第四章 经典线性回归模型(高级计量经济学-清华大学 潘文清)

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件

第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件

.
11
• 一些有用的等式
(1) (2) 因为 (3)

且 (4)
X’e=0
b-=(X’X)-1X’
b=(X’X)-1X’Y=(X’X)-1X’(X+)=+(X’X)-1X’
定义nn方阵:
P=X(X’X)-1X’ , M=In-P P=P’ , M=M’
P2=P, M2=M
PX=X, MX=On(k+1) e=MY=M
SSR(b)=e’e=Y’MY=’M
.
12
三、高斯-马尔科夫定理
Gauss-Markov Theorem
•Question: OLS估计量的统计性质如何?
(1)[Unbiaseness] E(b|X)=, E(b)=
E(b|X)=E[(+(X’X)-1X’)|X]=+(X’X)-1X’E(|X)=
注意:
(1) 假设4可写成
E(ij|X)=2ij,
其中, i= j时,ij=1; i≠j时,ij=0
矩阵形式: E(’)=2I
.
7
(2)由假设2,
Var(i|X)=E(i2|X)-E[(i|X)]2=E(i|X)=2
同理, Cov(i,j|X)=E(ij|X)=0
(3) 假设4意味着存在非条件同方差性:
(2) 由于可以有j≤i, 或j>i, 意味着i既不依赖过去的X, 也不依赖于未来的X。因此排除了动态模型。
例:对AR(1)模型: Yi=0+1Yi-1+i=Xi’+i
这里Xi=(1, Yi-1)’,显然E(Xii)=E(Xi)E(i)=0,但
E(Xi+1i)≠0。因此,E(i|X关于严格外生性有其他的定义。 如定义为i独立于X,或X是非随机的。这一定义排 除了条件异方差性。而我们这里的假设2是允许存在 条件异方差性的。

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

第三章 回归模型的估计 概论(高级计量经济学-清华大学 潘文清)

第三章  回归模型的估计 概论(高级计量经济学-清华大学 潘文清)

2、极大似然估计
对具有pdf或pmf为f(Y;)的随机变量Y(其参数未知), 随机抽取一容量为n的样本Y=(Y1,Y2,…Yn)’其联合分布为:
gn(Y1,Y2,…Yn;)=if(Yi;) 可将其视为给定Y=(Y1,Y2,…Yn)’时关于的函数,称其为关于 的似然函数(likelihood function),简记为L() : L()= gn(Y1,Y2,…Yn;)=if(Yi;) 对离散型分布,似然函数L()就是实际观测结果的概率。 极大似然估计就是估计参数,以使这一概率最大; 对连续型分布,同样也是通过求解L()的最大化问题,来 寻找的极大似然估计值的。
二、类比估计法(The Analogy Principle)
1、基本原理
• 总体参数是关于总体某特征的描述,估计该参数, 可使用相对应的描述样本特征的统计量。 (1)估计总体矩,使用相应的样本矩
(2)估计总体矩的函数,使用相应的样本矩的函数 对线性回归模型: Y=0+1X+u
上述方法都是通过样本矩估计总体矩,因此,也 称为矩估计法(moment methods, MM)。 (3)类比法还有: • 用样本中位数估计总体中位数; • 用样本最大值估计总体最大值; • 用样本均值函数mY|X估计总体期望函数Y|X,等
可见,总体均值的极大似然估计就是样本均值,总 体方差的极大似然估计就是样本方差。
3、极大似然估计的统计性质
由数理统计学知识: (n-1)s*2/2~2(n-1)
因此, Var[(n-1)s*2/2]=2(n-1)
Var(S*2)=24/(n-1)
§3.2 估计总体关系 Estimating a Population Relation 一、问题的引入(Introduction)

计量经济学中级教程(潘省初清华大学出版社)课后习题答案

计量经济学中级教程(潘省初清华大学出版社)课后习题答案

计量经济学中级教程(潘省初清华大学出版社)课后习题答案计量经济学中级教程习题参考答案第一章绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说)(2)建立计量经济模型(3)收集数据(4)估计参数(5)假设检验(6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YYn==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。

