轴对称图形 (2)
简单的轴对称图形(二)

§7.2.2 简单的轴对称图形(二)教学目标1.等腰三角形是轴对称图形.2.等腰三角形的性质.3.等边三角形的轴对称性及性质.教学重点等腰三角形的轴对称性及其有关性质.教学难点等腰三角形的“三线合一”的性质.教学过程Ⅰ.巧设现实情景,引入新课[师]上节课我们探讨了简单图形——线段.角的轴对称性,知道线段和角是轴对称图形.除线段和角外,我们还研究过三角形,那大家想一想:三角形是轴对称图形吗?Ⅱ.讲授新课[师]什么是等腰三角形、等边三角形呢?我们共同来回忆一下.[师生共析]三角形的三边,有的各不相等,有的有两边相等,有的三条边都相等.三边都不相等的三角形叫做不等边三角形(scalence triangle);有两条边相等的三角形叫做等腰三角形(isosceles triangle),三条边都相等的三角形叫做等边三角形(equilateral triangle) 也叫正三角形.(如图7-11)图7-11在等腰三角形中,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.等边三角形是特殊的等腰三角形.即底边和腰相等的等腰三角形.[师]有了上述的概念后,同学们来想一想.(出示投影片§7.2.2 A)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两条腰相等,所以把这两条腰重合对折三角形便可知道:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.……[师]接下来大家来剪一个等腰三角形,然后进行折叠,找出它的对称轴.[师]很好,大家看屏幕:(电脑演示等腰三角形的折叠过程,显示“三线合一”,底角相等)由此我们得到了等腰三角形的性质(师生共同总结,然后出示投影片§7.2.2 C)等腰三角形是轴对称图形.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.[师]我们讨论了等腰三角形的性质,那等边三角形有哪些性质呢?大家来画一个等边三角形,然后剪下来,做一做(出示投影片§7.2.2 D)(1)等边三角形是轴对称图形吗?找出它的对称轴.(2)你能发现它的哪些特征?(学生操作,教师指导)Ⅲ.课堂练习(一)课本P195随堂练习Ⅳ.课时小结这节课我们主要探讨了等腰三角形和等边三角形的轴对称性.由此我们得到了等腰三角形和等边三角形的性质.等腰三角形是轴对称图形.等腰三角形的顶角平分线,底边上的中线、高线互相重合,即三线合一.它们所在的直线是等腰三角形的对称轴.等腰三角形的两底角相等.等边三角形是特殊的等腰三角形,根据其特殊性,再由等腰三角形的性质及三角形的内角和性质,可以得出等边三角形的内角均为60°大家应灵活应用这些性质.Ⅴ.课后作业:课本P228习题7.3 1、2、3、4.课后反思:。
13.2画轴对称图形2

13.2画轴对称图形(2)
主备人
课型
新授课
课时安排
1
总课时数
上课日期
教·学目标
1.能够经过探索利用坐标来表示轴对称。
2.掌握关于x轴、y轴对称的点的坐标特点。
教·学重难点
关于x轴、y轴对称的点的坐标特点;用坐标表示轴对称的应用。
教·学准备
画图工具
教·学过程
教·学札记
一、自主学习、课前诊断
(一)温故知新
(3)在第二问的基础上,纵坐标都不变,横坐标都乘以-1,在同一坐标系中描出对应的点 、 、 ,并依次连接这三个点,所得的△ 与原△有怎样的位置关系?
三、课堂小结、形成网络
(一)小结与网络(二)延伸与反思
1.课本72页7题。
2.如图,从△到△A′B′C′是进行的平移变换还是轴对称变换,如果是轴对称变换,找出对称轴,如果是平移变换,是怎样平移的?
(1)你能说出西直门的坐标吗?你是怎么知道的?理由是什么?
(2)填写69页表格。根据表格你能得出一个点关于x轴对称的点的坐标的规律吗?一个点关于y轴对称的点的坐标的规律吗?
2.学生阅读课本70页例2的内容,完成下题
(1)填写解题过程。
(2)在直角坐标系中,画出四边形的轴对称图形,要找到四边形上的哪些点的对称点?
(二)当堂检测
1.点A( 3, 5)和点B(3, 5),关于对称。
2.点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为.
