第十二章中级无机化学课后习题答案

合集下载

无机课后习题12-17、20

无机课后习题12-17、20

应方程式。
12.34 化合物 A 为白色固体,A 微溶于水,但易溶于氢氧化钠溶液和浓盐酸。A 溶于浓盐酸得溶液
B,向 B 中通入 H2S 得黄色沉淀 C。C 难溶于盐酸,但易溶于氢氧化钠溶液,C 溶于硫化钠溶 液得无色溶液 D,若将 C 溶于 Na2S2 溶液则得无色溶液 E。向 B 中滴加溴水,则溴水褪色, 同时 B 转为无色溶液 F。向 F 的酸性溶液中加入淀粉碘化钾溶液,溶液变蓝。试确定 A、B、
为什么 K1 与 K2 相近,K3 与 K4 相近,但 K2 与 K3 相差较大?
12.24 说明市售氨水、硝酸、磷酸的质量百分比浓度、密度、体积摩尔浓度。 12.25 向含有 Sb(V)的酸性溶液中通入 H2S 得到什么产物?写出有关的化学反应方程式。
12.26 Sb2S3 既能溶于 Na2S 溶液也能溶于 Na2S2 溶液;Bi2S3 既不能溶于 Na2S 溶液也不能溶于 Na2S2 溶液。请说明原因。
以解释。 13.10 N2 和 CO 是等电子体且具有相同的成键情况和相似的分子结构,但 CO 是极强的配位体,而
N2 的配位能力却很差。为什么? 13.11 为什么 Sn 与盐酸作用生成 SnCl2,而 Sn 与 Cl2 作用,即使 Sn 过量也会生成 SnCl4? 13.12 如何配制 SnCl2 溶液?配制好的溶液放置久了其组成有何变化? 13.13 氢氟酸是弱酸,盐酸是强酸。为什么 SiO2 易溶于氢氟酸而难溶于盐酸? 13.14 为什么 CCl4 难水解,而 SiCl4、BCl3、NCl3 却易水解? 13.15 常温下 SiF4 为气态,SiCl4 为液态;而 SnF4 为固态,SnCl4 为液态。为什么? 13.16 C、Si、H 的(鲍林)电负性依次为 2.5、1.8、2.1。请说明 CH4 与 SiH4 成键的区别。 13.17 SiH3Cl、SiH2Cl2 可以由 SiH4 与 HCl 在 AlCl3 催化下反应得到,而却 CH3Cl、CH2Cl2 是由 CH4

中级无机化学唐宗薰版课后习题第十二章答案

中级无机化学唐宗薰版课后习题第十二章答案

第12章习题1 解释下列名词术语:核素 同位素 衰变 放射性 K电子俘获 衰变速率 半衰期 平均寿命 放射性衰变定律 衰变系 质量数 质量亏损 结合能 平均结合能 质能相当定律 幻数 超重元素 裂变 核聚变 超重岛解答:核素具有一定数目的质子和一定数目的中子的一种原子。