(4)错R 2 =ESS/TSS 。

(5)错。

我们可以说的是,手头的数据不允许我们拒绝原假设。

(6)错。

因为∑=22)?(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。

2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。

高级计量经济学 第四章 非线性模型[精]

高级计量经济学 第四章 非线性模型[精]
已经有专门的软件(DEA)。
随机性前沿函数(Stochastic frontier)
基于统计技术,需要对技术效率的分布形式做出假定 ,利用最大似然法估计。
该法也已经得到广泛应用,也有多种专门的软件。
Frontier Limdep/Nlogit Stata
21
随机前沿函数
线性化迭代求解法(Iterative linearization method),即从 一组参数的初始值开始将非线性函数线性化,然后求 解线性方程组并得到新的估计值;重复上述步骤直到 估计结果达到收敛标准或达到最大迭代次数时为止。
10
NLS方法
用线性化迭代求解法做回归包括以下步骤:
在未给定初始值的情况下,利用OLS方法估计系数(或 用其他算法得到的估计值)作为初始值,反之利用给 定的初始值。
26
EVIEWS下用最大似然法估计参数非 线性方程
最大似然法适合更为一般化的情况
在EVIEWS下选择Object/New Object/LogL 在随后出现的窗口中根据研究需要定义似然函数
需要调用EVIEWS的多个函数功能 给出参数的初始值
调用Estimate并确定有关选项 得到估计结果 可以在File下选择New/Program建立程序文件,更便于
5
两种主要的估计技术
非线性最小二乘法(NLS)
以残差平方和最小为标准获得参数估计 通常基于误差项满足正态分布的假定 一般计量经济软件有标准的指令和算法
最大似然法(ML)
以似然值最大为标准获得参数估计 误差项可以为任意统计分布形式 不同情况需要用到不同的指令和算法
计算技术效率采用以下公式(以生产函数为例):

《线性回归模型》课件

和治疗效果。
THANKS FOR WATCHING
感谢您的观看
线性回归模型的假设条件
独立观测值
假设数据点之间相互独立,不 存在相互依赖关系。
无异常值或离群点
假设数据集中没有异常值或离 群点,因为它们可能会对回归 线的拟合产生不利影响。
线性关系
假设因变量与自变量之间存在 线性关系,即它们之间的关系 可以用一条直线来描述。
无多重共线性
假设自变量之间不存在多重共 线性,即它们之间不存在高度 的线性相关性。
详细描述
线性回归模型可以通过分析历史股票数据,找到影响股票价格的关键因素,如市场情绪 、公司业绩、宏观经济指标等。通过建立线性回归方程,可以预测未来股票价格的走势
,为投资者提供参考。
销售预测
总结词
线性回归模型可以用于预测公司未来销售额 ,帮助企业制定合理的销售计划和市场策略 。
详细描述
通过收集历史销售数据,线性回归模型可以 分析影响销售额的关键因素,如市场需求、 产品价格、竞争对手情况等。通过建立线性 回归方程,可以预测未来一段时间内的销售 额,帮助企业制定合理的销售计划和市场策 略。
疾病风险预测
总结词
线性回归模型可以用于预测个体患某种疾病 的风险,帮助医生制定个性化的预防和治疗 方案。
详细描述
线性回归模型可以通过分析个体的基因、生 活习惯、家族病史等数据,找到与疾病风险 相关的因素。通过建立线性回归方程,可以 预测个体患某种疾病的风险,帮助医生制定 个性化的预防和治疗方案,提高疾病的预防
它使用最小二乘法或其它优化方法来 找到最佳拟合直线,使得因变量的预 测值与实际值之间的平方误差最小化 。
线性回归模型的应用场景
预测连续值
解释变量关系