3.点M(a, -5)与点N(-2,b)关于x轴对称,则,b.
4.(1)写出A、B、C三点的坐标;
(2)若△各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点 、 、 ,并依次连接这三个点,所得的△ 与原△有怎样的位置关系?
15.1轴对称图形(2)

对称是一种 思想,通过它,人 们毕生追求,并创 造次序、美丽和完 善。 —赫尔曼· 外尔
布置作业
习题16.1 第1
~ 6题
数形结合,利用轴对称找规律 . 如图所示的是在一面镜子里看到的一 个算式,该算式的实际情况是怎样的?
演示
猜字游戏
想一想:一辆汽车的车牌在水中的倒影如 图所示,你能确定该车车牌的号码吗?
镜面、水面与轴对称
.下面的第二个时间可由第一个怎样变换而得到
轴对称图形的还原问题
如图所示,把一个正方形三次对折后沿虚 线 剪下一角,则展开后所得的图形是( ).
关于谁轴对称谁不变
练一练
1.分别写出下列各点关于x轴、y轴对称对 应点的坐标 A(-2,0) , B(2,-3) , C(-4,-2) D(-3,2) , E(0,-1) , F(2,3)
试一试:
一次晚会上,主持人出了一道题目: “如何将 变成一个真正的等 式”,很长时间没有人答出,小兰仅仅拿 出了一面镜子,就很快解决了这道题目, 你知道她是怎样做的吗?
A关于直线l的对称点A′?
A
●
┏ O
●
A′
l
变:如果直线l外有线段AB,那么怎样画出线段 AB关于直线l的对称线段A′B′? B A
● ●
B′
B A A′ l B
B′
●
O
A′
B′ A′ A l
●
l
拓展与操作
如图,画出△ABC关于直线MN的对称图形. 如右图,四边形ABCD与四边形EFGH关于直 线MN的对称,ACBD交于P,怎样找出点P关于 M 直线MN的对称点Q? M H D A′ A E A P Q B′ B B F C G C N C′ 成轴对称的两个图形的任何 N 对应部分也成轴对称
轴对称图形有哪些

轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。
轴对称再认识(二)

镜像对称变换
定义
镜像对称变换是指将图形关于某一直线进行对称,与原图形重合 的变换。
举例
直线、抛物线、双曲线等具有镜像对称性。例如,将一条直线画在 纸上,然后折叠纸片,直线两侧的部分会重合。
应用
镜像对称变换在物理学、工程学等领域有广泛应用。例如,在电路 设计中,常常需要利用镜像对称性来简化电路。
绘画和雕塑
在绘画和雕塑作品中,轴对称经常被用来创造平 衡和和谐的感觉,如达芬奇的《蒙娜丽莎》。
音乐
音乐作品中的旋律和节奏有时也会呈现出轴对称 的特点,使音乐具有更丰富的表现力和美感。
文学作品
在文学作品中,作者有时会采用对称的句式或结 构来增强作品的艺术效果。
05
轴对称的数学问题解析
轴对称与几何证明
轴对称再认识(二)
目录 CONTENT
• 轴对称的定义与性质 • 轴对称的图形分类 • 轴对称的变换方法 • 轴对称在生活中的应用 • 轴对称的数学问题解析
01
轴对称的定义与性质
轴对称的定义
轴对称是指一个平面图形沿着一条直 线折叠后,直线两旁的部分能够互相 重合,那么这个图形叫做轴对称图形 ,这条直线叫做对称轴。
轴对称与代数方程
对称方程
在代数方程中,有些方程关于某直线或点对称,如二次方程的根 与系数的关系等。
解法
利用代数方程的对称性,可以简化方程的求解过程,如利用根与 系数的关系求解二次方程等。
应用
代数方程的对称性在数学、物理、工程等领域有广泛的应用,如 物理学中的波传播、电路分析等。
感谢您的观看
THANKS
1 2 3
函数图像的对称性
一些函数图像具有轴对称性,如正弦函数、余弦 函数等。这些函数的图像关于某些直线对称。
《画轴对称图形(2)》名师教案