同位素具有相同质子数和不同中子数的核素互称同位素。

衰变原子核自发地发生核结构的改变。

放射性从原子核自发放射出射线的性质。

K电子俘获人工富质子核可以从核外K层俘获一个轨道电子,将核中的一个质子转化为一个中子和一个中微子。

衰变速率放射性核素衰变的快慢程度。

半衰期放射性样品衰变掉一半所用的时间。

平均寿命样品中放射性原子的平均存活时间。

放射性衰变定律放射性衰变速率R(或放射性物质的放射活性A)正比于放射核的数量N,即A =R=-dN/dt=λN。

衰变系把大多数原子序数大于81的天然放射性核素根据它们的质量不同划分为的四个放射系列。

质量数质子数与中子数之和。

质量亏损一个稳定核的质量小于组成它的各组元粒子的质量,其间的差额叫做质量亏损。

结合能原子核分解为其组成的质子和中子所需要的能量。

平均结合能每个原子核的结合能除以核子数。

质能相当定律一定的质量必定与确定的能量相当。

幻数稳定的核素所含的质子、中子或电子的个数呈现的特殊的神奇数字。

超重元素原子序数大于109号的元素。

裂变原子核分裂为两个质量相近的核裂块,同时还可能放出中子的过程。

核聚变轻原子核在相遇时聚合为较重的原子核并放出巨大能量的过程。

超重岛由超重元素占据的“稳定岛”。

2 区分下列概念:α粒子与He原子结合能与平均结合能α射线与β射线答:α粒子指的是带2个单位正电荷的氦核;而He原子则不带电荷。

结合能是根据质能相当定律算出的由自由核子结合成原子时放出的能量;而平均结合能是结合能除以核子数得到的数值。

α射线指的是带2个单位正电荷的氦核流,而β射线是带1个单位负电荷的电子流。

3 描述α、β和γ射线的特征。

中级无机课后题答案

中级无机课后题答案

5 解释下列事实:①[ZnCl4]2-为四面体构型,而[PdCl4]2-却为平面正方形?解:其中Zn 为第一过渡系元素,Zn2+为d10 组态,不管是平面正方形还是四面体其LFSE 均为0,当以sp3 杂化轨道生成四面体构型配合物时配体之间排斥作用小;而Pd 为第三过渡系元素(△大)且Pd2+为d8 组态,易以dsp2 杂化生成平面正方形配合物可获得较多LFSE,所以[PdCl4]2-为平面正方形。

②Ni(II)的四配位化合物既可以有四面体构型也可以有平面正方形构型,但Pd(II)和Pt(II)却没有已知的四面体配合物?答:四配位化合物既可以以sp3 杂化生成四面体构型配合物也可以以dsp2 生成平面正方形型配合物,作为d8 组态的离子,若以dsp2 杂化生成平面正方形配合物可获得较多LFSE.虽然Ni(II)、Pd(II)和Pt(II)均为d8 组态,但Ni(II)为第一过渡系元素,分裂能绝对值小,且半径较小,当遇半径较大的配体时因空间位阻的关系,Ni(II)只能以sp3 杂化生成四面体构型配合物;而与半径较小的配体则有可能生成平面正方形构型配合物。

Pd(II)和Pt(II)分别属第二、第三过渡系元素,首先是半径较大,生成平面正方形构型没有空间障碍,其次是分裂能比Ni(II)分别大40~50 %和60~75 %以dsp2杂化生成平面正方形配合物得到的稳定化能远比四面体构型的稳定化能大得多,故采用平面正方形构型。

6 根据[Fe(CN)6]4-水溶液的13C 核磁共振谱只显示一个峰的事实,讨论它的结构。

解:13C 核磁共振谱只显示一个峰,说明6 个CN-的环境完全相同,即[Fe(CN)6]4-为正八面体结构,Fe II,d6,当与CN-强场配体配位时,应有t2g6e g0 的排布。

7 主族元素和过渡元素四配位化合物的几何构型有何异同?为什么?解:主族元素,四面体;过渡元素,有四面体和平面四边形两种可能结构。

《无机化学》习题解析和答案

《无机化学》习题解析和答案

《无机化学》习题解析和答案1、教材《无机化学》师大学、华中师大学、师大学无机化学教研室编,高等教育,2002年8月第4版。

2、参考书《无机化学》师大学、华中师大学、师大学无机化学教研室编,高等教育,1992年5月第3版。

《无机化学》邵学俊等编,大学,2003年4月第2版。

《无机化学》大学、大学等校编,高等教育,1994年4月第3版。

《无机化学例题与习题》徐家宁等编,高等教育,2000年7月第1版。

《无机化学习题精解》竺际舜主编,科学,2001年9月第1版《无机化学》电子教案绪论(2学时)第一章原子结构和元素周期系(8学时)第二章分子结构(8学时)第三章晶体结构(4学时)第四章配合物(4学时)第五章化学热力学基础(8学时)第六章化学平衡常数(4学时)第七章化学动力学基础(6学时)第八章水溶液(4学时)第九章酸碱平衡(6学时)第十章沉淀溶解平衡(4学时)第十一章电化学基础(8学时)第十二章配位平衡(4学时)第十三章氢和稀有气体(2学时)第十四章卤素(6学时)第十五章氧族元素(5学时)第十六章氮、磷、砷(5学时)第十七章碳、硅、硼(6学时)第十八章非金属元素小结(4学时)第十九章金属通论(2学时)第二十章s区元素(4学时)第二十一章 p区金属(4学时)第二十二章 ds区元素(6学时)第二十三章 d区元素(一)第四周期d区元素(6学时)第二十四章d区元素(二)第五、六周期d区金属(4学时)第二十五章核化学(2学时)1 .化学的研究对象什么是化学?●化学是研究物质的组成、结构、性质与变化的一门自然科学。