计量经济学第四章非线性回归模型的线性化

第四章 非线性回归模型的线性化以上介绍了线性回归模型。

但有时候变量之间的关系是非线性的。

例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述非线性回归模型是无法用最小二乘法估计参数的。

可采用非线性方法进行估计。

估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。

计算机的出现大大方便了非线性回归模型的估计。

专用软件使这种计算变得非常容易。

但本章不是介绍这类模型的估计。

另外还有一类非线性回归模型。

其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。

称此类模型为可线性化的非线性模型。

下面介绍几种典型的可以线性化的非线性模型。

4.1 可线性化的模型⑴ 指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。

显然x t 和y t 的关系是非线性的。

对上式等号两侧同取自然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。

其中u t 表示随机误差项。

010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u t (4.4)b >0和b <0两种情形的图形分别见图4.3和4.4。

x t 和y t 的关系是非线性的。

令x t * = Lnx t , 则y t = a + b x t * + u t (4.5)变量y t 和x t * 已变换成为线性关系。

图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶ 幂函数模型y t = a x t b t u e (4.6)b 取不同值的图形分别见图4.5和4.6。

(完整word版)计量经济学中级教程(潘省初 清华大学出版社)课后习题答案

计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。

为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YYn==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正) (1)对 (2)对 (3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。

(4)错R 2 =ESS/TSS 。

(5)错。

我们可以说的是,手头的数据不允许我们拒绝原假设。

(6)错。

因为∑=22)ˆ(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。

2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。

清华大学 五道口金融学院 潘文卿 内生性工具变量与GMM估计

第4章内生性、工具变量与GMM估计•外生性与常见的内生性问题•矩估计(MM)与工具变量法(IV)•线性模型的两阶段最小二乘估计(2SLS)•线性模型的广义矩估计(GMM)§4.1 外生性与常见的内生性问题一、外生性假设与内生性问题二、常见的内生性一、外生性假设与内生性问题线性回归模型中一个重要的假设是“严格外生性”: E(ε|X )=0严格外生性(strictly strictly exogeneity exogeneity exogeneity))的含义是:各期的解释变量X t 独立于所有期的随机扰动项εt 。

在严格外生性与球型假设假设下,OLS 估计量是BLUE 。

这两大假设也称为Y t 或εt 是独立同分布的(iid )。

对模型 Y t =β0+β1X t1+…+βk X tk +εt或 Y t = X t ’β+ εt 或 Y = X β +ε1、外生性与、外生性与OLS OLS OLS估计量的统计性质估计量的统计性质tΣ§4.2 矩估计与工具变量法一、矩估计二、矩估计中的工具变量法二、矩估计中的工具变量(IV)法假设有如下模型:Y t=X t1’β1+X t2β2+εt其中:X2为单一变量,X1为包括截距项的k维行向量β2、β1为对应的参数变量与参数向量。

如果模型设定正确,则有如下总体矩条件 E(X t1εt )=0, E(X t2εt)=0(1/n)ΣX t1(Y t-X t1’b1-X t2b2)=0(1/n)ΣX t2(Y t-X t1’b1-X t2b2) =0(1/n)ΣX t1(Y t -X t1’b 1-X t2b 2) =0(1/n)ΣX t2(Y t -X t1’b 1-X t2b 2) =0正规方程组如果缺少矩条件,如E(X t2εt )≠0,则上述正规方程组最后一个方程不存在,则无法求解。