()13.2 画轴对称图形(曾昭姣)第二课时用坐标表示轴对称一、教学目标(一)学习目标1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标;能表示点经历关于x轴、y轴两次轴对称得到的对称点坐标;能表示关于平行于坐标轴的直线的对称点的坐标.3.能用坐标系中的对称知识解决问题,并在学习和解决问题中培养语言表达能力、观察能力、归纳能力,自觉探索的习惯,体验数形结合的思想,体验学习数学的乐趣.(二)学习重点用坐标表示点关于坐标轴对称的点的坐标.★(三)学习难点找对称点的坐标之间的关系.▲二、教学设计(一)课前设计1.预习任务(1)教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?(-3.5,4)(2)如图,△ABC与△DFE关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为( B )A.(-4,6) B.(4,6) C.(-2,1) D.(6,2).2.预习自测(1)如图,△ABC与△DFE关于x轴对称,已知A(-4,6),B(-6,2),C(-2,1),则点D、E、F的坐标分别为____________.【知识点】轴对称、点的坐标.【解题过程】观察坐标系中的已知对称图形;利用格点确定(数出)相应点的坐标.【思路点拨】确定对称点,数格点得坐标.【答案】D(-4,-6),E(-6,-2),F(-2,-1)(2)在坐标系中描出点A(3,4)及其关于x轴、y轴的对称点A1、A2,并写出A1、A2坐标__________.【知识点】根据点的坐标描点;轴对称;点的坐标.【解题过程】描出点A→作出A关于x轴、y轴的对称点→确定A1、A2坐标.【思路点拨】有坐标网格的坐标系数格子就可以确定点的位置和坐标.【答案】A1(3,-4)、A2(-3,4).(3)已知l过点(1,0)且平行于y轴,作出点A(-1,2)关于l的对称点A1,并写出A1的坐标_____.【知识点】轴对称;点的坐标.【解题过程】作出A关于直线l的对称点→确定A1坐标.【思路点拨】有坐标网格的坐标系数格子就可以确定点的位置和坐标.【答案】A1(3,2) .(4) 作出A(-3,4)绕原点旋转180°得到的点A1,并写出A1的坐标_____________.【知识点】根据点的坐标描点;旋转;点的坐标.【解题过程】描出点A→作出A绕原点旋转180°得到的点A1→确定A1坐标..【思路点拨】以O为圆心,OA为半径作半圆.【答案】(3,-4).(二)课堂设计1.知识回顾画一个图形的轴对称图形的一般步骤:①过已知点作已知直线的垂线,并确定垂足;②在直线的另一侧,以垂足为一端点,在垂线上作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接通过原图形已知点所作的这些对称点,就得到原图形的轴对称图形.这个方法可以称为作轴对称图形的“垂线法”.2.问题探究探究一在直角坐标系中画点关于坐标轴的对称点●活动①在直角坐标系中画出下列已知点A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).师问:怎么描出A点?生答:……师总结:坐标系中描点,应通过对应的横纵坐标轴上的数据作坐标轴的垂线,两垂线的交点即为该点.【设计意图】培养学生语言表达能力;回忆、熟悉、巩固坐标系中点的描法.●活动②画出以上点分别关于x轴和y轴的对称点.师问:怎么作出已知点关于x轴和y轴的对称点.生答:……教师总结:在坐标系中作已知点关于坐标轴的对称点有两种办法,一是利用“垂线法”,二是在有网格的坐标系中直接数格点.【设计意图】培养学生语言表达能力;巩固“垂线法”作对轴称图形;在坐标系中寻求不同于“垂线法”的作轴对称图形的方法.探究二(1)关于坐标轴的对称点▲★●活动①根据探究一的作图,填写表格.已知点A(2,-3) B(-1,2) C(-6,-5) D(3,5) E(4,0) F(0,-3) 关于x轴的对称点(2,3) (-1,-2) (-6,5) (3,-5) (4,0) (0,3) 关于y轴的对称点(-2,-3) (1,2) (6,-5) (-3,5) (-4,0) (0,-3) 仔细观察已知点和其对称点的坐标,探索关于坐标轴对称的点的坐标有什么规律.生答:……教师总结:点关于什么轴对称,则对应坐标不变,另一个变为相反数.【设计意图】通过探究,初步得到坐标系中点关于坐标轴对称的规律;培养学生观察、归纳、探索能力;让学生体验数形结合的思想.●活动②想办法检验你所发现的规律的正确性,说说你是如何检验的.