案】(1)(2)﹣【解析】(1)由三角函数的定义,得出cosα、sinα,从而求出sin2α的值;(2)由β﹣α=,求出sinβ,cosβ的值,从而求出cos(α+β)的值.解:(1)由三角函数的定义得,cosα=,sinα=;∴sin2α=2sinαcosα=2××=;(2)∵β﹣α=,∴sinβ=sin(+α)=.cosβ=cos(+α)=﹣sinα=﹣,∴cos(α+β)=cosαcosβ﹣sinαsinβ=×(﹣)﹣×=﹣.点评:本题考查了三角函数的求值与应用问题,解题时应根据三角函数的定义以及三角恒等公式进行计算,是基础题.。
高一数学同步试题及答案

高一数学同步试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2C. y = 5x - 4D. y = 72. 若a,b,c为实数,且a + b + c = 0,则下列等式正确的是()A. a^2 + b^2 + c^2 = 0B. ab + bc + ca = 0C. a^2 + b^2 + c^2 = ab + bc + caD. ab + bc + ca = 13. 函数f(x) = x^2 - 4x + 3的零点是()A. 1B. 3C. 1或3D. 无实数解4. 已知向量a = (3, 4),向量b = (-4, 3),则向量a与向量b的点积为()A. -1B. 0C. 1D. 55. 一个等差数列的前三项依次为2,5,8,那么第10项是()A. 20B. 23C. 26D. 296. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标是()A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)7. 函数y = log_2(x)的定义域是()A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)8. 已知等比数列{a_n}的公比q > 0,且a_1a_5 = 16,a_3 = 4,则a_4是()A. 2B. 4C. 8D. 169. 函数f(x) = x^3 - 3x^2 + 2在区间[1, 3]上是()A. 单调递增B. 单调递减C. 先减后增D. 先增后减10. 抛物线y = x^2 - 4x + 5的顶点坐标是()A. (2, 1)B. (2, -1)C. (-2, 1)D. (-2, -1)二、填空题(每题4分,共20分)1. 已知函数f(x) = x^2 - 2x + 1,若f(a) = 2,则a的值为______。
全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.若一个几何体的三视图都是等腰三角形,则这个几何体可能是A.圆锥B.正四棱锥C.正三棱锥D.正三棱台2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是3.下列说法正确的是A.互相垂直的两条直线的直观图一定是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形4.如图所示,该直观图表示的平面图形为()A.钝角三角形B.锐角三角形C.直角三角形D.正三角形5.下列几种说法正确的个数是()①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A.1B.2C.3D.46.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为A.B.C.D.7.哪个实例不是中心投影A.工程图纸B.小孔成像C.相片D.人的视觉8.关于斜二测画法画直观图说法不正确的是A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°9.下列几种关于投影的说法不正确的是A.平行投影的投影线是互相平行的B.中心投影的投影线是互相垂直的影C.线段上的点在中心投影下仍然在线段上D.平行的直线在中心投影中不平行10.说出下列三视图表示的几何体是A.正六棱柱B.正六棱锥C.正六棱台D.正六边形二、填空题1.平行投影与中心投影之间的区别是_____________;2.直观图(如右图)中,四边形O′A′B′C′为菱形且边长为2cm,则在xoy坐标中四边形ABCD为_ ____,面积为______cm2.3.等腰梯形ABCD,上底边CD="1," 腰AD=CB= , 下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为________.4.如图,一个广告气球被一束入射角为45°的平行光线照射,其投影是一个最长的弦长为5米的椭圆,则这个广告气球直径是米.三、解答题1.(12分)用斜二测画法作出边长为3cm、高4cm的矩形的直观图.2.(12分)画出下列空间几何体的三视图.①②3.(12分)说出下列三视图所表示的几何体:正视图侧视图俯视图4.(12分)将一个直三棱柱分割成三个三棱锥,试将这三个三棱锥分离.5.(14分)画正五棱柱的直观图,使底面边长为3cm侧棱长为5cm.6.(14分)根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.全国高一高中数学同步测试答案及解析一、选择题1.若一个几何体的三视图都是等腰三角形,则这个几何体可能是A.圆锥B.正四棱锥C.正三棱锥D.正三棱台【答案】C【解析】在理解三视图意义的基础上,选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中同步测试卷(二)
原子结构与元素的性质
(时间:90分钟满分:100分)
一、选择题(本题包括16小题,每小题3分,共48分)
1.在短周期元素中,原子最外层只有1个电子或2个电子的元素是()
A.金属元素B.稀有气体元素
C.非金属元素D.无法确定
2.元素的性质呈现周期性变化的根本原因是()
A.原子半径呈周期性变化
B.元素的化合价呈周期性变化
C.第一电离能呈周期性变化
D.元素原子的核外电子排布呈周期性变化
3.下列元素电负性大小的比较错误的是()
A.H>Li B.As<P
C.Si>C D.Ca<Al
4.有关核电荷数为1~18的元素,下列叙述中正确的是()
A.最外层只有1个电子的元素一定是金属元素
B.最外层只有2个电子的元素一定是金属元素
C.原子核外各层电子数相等的元素一定是金属元素
D.核电荷数为17的元素的原子易失去1个电子达到稳定结构
5.已知某元素的+2价离子的电子排布式为1s22s22p63s23p6,则该元素在周期表中的位置正确的是()
A.第三周期ⅣA族,p区B.第四周期ⅡB族,s区
C.第四周期Ⅷ族,d区D.第四周期ⅡA族,s区
6.下列说法中正确的是()
A.所有非金属元素都分布在p区
B.最外层电子数为2的元素都分布在s区
C.元素周期表中ⅢB族到ⅡB族10个纵行的元素都是金属元素
D.同一主族元素从上到下,金属性呈周期性变化
7.具有下列最外层电子排布的基态原子,其相应的元素一定属于主族元素的是() A.n s1B.n s2
C.n s2n p6D.n s2n p2
8.已知某元素+3价离子的电子排布式为1s22s22p63s23p63d5,该元素在周期表中的位置是()。