这时,工具变量法就是寻找一工具变量Z2,满足E(Z t2εt)=0,E(Z t2X t2)≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对任何其元素平方和为1的(k+1)1向量, ’=1 ’Var(b|X) = 2’(X’X)-1 2max[(X’X)-1] = 2{min[(X’X)]}-1
注意: Var(b|X)0还可通过Chebycheff不等式来证明: 对b中的第i个元素:P{|bi-i|>}<Var(bi)/2=(2cii)/2 n时,(X’X),则(X’X)-10 于是: lim P{|bi-i|>}=0 for all >0
第四章 经典线性回归模型(I)
Classical Linear Regression Model (I)
§4.1 经典线性回归模型 Classical Linear Regression Models
一、经典回归模型 Classical Regression Model
假设随机抽取一容量为n的样本(Yi, Xi), i=1,…,n, 其中,Yi是标量,Xi=(1,X1i,X2i,…,Xki)’,或
四、估计2及Var(b) Estimation of 2 and Var(b)
由于2未知,而Var(b)中也有2,故需估计。 由假设4,E(i2|X)=2,故可用E(ei2|X)来估计2。
E(ei2|X)=E(e’e|X)= E(’M|X)=E(ijmijij|X)
= ijmijE(ij|X)= 2imii = 2trace(M) 而 trace(M)=trace(In-P)=trace(In)-trace[X(X’X)-1X’] =n-trace[(X’X)-1XX’]=n- trace[(X’X)-1X’X] =n-(k+1)
(3) 计量经济学中,关于严格外生性有其他的定义。 如定义为i独立于X,或X是非随机的。这一定义排 除了条件异方差性。而我们这里的假设2是允许存在 条件异方差性的。 如果X是非随机的,则假设2变成
E(i|X)=E(i)=0
(4ห้องสมุดไป่ตู้假设2的向量形式:
E(|X)=0
注意: (1)本假设排除了解释变量间的多重共线性 (multicollinearity) (2) 本假设意味着X’X是非奇异的,或者说X必须 满秩于k+1。因此应有k+1≤n。 (3) 由于λ表述了矩阵X’X的相关信息,因此本假 设意味着当n∞时应有新信息进入X,即Xi不能老 是重复相同的值。
(4) [Gauss-Markov theorem]
In the CR model, the LS coefficient vector b is the minimum variance linear unbiased estimator of parameter vector .
设b*是另一线性无偏估计:b*=C’Y 其中,C=C(X)为一n(k+1)只依赖于X的矩阵。 只需证明 Var(b*)-Var(b)是半正定的
Ruc2为非中心化多元相关系数的平方(Uncentered squared multi-correlation coefficient)
注意: (1) 0 Ruc21 (2) Ruc2 的含义:Y的变化中可以由X的变化解释的 部分所占的比重
称为Y的方差分解式(analysis of variance):观测值的离差平方 和(SST)等于拟合值的离差平方和(SSE)加残差的平方(SSR): SST=SSE+SSR
• 一些有用的等式 (1) X’e=0 (2) b-=(X’X)-1X’ 因为 b=(X’X)-1X’Y=(X’X)-1X’(X+)=+(X’X)-1X’ (3) 定义nn方阵: P=X(X’X)-1X’ , M=In-P 则 P=P’ , M=M’ P2=P, M2=M 且 PX=X, MX=On(k+1) (4) e=MY=M SSR(b)=e’e=Y’MY=’M
(3) 假设4意味着存在非条件同方差性: var(i)=2 类似地, Cov(i, j)=0 (4) 假设4并不意味着i与X是独立的。它充许i的 条件高阶矩(如:偏度、峰度)可依赖于X。
二、参数的估计 Estimation of
由假设1与假设2知: E(Y|X)=0+1X1+…+kXk=X’ 其中,X=(1, X1, …,Xk)’ 即线性模型Y=X’+关于E(Y|X) 正确设定。 因此,其最佳线性最小二乘近似解(beat linear LS approximation coefficient)*等于参数的真实值0。 即,min E(Y-X’)2 的解为 *=0=[E(XX’)]-1E(XY)
于是
E(ei2|X)=E(e’e|X)= 2(n-k-1)
记s2=ei2/(n-k-1)=e’e/(n-k-1),则s2为2的无偏估计量
五、估计条件期望及预测 Estimation of conditional Expectation, and Prediction 1、估计条件期望