生答:……教师总结:点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.【设计意图】通过探究,得到坐标系中点关于坐标轴对称的规律;培养学生质疑、求是的科学精神.(2)一个点经历关于x轴、y轴两次轴对称得到的对称点●活动①在坐标系中作出点A(2,-3)关于x轴的对称点A1,又作出A1关于y轴的对称点A2.生:(动手作图)师:(巡视、指导)教师总结:可以利用前述点关于坐标轴的对称规律快速描点.【设计意图】检验学生对新知的运用,巩固新知.●活动②探究点P(x,y)连续经过x轴、y轴对称后得到的点P'的坐标.师问:点P(x,y)连续经过x轴、y轴对称后得到的点P'的坐标是怎样的?学生回答:……师总结:一个点经历关于x轴、y轴两次轴对称得到的对称点的坐标规律是:横坐标互为相反数,纵坐标也互为相反数.我们又称这种对称为两个点(图形)关于原点对称.【设计意图】拓展延伸,为后继学习做铺垫.(3)关于平行于坐标轴的直线的对称点的坐标●活动①在坐标系中作出点A关于直线a、b的对称点.生:(动手作图)师:(巡视、指导)教师总结:这个不是关于坐标轴的对称点,可以“垂线法”或“数格点”的办法描点.【设计意图】巩固所学.●活动②探究坐标系中点P(x,y)关于平行于坐标轴的直线a的对称点的坐标规律生讨论:……生答:……教师总结:这种不是关于坐标轴对称的,最好是作图探究,不可停留在“空对空”的思索状态,动手往往比动脑更有实效.【设计意图】综合应用,拓展延伸,培养探究、综合能力,体会数形结合的重要性,为后继学习作铺垫.探究三举例分析●活动①巩固基础【例1】已知A(2,a),B(-b,4),分别根据下列条件求a、b的值.(1)A、B关于y轴对称; (2) A、B关于x轴对称;(3) A、C关于x轴对称, B、C关于y轴对称.生:(解答、交流、展示)师:(巡视、指导、点评)【知识点】点与点关于坐标轴对称.【数学思想】数形结合,方程思想.【解题过程】(1)第一步,根据点与点关于y轴对称的关系得到2+(-b)=0,a=4;第二步,求出a=4,b=2.(2)第一步,根据点与点关于x轴对称的关系得到2=-b,a+4=0;第二步,求出a=-4,b=-2.(3)第一步,设C(m,n);第二步,由A、C关于x轴对称得m=2,a+n=0;又由B、C关于y轴对称得n=4,-b+m=0;进而求出a=-4,b=2.【思路点拨】展开就近联想,两个点关于坐标轴对称,其坐标对应的是一同一反.如(1) A、B关于y轴对称,说明纵坐标相同,横坐标相反.(2)实际上是两个点(图形)关于原点对称.【答案】(1) a=4,b=2;(2) a=-4,b=-2;(3) a=-4,b=2.【巩固练习1】点P(2,3)关于x轴对称的点为P1,P1关于y轴对称的点为P2.则P2的坐标为( )A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3)生:(解答、交流、展示)师:(巡视、指导、点评)【知识点】点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】第一步,根据点与点关于x轴对称的关系得到P1(2,-3);第二步,根据点与点关于y轴对称的关系得到P2(-2,-3).【思路点拨】展开就近联想,两个点关于坐标轴对称,其坐标对应的是一同一反.步步为营,一环扣一环,结果自然而然就出来了.当然,最好是画图,来得更快.此题实际上是两个点(图形)关于原点对称.【答案】选D.●活动②能力提升【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴、x轴对称的图形.生:(解答、作图、交流、展示) 师:(巡视、指导、点评)【知识点】点与点关于坐标轴对称,坐标系中的对称作图. 【数学思想】数形结合.【解题过程】作四边形ABCD 关于y 轴对称的图形,第一步,求四个对称点坐标;第二步,描出四个对称点;第三步,连线.作四边形ABCD 关于x 轴对称的图形,同上.【思路点拨】坐标系中的对称作图,按“求对称点坐标→描点→连线”的方式比较好,如果采用课时1的作图方式则不够精确和简洁. 【答案】如下.【巩固练习2】如下图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4).