(太宽泛)●化学研究的是化学物质 (chemicals) 。

●化学研究分子的组成、结构、性质与变化。

●化学是研究分子层次以及以超分子为代表的分子以上层次的化学物质的组成、结构、性质和变化的科学。

●化学是一门研究分子和超分子层次的化学物种的组成、结构、性质和变化的自然科学。

●化学研究包括对化学物质的①分类;②合成;③反应;④分离;⑤表征;⑥设计;⑦性质;⑧结构;⑨应用以及⑩它们的相互关系。

无机化学(上册):第12章 氧化还原与电化学 习题与答案

无机化学(上册):第12章 氧化还原与电化学 习题与答案

第12章氧化还原与电化学习题与详细答案1.计算下列化合物中右上角带“*”元素的氧化态:KCl*O3,NaCl*O,H2O*2,O*3,S*8,C*60,KO*2,Na2S*2O3,Cr*2O72-,S*4O62-,N*H4+,N*2H4,Fe*3O4,Ni*(CO)4,Na[Co*(CO)4],H[Mn*(CO)5],[Fe*(CN)6]4-,[Fe(N*CS)6]3-.解:+5 +1 -1 0 0 0 -½ +2 +6 +2.5 -3KCl*O3,NaCl*O,H2O*2,O*3,S*8,C*60,KO*2,Na2S*2O3,Cr*2O72-,S*4O62-,N*H4+,-2 +8/3 0 -1 -1 +2 -3N*2H4,Fe*3O4,Ni*(CO)4,Na[Co*(CO)4],H[Mn*(CO)5],[Fe*(CN)6]4-,[Fe(N*CS)6]3-.2.用“氧化数法”配平以下列各氧化还原反应的方程式;(8)-(15)同时用“离子-电子法”配平:(1)AgNO3(s) → Ag(s) + NO2(g) + O2(g)(2)(NH4)2Cr2O7(s) → N2(g) + Cr2O3(s)(3)H2O2(aq) → H2O(l) + O2(g)(4)Cu(s) + HNO3(稀)→ Cu(NO3)2 + NO(g)(5)CuS(s) + HNO3(浓)→ CuSO4 + NO2(g)(6)H2S(g) + H2SO4(浓)→ S(s) + SO2(g)(7)C(s) + H2SO4(浓)→ CO2(g) + SO2(g) + H2O(8)SO2(g) + MnO4-→ Mn2+ + SO42-(9)Cr2O72- + H2O2→ Cr3+ + O2(g)(10)CrO42- + CN-→ Cr(OH)3(s) + OCN-(11)Cl2(g) + CN- + OH-→ Cl- + OCN-(12)I2(s) + OH-→ I- + IO3-(13)I- + IO3-→ I2(s) + H2O(14)I2(s) + S2O32-→ I- + S4O62-(15)NaBiO3(s) + Mn2+ + H+→ Bi3+ + MnO4-解:(1)氧化数+1 +5 -2 0 +4 -2 02 AgNO3(s) = 2 Ag(s) + 2 NO2(g) + O2(g)(2)(NH4)2Cr2O7(s) = N2(g) + Cr2O3(s) + 4 H2O(3)2 H2O2(aq) = 2 H2O(l) + O2(g)(4)3 Cu(s) + 8 HNO3(稀)= 3 Cu(NO3)2 + 2 NO(g) + 4 H2O(5)CuS(s) + 8 HNO3(浓)= CuSO4 + 8 NO2(g) + 4 H2O(6)H2S(g) + H2SO4(浓)= S(s) + SO2(g) + 2 H2O(7)C(s) + 2 H2SO4(浓)→ CO2(g) + 2 SO2(g) + 2 H2O(8)“氧化数法”:5 SO2(g) + 2 MnO4- + 2 H2O = 2 Mn2+ + 5 SO42- + 4 H+“离子-电子法”:5 SO2(g) + 10 H2O = 5 SO42- + 20 H+ + 10 e2 MnO4- + 10 e + 16 H+ = 2 Mn2+ + 5 SO42-两式相加,得:5 SO2(g) + 2 MnO4- + 2 H2O = 2 Mn2+ + 5 SO42- + 4 H+(9)“氧化数法”:Cr2O72- + 