第四章遥感图像数字处理的基础知识

合集下载

遥感数字图像处理复习资料

遥感数字图像处理复习资料

第一章:1.冈萨雷斯定义图像是对客观对象的一种相似性的描述或写真,包含了被描述或写真对象的信息,其英文为image,辅助性定义,是以某一技术手段再现于二维画面上的视觉信息,是二维数据阵列的光学模拟。

图像分为数字图像和模拟图像。

2.数字图像的基本单位是像素(像元),图像像素是长宽大小相等的方格,具有特定的空间位置和属性特征,像素的基本属性特征为像素值。

3.遥感数值图像是一数学形式存储和表达的遥感图像。

遥感数值图像中的像素值又称为亮度值(灰度值、灰度级)。

4.遥感数值图像处理是通过计算机图像处理系统对遥感数值图像中的像素进行系列操作的过程。

5.遥感数字图像处理的内容包括:1)图像增强:使图像更容易理解。

2)图像矫正:使图像信息尽可能地反应实际地物的辐射信息、空间信息和物理过程。

3)信息提取:提取地物的空间分布格局信息。

6.遥感数字图像处理系统包括硬件系统和软件系统。

硬件系统是进行图像说必须的设备(包括计算机,数字化设备,存储设备,现实和输出设备,操作台),软件系统指进行图像处理的各种程序(如ERDAS/PCI/ENVI/ER)。

第二章7.遥感平台是传感器的载体,有近地面,吊车,飞船,飞机,卫星等。

8.传感器又称为遥感器,是手机和记录电池辐射能量信息的装置。

9.根据数据记录方式,传感器类型可分为成像方式和非成像方式两大类。

成像传感器按成像原理分为摄影成像和扫描成像。

10.摄影成像方式的传感器主要是摄影机,包括框幅摄影机,缝隙摄影机,全景摄影机,多光谱摄影机等,在快门打开后几乎瞬间同时接受目标的电磁波能量,聚焦后记录下来称为幅影像。

现在常用的数码照相机就是摄影成像。

最初的摄影成像方式与传统照相机成像方式不一样。

用数码照相机进行拍照摄影,可直接产生数字图像。

11.传感器按烧面方式又可分为两种:目标扫面传感器和影响面扫面传感器。

12.按电磁波在真空中波长或频率的顺序将波长划分成波段,每一波段为一个波长范围,按使用的刚做波段,可将传感器分为紫外,可见光,红外,微波,多波段等类型。

遥感数字图像处理复习资料(1-4章)

遥感数字图像处理复习资料(1-4章)

第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。

数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。

模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。

2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。

2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。

1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。

图像显示:为了理解数字图像中的内容,或对处理结果进行对比。

图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。

2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。

注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。

3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。

包括图像分割、分类等。

图像分割:用于从背景中分割出感兴趣的地物目标。

分割的结果可作为监督分类的训练区。

图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。

3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。

4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。

遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。

遥感图像处理色彩原理及数字影像基础

遥感图像处理色彩原理及数字影像基础
分别透过红、绿、蓝滤光 片的光学投影通道。
R

G
B
BIP(Band Interleaved by Pixel):将每个像元的n 个波段的亮度值按顺序排列在数据集中
二、光学处理原理
(一)、光学原理与光学处理
1. 色彩原理 2. 加色法与减色法
1 颜色概述
• 颜色的基本概念 • 颜色空间
1.1 颜色的基本概念
1.2 颜色的性质
——亮度、色调、饱和度
数值
地物辐射能量差 光电二极管
(模拟电信号)
(亮度值)
遥感图像数字化
• 连续的遥感图像变换 1. 采样 为离散的数字图像的 2. 量化 过程
传感器
采样 量化
g(x,y)
数字图像
地面站
I(x,y)
I(x,y)=f(g(x,y)) f:采样和量化函数
1 采样
• 按照一定的方法从连续的函数中提取离 散点数据的过程
为图像的应用提供必要的信息。
遥感数字图像的记录方式:
1. BSQ 2. BIL 3. BIP
BSQ(Band Sequential Format): 将每个波段的全部像元亮度值放在一个单独的文件中
BIL(Band Interleaved by Line): 将每行像元的n个波段的亮度值按顺序放置在数据集中
量化的级数2b常用b8光学影像的数字化2遥感数字图像处理?遥感数字图像的特点?便于计算机处理与分析?图像信息损失低?抽象性强2遥感数字图像处理?数字图像处理?对一个物体的数字表示施加一系列的操作以得到所期望结果的过程?数字图像分析?将一幅图像转化为一种非图像的表示如一个测量数据集或一个决策等2遥感数字图像处理?遥感数字图像处理?利用计算机图像处理系统对遥感图像中的象素进行系列操作的过程?主要内容?图像增强?图像校正?信息提取3遥感图像的存储?数据级别?元数据与数据格式1数据级别?0级产品