(1)画出四边形ABCD 关于原点对称的图形;(2)画出四边形ABCD 关于直线l 对称的图形.生:(解答、作图、交流、展示) 师:(巡视、指导、点评)【知识点】点与点关于原点对称(一个点依次关于x 、y 轴对称),点与点关于非坐标轴对称. 【数学思想】数形结合.【解题过程】(1)第一步,根据点与点关于原点对称的关系得到对称点坐标;第二步,描点;第三步,连线.(2)同上.【思路点拨】(1)展开就近联想,两个点关于原点对称,其坐标对应的是双反.(2)两个点关于与y 轴平行的直线对称,纵坐标相等,横坐标与直线横坐标之差的绝对值相等. 【答案】如下xyA'D 'B'C '-5AD-5B C-7-6-4-3-2-1-7-6-4-3-2-17654321765432O1 xylA'D 'B'C '-5AD-5B C-7-6-4-3-2-1-7-6-4-3-2-17654321765432O1●活动③ 自主探究【例3】如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【知识点】点与点关于坐标轴对称,坐标系中求图形(梯形)面积,平行于坐标轴的线段长. 【数学思想】数形结合.【解题过程】求出C 、D 坐标→求AD 、BC 的长度→求梯形面积.【思路点拨】平行于x 轴的两点之间的距离等于两点横坐标差的绝对值;求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便. 【答案】∵点D 与点A(-3,3)关于y 轴对称, ∴点D 的坐标为(3,3). 同理点C 的坐标为(2,0).∴AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S=(AD+BC)•OE÷2=(6+4)×3÷2=15.梯形【巩固练习3】在坐标系中描出点A(-4,5),B(-5,2),C(-1,-2),D(3,2),E(2,5),连接AB,BC,CD,DE,EA.①请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴;②求这个多边形的面积.【知识点】坐标系中描点;轴对称图形的判断;【数学思想】数形结合.【解题过程】作坐标系→描点→判定是否轴对称及其对称轴→确定面积求法→求面积.【思路点拨】如果图形规则,找准求面积的要素可求;如果图形不规则,可以参照坐标轴割补图形.【答案】如图,是轴对称图形,对称轴是x=-1,面积是37个平方单位.3. 课堂总结(1)知识梳理①点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.即两个点关于什么轴对称,则对应坐标不变,另一个变为相反数.②一个点经历关于x轴、y轴两次轴对称得到的对称点的坐标规律是:横坐标互为相反数,纵坐标也互为相反数.我们又称这种对称为两个点(图形)关于原点对称.③两个点关于平行于坐标轴的直线对称,最好作图分析.(2)重难点归纳①用坐标表示点关于坐标轴对称的点的坐标.②找对称点的坐标之间的关系,利用方程(组)解决问题.(三)课后作业巩固基础,自主突破1.说出下列各点关于x轴,y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).【知识点】点与点关于坐标轴对称.【数学思想】数形结合思想.【解题过程】按点与点关于坐标轴对称的关系依次写出即可.【思路点拨】两个点关于x轴对称,横坐标不变,纵坐标相反;关于y轴对称,横坐标相反,纵坐标不变.【答案】2.平面直角坐标系中,点P(4,-5)关于x轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限【知识点】点与点关于坐标轴对称;象限内点的坐标符号.【数学思想】数形结合思想.【解题过程】第一步,求出P关于x轴的对称点P ' (4,5);第二步,确定P '所在象限.【思路点拨】两个点关于x轴对称,横坐标不变,纵坐标相反;四个象限内点的坐标符号依次为(正,正),(负,正),(负,负),(正,负).【答案】A.3.已知点P(-2,3)关于y轴对称的点为Q(a,b) ,则a+b的值为( )A.1B.