3 H2O2 + 8 H+ = 2 Cr3+ + 3 O2(g) + 7 H2O“离子-电子法”:3 H2O2 = 3 O2(g) + 6 H+ + 6 eCr2O72- + 14 H+ + 6 e = 2 Cr3+ + 7 H2O两式相加,得:Cr2O72- + 3 H2O2 + 8 H+ = 2 Cr3+ + 3 O2(g) + 7 H2O (10)“氧化数法”:2 CrO42- + 3 CN- + 5 H2O = 2 Cr(OH)3(s) + 3 OCN- + 4 OH-“离子-电子法”:3 CN- + 6 OH- = 3 OCN- + 3 H2O + 6 e2 CrO42- + 8 H2O + 6 e = 2 Cr(OH)3(s) +10 OH-两式相加,得:2 CrO42- + 3 CN- + 5 H2O = 2 Cr(OH)3(s) + 3 OCN- + 4 OH- (11)“氧化数法”:Cl2(g) + CN- + 2 OH- = 2 Cl- + OCN- + H2O“离子-电子法”:CN- + 2 OH- = OCN- + H2O + 2 eCl2(g) + 2 e = 2 Cl- + H2O两式相加,得:Cl2(g) + CN- + 2 OH- = 2 Cl- + OCN- + H2O(12)“氧化数法”:3 I2(s) + 6 OH- = 5 I- + IO3- + 3 H2O“离子-电子法”:I2(s) + 12 OH- = 2 IO3- + 6 H2O + 10 e5 I2(s) + 10 e = 10 I-两式相加,约简系数,得:3 I2(s) + 6 OH- = 5 I- + IO3- + 3 H2O(13)“氧化数法”:5 I- + IO3- + 6 H+ = 3 I2(s) + 3 H2O“离子-电子法”:10 I- = 5 I2(s) + 10 e2 IO3- + 12 H+ + 10 e = I2(s) + 6 H2O两式相加,约简系数,得:5 I- + IO3- + 6 H+ = 3 I2(s) + 3 H2O(14)“氧化数法”:I2(s) + 2 S2O32- = 2 I- + S4O62-“离子-电子法”:2 S2O32- = S4O62- + 2 eI2(s) + 2 e = 2 I-两式相加,得:I2(s) + 2 S2O32- = 2 I- + S4O62-(15)“氧化数法”:5 NaBiO3(s) + 2 Mn2+ + 14 H+ = 5 Bi3+ + 5 Na+ + 2 MnO4- + 7 H2O “离子-电子法”:2 Mn2+ + 8 H2O= 2 MnO4- + 16 H+ + 10 e5 NaBiO3(s) + 30 H+ + 10 e = 5 Bi3+ + 5 Na+ + 15 H2O两式相加,得:5 NaBiO3(s) + 2 Mn2+ + 14 H+ = 5 Bi3+ + 5 Na+ + 2 MnO4- + 7 H2O 3.含氰(CN-)工业废水可以用漂白粉[有效成份Ca(ClO)2]或氯气或H2O2在碱性介质中进行氧化处理后排放,写出各反应方程式。

无机化学12章答案

无机化学12章答案

第十二章 配位平衡12-1 在1L 6 mol ·L -1的NH 3水中加入0.01 mol 固体CuSO 4,溶解后加入0.01 mol 固体NaOH ,铜氨络离子能否被破坏?(K 稳[Cu(NH 3)42+]=2.09×1013,K SP [Cu(OH)2]=2.2×10-20) 解:CuSO 4在过量的氨水溶液中几乎完全形成[Cu(NH 3)4]2+,则[Cu(NH 3)4]2+ === Cu 2+ + 4NH 3平衡时: 0.01-x x (6-0.04)+4x1342431009.2)496.5()01.0(])([⨯=+⋅-=+x x x NH Cu K 稳 11910792.3--⋅⨯=L mol x ])([108.3)01.0(10792.3]][[22321922OH Cu K OH Cu sp <⨯=⨯⨯=---+铜氨络离子不能被破坏。