2、Y个值的预测
为避免将无解释力的解释变量纳入到X中去,引入 调整的决定系数(adjusted coefficient of determination):
(4)决定系数仅是对样本回归线拟合样本数据的程 度给予描述。而CR模型并不要求R2要有多高,CR 模型关心的是对总体回归参数的估计与检验。 (5) 有两个常用的判别是否有必要引入额外解释变 量的准则(在变量数目与模型简洁性间权衡):
(i=1,2,…n)
(1) 由E(i|X)=0 易推出:E()=0, E(Xji)=0 或有: Cov(Xj, i)=0 (i, j=1,2,…n) (2) 由于可以有j≤i, 或j>i, 意味着i既不依赖过去的X, 也不依赖于未来的X。因此排除了动态模型。 例:对AR(1)模型: Yi=0+1Yi-1+i=Xi’+i 这里Xi=(1, Yi-1)’,显然E(Xii)=E(Xi)E(i)=0,但 E(Xi+1i)≠0。因此,E(i|X)≠0
注意:
(1) 1阶偏导: SSR/b= -2X’(Y-Xb)
2阶偏导: 2SSR/2b=2X’X
由min(X’X)>0 知2X’X>0, 从而b=(X’X)-1(X’Y)是最小值 (2) 由1阶极值条件可以得到所谓正规方程(normal equations): X’(Y-Xb)=X’e=0 正规方程是OLS所特有的,而不论是否有E(i|X)=0
假设1(linearity): Yi=0+1X1i+…+kXki+i =Xi’+i (i=1,2,…n) 或 Y=X+ 其中,=(0, 1,…,k)’, =(1,2,…,n)’ 注意: 这里的线性性指Y关于参数是线性的。
假设2(strict Exogeneity): E(i|X)=E(i|X1,X2,…Xn)=0, 注意:
注意:
(1) Gauss-Markov 定理表明OLS估计量b是的最 佳线性无偏估计量(best linear unbiased estimator, BLUE) ; (2)由性质(1)与性质(2)还可得出,OLS估计量b依 均方收敛于,因此依概率收敛于,从而是的一 致估计量。 (3)由性质(1)与性质(2)知: MSE(b|X)=E(b-)(b-)’|X) =Var(b|X)+[bias(b|X)]2 0 (n)
注意: (1) 假设4可写成
E(ij|X)=2ij,
其中, i= j时,ij=1; i≠j时,ij=0
矩阵形式: E(’)=2I
(2)由假设2,
Var(i|X)=E(i2|X)-E[(i|X)]2=E(i|X)=2
同理, Cov(i,j|X)=E(ij|X)=0
Y1 Y2 Y Y n
1 X 11 1 X 12 X 1 X 1n X k1 X k2 X kn
经典回归模型(classical regression model)建立在 如下假设之上:
E(b*|X)=E[C’(X+)|X]=C’X+C’E(|X)=C’X b*是无偏的当且仅当C’X=I 于是 b*=C’Y=C’(X+)=C’X+C’=+C’ b*-=C’ 则 Var(b*|X)=E[(b*-)(b*-)’|X]=E[C’’C|X] =C’E(’|X)C=C’2IC=2C’C 于是 Var(b*)-Var(b)= 2C’C- 2(X’X)-1 = 2[C’C-C’X(X’X)-1X’C] = 2C’[I-X(X’X)-1X’]C= 2C’MC = 2C’M’MC= 2(MC)’(MC) = 2D’D= positive semi-definite
(3) R2是解释变量数目Xi的非递减函数。 Proof: 记 Yi=Xi’+ui (i) 对应 R2 Yi=Xi+’++vi (ii) 对应R+2 其中,Xi=(1,X1i,…Xki)’, Xi+=(1,X1i,…Xki,…Xk+q,i)’ 求解min SSR()可看成在k+1=…=k+q=0的约束下 求解min SSR(+)。 有约束的(i)的残差平方和不会小于无约束的(ii)的 残差平方和:e+’e+e’e
六、测度拟合优度 Measuring Goodness of Fit
Question: How well does the linear regression model fit the data? That is, how well does the linear regression model explain the variation of the observed data?
假设4(Spherical error variance) (a) [conditional homoskedasticity]: E(i2|X)=2>0, i=1,2,…,n (b) [conditional serial uncorrelatedness]: E(ij|X)=0, i, j=1,2,…,n
相关文档
最新文档