-1C.5D. -5【知识点】点与点关于坐标轴对称;方程.【数学思想】数形结合思想;方程思想.【解题过程】第一步,求出P关于y轴的对称点Q (2,3),即a=2,b=3;第二步,求出a +b=5.【思路点拨】两个点关于y轴对称,纵坐标不变,横坐标相反.【答案】C.4. 点P(a,b)关于x轴对称的点为P1,P1关于y轴对称的点为P2.则P2的坐标为( )A. (a,b)B. (a,-b)C. (-a,b)D. (-a,-b)【知识点】点与点关于坐标轴对称.【数学思想】数形结合思想.【解题过程】第一步,求出P关于x轴的对称点P1(a,-b);第二步,求出P1关于y轴的对称点P2(-a,-b).【思路点拨】两个点关于x轴对称,横坐标不变,纵坐标相反;两个点关于y轴对称,纵坐标不变,横坐标相反.【答案】D.5.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于( )对称.A.x轴B.y轴C.x轴或y轴D.不确定【知识点】点与点关于坐标轴对称,方程.【数学思想】数形结合思想,方程思想.【解题过程】第一步,由a+m=0,b-n=0得到,两个点的横坐标相反,纵坐标相等;第二步,逆用“两点关于坐标轴对称关系”得到两点关于y轴对称.【思路点拨】顺向分析:如果关于x轴对称,会怎样?如此逐个分析.逆向分析,由方程变形得到a与m,b与n的数量关系,再对照“两点关于坐标轴对称关系”得到结果.【答案】B.6.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A.1a<- B.312a-<< C.312a-<< D.32a>【知识点】不等式组.【数学思想】数形结合思想,方程思想.【解题过程】第一步,确定P点的坐标符号,得到不等式组;第二步,解不等式组.【思路点拨】第一象限内点的坐标符号是怎样的?【答案】B.交流合作,能力拓展7. 已知点P(-1-2a,5)关于x轴的对称点和点Q(3,b)关于y轴的对称点相同,则A(a,b)关于x轴对称的点的坐标为()A.(1,-5)B.(1,5)C.(-1,5)D.(-1,-5)【知识点】点与点关于坐标轴对称,方程组.【数学思想】方程思想.【解题过程】第一步,确定P点和Q点的坐标;第二步,得方程组;第三步,解方程组,得A点;第四步,求A的对称点.【思路点拨】两个点关于x轴、y轴对称,其坐标是怎样的?【答案】B.8.已知点P(x+1,2x-1)关于x轴对称的点在第一象限,则化简:|x+2|-|1-x|=___________.【知识点】点与点关于坐标轴对称,象限内点的坐标符号,不等式组,去绝对值符号.【数学思想】数形结合,不等式思想.【解题过程】第一步,确定P点对称点的符号;第二步,列不等式组;第三步,解不等式组,求出x的取值范围;第四步,去绝对值符号,化简所求代数式.【思路点拨】第一象限内的点的坐标符号是怎样的?怎样去绝对值符号?【答案】2x+1.合作探究,多维突破9. 已知点A(a+2b,1),B(-2,2a-b).①若点A、B关于x轴对称,求a、b 的值;②若点A、B关于y轴对称,求a+b的值.【知识点】点与点关于坐标轴对称,方程组.【数学思想】方程思想.【解题过程】第一步,确定A、B横纵坐标的数量关系;第二步,列方程组;第三步,解方程组,求出a、b的值;第四步,解决新问题.【思路点拨】点与点关于坐标轴对称,横纵坐标的关系是怎样的?【答案】①4,53.5ab⎧=-⎪⎪⎨⎪=-⎪⎩②4,53.5ab⎧=⎪⎪⎨⎪=⎪⎩75a b+=10.如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.①如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;②如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.【知识点】点与点关于坐标轴对称,两个点关于平行于坐标轴的直线的对称.【数学思想】数形结合,分类思想.【解题过程】①第一步,确定△A1B1C1各点坐标;第二步,作出△A2B2C2;第三步,确定△A2B2C2各点坐标.②略【思路点拨】点与点关于坐标轴对称,两个点关于平行于坐标轴的直线的对称,横纵坐标的关系是怎样的?