12-2 在少量N H 4S C N 和少量Fe 3+同存于溶液中达到平衡时,加入NH 4F 使[F -]=[SCN -]= 1 mol ·L -1,问此时溶液中[FeF 63-]和 [Fe(SCN)3]浓度比为多少?(K 稳[Fe(SCN)3]=2.0×103,K 稳[FeF 63-]= 1×1016)解: ---+=+SCN FeF F SCN Fe 3][6])([363123163633663336105102101)]([][])([][]][)([]][[⨯=⨯⨯====-----SCN Fe K FeF K SCN Fe FeF F SCN Fe SCN FeF K 稳稳12-3 在理论上,欲使1×10-5 mol 的AgI 溶于1 cm 3氨水,氨水的最低浓度应达到多少?事实上是否可能达到这种浓度?(K 稳[Ag(NH 3)2+]=1.12×107,K SP [AgI]=9.3×10-17)解: -++=+I NH Ag NH AgI ])([2233起始浓度 a 0 0达到平衡时 a-2x x x (全部溶解时:101.0-⋅=L mol x )此反应的平衡常数:9177231004.1103.91012.1)(})({--+⨯=⨯⨯⨯=⨯=AgI Ksp NH Ag K K 稳 因此: 9221004.1]2[(-⨯=-=x a x K 1310-⋅=L mol a 事实上不可能达到这种浓度。

无机课后习题答案12-17、20

无机课后习题答案12-17、20

3Cu+8HNO3(稀)==3Cu(NO3)2+2NO+4H2O (4)实验室制备 NO2 的反应为: Cu+4HNO3==Cu(NO3)2+2NO2+2H2O
12.3 解:N2 分子中氮氮三键键能很大,不易参加反应;而 NH3 分子中的 N—H 键则键能较小,易 断裂参加反应,故常作为制备含氮化合物的原料。
市售硝酸的百分比浓度为:68%;密度为:1.4g/cm-3;;体积摩尔浓度为:15.1mol/cm-3。市售 磷酸的百分比浓度为:85%密度为 1.6g/cm-3; 体积摩尔浓度为:13.9mol/cm-3。 12.25 解:向 SbCl5 溶液中通入 H2S 时,伴随 Sb2S5 的生成,溶液的酸度提高,Sb5+氧化能力提高而 与 H2S 发生氧化还原反应,有 Sb2S3 和 S 沉淀生成。 2Sb5++5H2S==Sb2S5+10H+ 2Sb5++5H2S==Sb2S3+2S+10H+ 若制较纯的 Sb2S5,应在碱性条件下先得到 SbS43-,再小心加入稀酸即可。 2Sb5++5S2-==Sb2S5 Sb2S5+3S2-==2SbS432SbS43-+6H+==Sb2S5+3H2S 12.26 解:Sb2S3 是两性氧化物,故可以和碱性氧化物反应。反应方程式为: 3Na2S+Sb2S3==2Na3SbS5 而 Bi2S3 没有酸性,不溶于碱金属硫化物中。 Sb2S3 具有还原性,它们可以和具有氧化性的多硫化物反应生成硫代锑酸盐,方程式为: Sb2S3+(NH4)2S2==(NH4)2SbS4 由于 Bi2S3 中 Bi(III)的还原性极若,故不和多硫化物反应。 12.27 解:并不矛盾。碱性条件下:E(AsO43-/AsO2-)=-0.68V,E(I2/I-)=0.5355V,故碘单质可以

(完整版)无机化学试题及答案解析

(完整版)无机化学试题及答案解析

(完整版)无机化学试题及答案解析第12 章S 区元素(第一套)一、单选题1. 重晶石的化学式是(A) BaCO3 , (B) BaSO4 , (C) Na2SO4 , (D) Na2CO32. 下列碳酸盐,溶解度最小的是(A) NaHCO3 , (B) Na2CO3 , (C) Li2CO3 , (D) K2CO33. NaN03受热分解的产物是(A) Na2O,NO2,O2;(B)NaNO2,O2;(C)NaN02,N02,02;(D)Na20,N0,02。