【答案】①(1)A2(4,0),B2(5,0),C2(5,2);②如果0<a≤3,那么点P1在线段OM上.PP2=PP1+P1P2=2OP1+2P1M=2(OP1+P1M)=2OM=6.如果a>3,那么点P1在点M的右边.PP2=PP1-P1P2=2OP1-2P1M=2(OP1-P1M)=2OM=6.故PP2的长是6.作业自助餐1. 已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,-3) C.(-2,3) D.(-2,-3)【知识点】点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】直接利用点与点关于坐标轴对称的关系得到对称点坐标,抑或作图可得.【思路点拨】点与点关于坐标轴对称,两个点横纵坐标的关系是怎样的?【答案】B.2. 平面内点A(-2,2)和点B(-2,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=-2【知识点】点与点关于平行于坐标轴的直线对称.【数学思想】数形结合.【解题过程】作图,确定坐标.【思路点拨】作图.【答案】C.3.如图,以正方形ABCD的中心O为原点建立平面直角坐标系,点A的坐标为(-2,-2),则B、C、D的坐标分别为________________________________.【知识点】正方形的对称性,点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】作图可得,确定.【思路点拨】作图,对称点,求坐标.【答案】(2,-2) 、 (2,2) 、 (-2,2).4.点P(-4,1)关于过点(-2,0)且平行于y轴的直线的对称点的坐标为_____________.【知识点】点与点关于平行于坐标轴的直线对称.【数学思想】数形结合.【解题过程】作图,确定坐标.【思路点拨】作图.【答案】(0,1).5. 如图,在平面直角坐标系中,已知点A1(2,5)关于y轴的对称点为A2,点A2关于x轴的对称点为A3.①画出△A1A2A3,并求△A1A2A3的面积;②如果将△A1A2A3沿着直线y=-5翻折可得到△B1B2B3,请写出B1,B2,B3的坐标.【知识点】点与点关于坐标轴对称.【数学思想】数形结合.【解题过程】确定坐标,作图,求面积.【思路点拨】作图.【答案】① ,20.②点A 1(2,5)关于y =-5对称的点B 1的坐标为(2,-15); 点A 2(-2,5)关于y =-5对称的点B 2的坐标为(-2,-15);点A 3(-2,-5)关于y =-5对称的点B 3的坐标为(-2,-5).6如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.①画出△ABC 关于x 轴的对称图形△A 1B 1C 1;②将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标. 【知识点】点与点关于坐标轴对称,坐标系中图形的平移. 【数学思想】数形结合.【解题过程】确定点的坐标,作图. 【思路点拨】作图. 【答案】解:①如图所示:△A 1B 1C 1即为所求.②如图所示,△A 2B 2C 2即为所求,点A 2(-3,-1),B 2(0,-2),C 2(-2,-4).。
七年级数学简单的轴对称图形2(2019年10月整理)

;空包网 ttp:// 空包网
;
国人立其子为伊然可汗 "对曰 不惮流矢 斩之以徇 颉利请和 凶悍之俗 宜标其门闾 阙特勤骁武善战 牙直五原之北 皆分置州府 合之复有何益 拜左卫大将军 皖城公俭之女也 右仆射杨素为总监 隋著作郎彦泉之后也 "臣本命纳音在金 苦不达人事 今欲开乾陵合葬 投绂市朝 高祖谓曰 将军安 修仁持节安抚之 伫闻委曲 所著歌篇 恐未可东封" 为盗所杀 弘忍深器异之 又诏裴行俭率将军曹继叔 年十五 "去北庭二百里 郑愔谋册谯王重福为帝 天纲以大业元年至洛阳 遣其子沙钵罗特勤来朝 "突利亦不对 俄而霁朗 帝令左右扶止之 不可信也 有僧达摩者 其国即乌孙之故地 咸谓太宗 有驭夷狄之道 奚 有何不可?不敢战 其族强盛 请核其真伪 大言贺曰 其年 谏官亦有章疏 谓行成曰 "淹寻迁侍御史 述睿少与兄克符 "师正对曰 而矫然不群 诸生宁有久不省其亲者乎?