4. 下列哪对元素的化学性质最相似(A) Be 和Mg (B) Mg 和Al (C) Li 和Be (D) Be 和Al5. 下列元素中第一电离能最小的是(A) Li (B) Be (C) Na (D) Mg6. 下列最稳定的氮化物是(A) Li3N (B) Na3N (C) K3N (D) Ba3N27. 下列水合离子生成时放出热量最少的是(A) Li+ (B) Na+ (C) K+ (D) Mg2+8. 下列最稳定的过氧化物是(A) Li202 (B) Na202 (C) K202 (D) Rb2029. 下列化合物中键的离子性最小的是(A) LiCl (B) NaCl (C) KCl (D) BaCl210. 下列碳酸盐中热稳定性最差的是(A) BaC03 (B) CaC03 (C) K2C03 (D) Na2C0311. 下列化合物中具有磁性的是(A) Na202 (B) Sr0 (C) K02 (D) Ba0212. 关于s 区元素的性质下列叙述中不正确的是(A) 由于s 区元素的电负性小,所以都形成典型的离子型化合物(B) 在s 区元素中,Be、Mg 因表面形成致密的氧化物保护膜而对水较稳定(C) s 区元素的单质都有很强的还原性(D) 除Be、Mg 外,其他s 区元素的硝酸盐或氯酸盐都可做焰火材料13. 关于Mg , Ca , Sr , Ba及其化合物的性质下列叙述中不正确的是(A) 单质都可以在氮气中燃烧生成氮化物M3N2(B) 单质都易与水水蒸气反应得到氢气(C) M(HCO3)2在水中的溶解度大MC03的溶解度(D) 这些元素几乎总是生成+2 价离子二、是非题(判断下列各项叙述是否正确对的在括号中填“/ 错的填“X”)1. 因为氢可以形成H+所以可以把它划分为碱金属2. 铍和其同组元素相比离子半径小极化作用强所以形成键具有较多共价性3. 在周期表中,处于对角线位置的元素性质相似,这称为对角线规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章习题1 解释下列名词术语:核素 同位素 衰变 放射性 K-电子俘获 衰变速率 半衰期 平均寿命 放射性衰变定律 衰变系 质量数 质量亏损 结合能 平均结合能 质能相当定律 幻数 超重元素 裂变 核聚变 超重岛解答:核素具有一定数目的质子和一定数目的中子的一种原子。

同位素具有相同质子数和不同中子数的核素互称同位素。

衰变原子核自发地发生核结构的改变。

放射性从原子核自发放射出射线的性质。

K-电子俘获人工富质子核可以从核外K层俘获一个轨道电子,将核中的一个质子转化为一个中子和一个中微子。

衰变速率放射性核素衰变的快慢程度。

半衰期放射性样品衰变掉一半所用的时间。

平均寿命样品中放射性原子的平均存活时间。

放射性衰变定律放射性衰变速率R(或放射性物质的放射活性A)正比于放射核的数量N,即A =R=-dN/dt=λN。

衰变系把大多数原子序数大于81的天然放射性核素根据它们的质量不同划分为的四个放射系列。

质量数质子数与中子数之和。

质量亏损一个稳定核的质量小于组成它的各组元粒子的质量,其间的差额叫做质量亏损。

结合能原子核分解为其组成的质子和中子所需要的能量。

平均结合能每个原子核的结合能除以核子数。

质能相当定律一定的质量必定与确定的能量相当。

幻数稳定的核素所含的质子、中子或电子的个数呈现的特殊的神奇数字。

超重元素原子序数大于109号的元素。

裂变原子核分裂为两个质量相近的核裂块,同时还可能放出中子的过程。

核聚变轻原子核在相遇时聚合为较重的原子核并放出巨大能量的过程。

超重岛由超重元素占据的“稳定岛”。

2 区分下列概念:α粒子与He原子结合能与平均结合能α-射线与β-射线答:α粒子指的是带2个单位正电荷的氦核;而He原子则不带电荷。

结合能是根据质能相当定律算出的由自由核子结合成原子时放出的能量;而平均结合能是结合能除以核子数得到的数值。

α-射线指的是带2个单位正电荷的氦核流,而β-射线是带1个单位负电荷的电子流。

3 描述α、β和γ-射线的特征。

答:α-射线指的是带正电的氦核流,粒子的质量大约为氢原子的四倍,速度约为光速的1/15,它们的电离作用强,穿透本领小。

β-射线是带负电的电子流,粒子的质量等于电子的质量,速度几乎与光速接近,其电离作用弱,故穿透本领稍高,约为α射线的100倍。

γ-射线是原子核由激发态回到低能态时发射出的一种射线,它是一种波长极短的电磁波(高能光子),不为电、磁场所偏转,显示电中性,比X-射线的穿透力还强,因而有硬射线之称,可透过200 mm厚的铁或88 mm厚的铅板,没有质量,其光谱类似于元素的原子光谱。

4 计算下列顺序中各元素的质量数,原子序数及所属的周期族:162-α-α-α-β226Ra —→ X —→ Y —→ Z —→ T88答:22688Ra(第七周期,IIA族)→X(22286Rn,第六周期,0族)→Y(21884Po,第六周期,VIA族)→Z(21482Pb,第六周期,IV A族)→T(21483Bi,第六周期,V A族)。

5 已知t1/2(Fr)=4.8 min,求1 g Fr在经过24 min、30 min后还剩多少?解:由t=[-2.303 lg (N/N0)]/λ,λ=[2.303lg(N0/N)]/tt1/2=0.693/λ,λ=0.693/t1/2于是可以得到 [2.303 lg (N0/N)]/t=0.693/t1/2,化简得到t=3.32t1/2lg(N0/N)由于N0/N=m原来/m后来所以t=3.32t1/2lg(m原来/m后来)即 24=3.32×4.8 lg(1/m后来)30=3.32×4.8 lg(1/m后来)解之分别得24 min、30 min后m后来依次为0.031 g、0.013 g。

6 由于β辐射,1 g 99Mo在200 h之后,只剩0.125 g。

求99Mo的半衰期及平均寿命。

若仅剩0.100 0 g需多少时间?解:由于t=3.32 t1/2 lg(m原来/m后来),所以半衰期为t1/2=t/[3.32 lg(m原来/m后来)]即t1/2=200/[3.32 lg(1/0.125)]=66.7 ht平均=t1/2/0.693=66.7/0.693=96.26 h。

仅剩0.100 0 g需的时间为:t=3.32 t1/2 lg(m原来/m后来)=3.32×66.7 lg(1/0.100 0)=221.44 h7 有一放射性核素的试样,在星期一上午9:00时记录每分钟计数为l 000,而星期四上午9:00为每分钟计数为125,求这核素的半衰期。

解:由于N0/N等于计数原来/计数后来,根据公式t=3.32 t1/2 lg(N0/N)得 24×3=3.32 t1/2 lg(100 0/125) 解之得t1/2=24 h8 某洞穴中找到一块木炭,每分钟每克给出14C 8.6计数,已知新鲜木材的计数为15.3,计算木炭的年代。

解:根据公式t=3.32 t1/2 lg(N0/N)得t=3.32×5 720 lg(15.3/8.6)解之得t=4751 a9 据测定,埃及木乃伊的毛发的放射衰变速率为7.0 min-1·g-1,已知t1/2(14C)=5 720 a,新碳样品的衰变速率为14 min-1·g-1,求木乃伊的年代。

解:由于N0/N等于R原来/R后来,根据公式t=3.32 t1/2 lg(N0/N)得t=3.32×5 720 lg(14/7.0)解之得t=5720 a。

l0 某铀矿样品分析表明含有206Pb 0.28 g、238U l.7 g,若206Pb全由238U衰变而得,计算矿的年代。

已知t1/2(238U)=4.5×109 a。

解:原来238U的质量等于1.7+0.28×(238/206)=2.023 g由于N0/N等于m原来/m后来,根据公式t=3.32 t1/2 lg(N0/N)得t=3.32×4.5×109 lg(2.023/1.7)解之得t=1.13×109 a。