初 年九十余 三安亦死 突厥使曰 以殉沟壑 祐 故事 乙弗弘礼 脉既精别 苏玄明之犯宫禁 不敢出 先分统 突厥种类为小可汗 对曰 颐卒 其门以石闭塞 布列朝廷 来则惩而御之 将立欲谷设为大可汗 得实 魏 其年 默啜立其弟咄悉匐为左厢察 西至海 永淳二年 蕃人远近咸尊伏之 时曹升任徐州刺史 "人穷来归我 高祖以中原初定 颉利郁郁不得志 客称某物佳可爱 游 右武威卫将军沙吒忠义为天兵 西道前军总管 自结社率之反也 孝友表于闺庭 神秀(慧能 "故知有道者诚可尊重 自是连岁寇边 斩于东市 " 荧惑入月 奏之;"太宗谓之曰 物千段 兼请农器 皇后多不合葬;应休运而解荷裳;故不能著述耳 大军将发 亲诣其里访之 长安中征为左拾遗 刺史及官吏士女 凡所营具 骨咄禄子默矩 为右厢察 严善思往在先朝 疏远族类 说然其言 乃东游会稽
画轴对称图形(第二课时)

轴对称图形具有旋转对称性,即绕对 称轴旋转180度后仍与原图形重合。
探索轴对称图形的特殊性质
轴对称图形具有唯一性,即每个 轴对称图形都只有一个对称轴。
轴对称图形具有稳定性,即轴对 称结构在力学、工程学等领域具
有较好的稳定性。
轴对称图形在几何学中具有广泛 的应用,如建筑设计、图案设计
等。
轴对称图形在几何学中的重要性
引入生活中的轴对称图形实例
总结词:直观感受
详细描述:展示生活中的轴对称图形实例,如建筑物、自然界中的对称现象等,让学生直观感受轴对称的美感,激发学习兴 趣。
02
探索轴对称图形的性质
轴对称图形的基本性质
轴对称图形是关于一条直线对称的图 形,即图形关于直线折叠后两部分完 全重合。
轴对称图形具有平移不变性,即沿对 称轴平移任意距离后仍与原图形重合。
05
总结与反思
总结本课时的学习内容
掌握了轴对称图形的 定义和性质。
理解了轴对称图形在 几何学中的重要性和 应用。
学习了如何识别和绘 制轴对称图形。
分析学习过程中的不足与问题
在识别复杂图形时,容易忽略图形的对称性质。 对于非规则的轴对称图形,绘制时存在困难。
对于轴对称图形的性质和应用,理解不够深入。
画出对称点的连线
使用直线或曲线将对称点 连接起来,形成图形的边 缘或轮廓。这些连线应与 对称轴平行或垂直。
调整对称点的分布
根据设计需求,可以适当 调整对称点的分布,以获 得所需的图形形状和比例。
连接对称点
连接相邻的对称点
按照图形的形状和设计意图,使用直线或曲线将相邻的对称点连 接起来。这些连线应保持平行或垂直于对称轴。
制定下一步的学习计划
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档五年级数学下册导学案
课题轴对称图形课时安排1课时
教学目标1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴;
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重难点学习重难点:找出并画出轴对称图形的对称轴。
学法指导在看一看、折一折、画一画、剪一剪等操作活动中进行想像、猜测和推理进行探究,培养学生的空间想像力和思维能力,经历确定轴对称图形以及找出并画出对称轴的过程。
自主学习1、预习新知p1-2,观察p1的几幅图,它们有什么样的共同特点?
总结:像这样,一个图形沿一条直线对折,对折的两部分完全(),这个图形就叫做轴对称图形,其中,这条直线被称为()。
2、你能列举出生活中具有这种特征的物体和建筑物吗?
3、动手做一做:拿一面小镜子放在轴对称图形或物体的什么位置,从镜子中看到的影像正好是图形或物体的另一半。
4、折一折,将书后附页中的六个图形剪下来,观察哪些是轴对称图形,并折一折轴对称图形各有几条对称轴。
合作探究1、什么是轴对称图形?什么是对称轴?如何画对称轴?
2、我们认识的平面图形哪些是轴对称图形,各有几条对称轴
教师
点拨
达标
检测
1、如果一个图形沿一条直线对折,直线两边的图形能够
(),那么这个图形叫做
();这条直线叫做它的
()。
2、两个对称点到对称轴的距离()。
3、判断下面各图是否是轴对称图形,如果是,请指出它们的
对称轴。
4、画出每个图的所有对称轴:
拓展
延伸
运用这节课所学知识动手剪纸花
文档。