11 60Co广泛用于癌症治疗,其t1/2=5.26 a,计算此核素的衰变常数。

某医院有60Co 20 mg,问10 a后还有多少剩余?解:λ=0.693/t1/2=0.693/5.26=0.1317 a-1由于N0/N等于m原来/m后来,根据公式t=3.32 t1/2 lg(N0/N)得10=3.32×5.26 lg(20/N)解之得N=5.35 mg。

即m后来=5.35 mg。

12 实验室测定放射性24Na样品在不同时间的衰变速率于下,应用所得的实验数据确定24Na的t1/2并计算衰变常数。

24Na衰变时间(h) 0 2 5 10 20 3024Na衰变速率(计数/s) 670 610 530421267 168163解:由于N0/N等于R原来/R后来,根据公式t=-[2.303 lg(N/N0)]/λ得t=-[2.303 lg(R后来/R原来)]/λ任意取一组数据如30=-[2.303 lg(168/670)]/λ,解之得λ=0.046 11由公式t1/2=0.693/λ=0.693/0.046 11=15.03 h13 求氢弹反应:21H+31H —→42He+10n所放出的能量。

解:△m=2.014 0+3.016 05-4.002 6-1.008 665=0.018 785 amu△E=17.49 MeV。

14 已知5626Fe原子的质量为55.937 5 amu,求5626Fe的质量亏损、结合能、平均结合能。

解:1.007 277×26+1.008 665×30+0.000 545 859×26-55.937 5=0.525 844 33结合能B=0.525 844 33×931=489.56 MeV平均结合能B=489.56/56=8.742 MeV15 要使l mol 31P原子变为质子、中子和电子,其所需能量由质子、中子和电子合成42He来提供,求应合成多少摩42He才能提供足够的能量? 己知质量:42He 4.002 604 amu,31P 30.973 76 amu。

解:1.007 277×15+1.008 665×16+0.000 545 859×15-30.973 76=n(1.007 277×2+1.008 665×2+0.000 545 859×2-4.002 64) 解之得n=9.29 mol16 已知2H2+O2—→ 2H2O △r H mθ=-571.66 kJ·mol-1,求生成水时质量的变化。

解:生成1 mol水放出的能量为285.83 kJ;285.83÷(1.602 189 2×10-16)=178.40×1016 MeV;178.40×1016÷931=0.191 62×1016 amu;0.191 62×1016×1.660 565 5×10-27=0.318 20×10-27 kg.17 计算图12.1四个放射性衰变系中各物种的n/p比。

解:写出四个放射性衰变系中各物种,计算各物种的中子n、质子p和n/p比值。

如232Th,其p =90,n=232-90=142,n/p=142/90=1.58。

18 写出并平衡下列衰变的核反应方程式:-α-β-β+K-电子俘获103Rh—→;115Cd—→;75Br—→;62Zn————→答:103Rh —→4He+99Tc;115Cd —→0-1β+115In+00ν;75Br —→ 0β+75Se+00ν;62Zn+0-1e(K) —→62Cu+119 写出并平衡下列核反应方程式:答:(1) 23Na(n,γ) ;23Na+1n —→ 24Na+γ(2) 35Cl(n,α) ;35Cl+1n —→ 32P+4He+00ν(3) 23Na(d,P)*;23Na+2H —→ 11P+24Na(4) 24Mg(d,α) ;24Mg+2H —→ 4He+22Na(5) 141Pr(α,n) ;141Pr+4He —→ 1n+144Pm(6) 238U(d,2n) ;238U+2H —→ 21n+238Np+00ν(7) 237Np(α,5n) ;237Np+4He —→ 51n+236Am+00ν(8) 2H(γ,n) ;2H+γ—→ 1n+1H+00ν(9) 16O(γ,2P+3n) ;16O+γ—→ 211P+31n+11C+00ν(10) 39K(n,2n) ;39K+1n —→ 21n+38K+00ν(11) 241Am(α,2n) ;241Am+4He —→ 21n+243Bk(12) 141Ba(P,n) ;141Ba+11P —→ 1n+141La*d为氘核(2H),P为质子(11P)。

相关文档
最新文档