第四章3遥感图像处理图像增强

第四章3遥感图像处理图像增强

5.遥感图像多光谱变换(Ⅰ)——主成分分析(K—L变换)
② 就变换后的新波段主分量而言,K—L变换后的 新波段主分量包括的信息量不同,呈逐渐减少趋 势。其中,第一主分量集中了最大的信息量,常 常占80%以上,第二、第三主分量的信息量依次 快速递减,到第n分量信息几乎为0。由于K—L变 换对不相关的噪声没有影响,所以信息减少时, 便突出了噪声,最后的分量几乎全是噪声。所以 这种变换又可分离出噪声。
基于上述特点,在遥感数据处理时,常常用K— L变换作数据分析前的预处理(数据压缩和图像增
强)。举例P125
6.遥感图像多光谱变换(Ⅱ)——缨帽变换(K—T变换)
(1)K—T变换是Kauth—Thomas变换的简称,这种变换也是 一种线性组合变换,其变换公式为:Y=BX 这里X为变换前的多光谱空间的像元矢量,y为变换后的 新坐标空间的像元矢量,B为变换矩阵。这也是一种坐标 空间发生旋转的线性变换,但旋转后的坐标轴不是指向主 成分方向,而是指向了与地面景物有密切关系的方向。 1984年,Crist和Cicone提出TM数据在K—T变换时的B值: P126 在此,矩阵为6X6,主要针对TM的1至5和第7波段,低分 辨率的热红外(第6波段)波段不予考虑。
1.遥感图像增强(工)——对比度变化1
非线性变换
直方图均衡化(histogram equalization):把原图像的直方 图变换为灰度值频率固定的直方图,使变换后的亮度级 分布均匀,图像中等亮度区的对比度得到扩展,相应原 图像中两端亮度区的对比度相对压缩。
1.遥感图像增强(工)——对比度变化1
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果放在窗口中心的像元位置,成为新像元的灰度 值。然后活动窗口向右移动一个像元,再做同样的运算。 P117说明

第四章 遥感图像处理—数字图像增强

第四章 遥感图像处理—数字图像增强
差值运算常用于 同一景物不同时间图像之间的运算—动态监测
同一景物不同波段图像之间的运算—识别地物
图像的差值运算有利于目标与背景反差较小 的信息提取。 如在红光波段,植被和水体难以区 分,在红外波段,植被和土壤难以区分,通过相 减,可以有效的区分出三种地物
2、比值运算 两幅同样行、列数的图像,对应像元的亮度值相除 (除数不为0)就是比值运算,即:
真彩色合成 假彩色合成
彩色合成的原理图
①真彩色合成
红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
真彩色合成 红光波段赋成红
真彩色合成 红光波段赋成红 绿光波段赋成绿
真彩色合成 红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
②假彩色合成 假彩色合成 近红外波段赋成红 红光波段赋成绿 绿光波段赋成蓝
1 图像卷积运算
数字图像的局部
模板
z1 z2 z3
z4 z5 z6 z7 z8 z9
w1 w2 w3 w4 w5 w6 w7 w8 w9
1/9
1/9 1/9
1/9 1/9 1/9 1/9 1/9 1/9
Replace with R
= w1z1 + w2z2 + ….. +w9z9
模板按像元依次向右移动,而后换行,直到整幅图 像全部处理完为止
对于亮点噪音,用中值滤波好
带有椒盐噪声的ikonos图像
中值滤波后的图像
均值平滑后的图像
3
图像锐化
(1)图像锐化的目的是突出图像中景物的边缘、线状目 标或某些亮度变化率大的部分。 (2)边缘或轮廓通常位于灰度突变或不连续的地方,具
有一阶微分最大值和二阶微分为0的特点;
锐化的方法很多,在此只介绍常用的几种:

遥感导论-习题及参考答案第四章-遥感图像处理答案

遥感导论-习题及参考答案第四章-遥感图像处理答案

第四章遥感图像处理名词解释假彩色遥感图像:利用卫星或飞机拍摄到的基础遥感图像,将感兴趣的部分(如森林,水体,沙漠,重力异常区等)用不真实且夸张的颜色表示出来,与自然色不一致。

边缘检测:用于判断图像地物的边缘。

数字影像:数字影像是以二维数组形式表示的影像。

该数组由对连续变化的影像作等间隔抽样所产生的采样点组成。

几何校正:几何校正是指将遥感图像参照地形图、已校正图像或GPS控制点进行重采样,消除传感器成像的几何变形,使其具有地理坐标并与地面实际对应。

K-L变换:主成分变换;是建立在统计特征基础上的多维正交线性变换,就是一种离散化的Karhunen -Loeve变换。

辐射校正:对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正直方图均衡:是用一定的算法使直方图大致平和。

问答题下图为一个3x3的图像窗口,试问经过中位数滤波(Median Filter)后,该窗口中心像元的值,并写出计算过程。

(10分)124 126 127120 150 125115 119 123什么是计算机图像处理,它包含那些内容,如何运用计算机图像处理方法来提高遥感图像的解译效果?答:是指利用计算机对图像进行一系列加工,以便获得人们所需要的效果。

常见的图像处理有图像数字化、图像编码、图像增强、图像复原、图像分割与图像分析等。

(1)图像数字化通过取样与量化过程将图像变换成便于计算机处理的数字形式。

通常,图像在计算机内用一个数字矩阵表示,矩阵中的每一个元素称为像素。

将图像数字化的设备有各种扫描仪与数字化仪。

(2)图像编码对图像信息进行编码,可以压缩图像的信息量,以便满足传输与存储的要求。

(3)图像增强使图像清晰或将其转换为更适合人或机器分析的形式。

图像增强并不要求真实地反映原始图像。

(4)图像复原消除或减少在获取图像过程中所产生的某些退化,尽量反映原始图像的真实面貌。

(5)图像分割将图像划分为一些互不重叠的区域。

遥感数字图像处理复习整理

遥感数字图像处理复习整理

数字图像处理复习笔记整理:1.遥感数字图像处理的主要内容:(1)图像增强(2)图像校正(3)信息提取2.数字图像处理两个观点:(1)离散方法:一幅图像的存储和表示均为数字形式,数字是离散的,因此使用离散方法进行图像处理才是合理的。

与该方法相关的概念是空间域(2)连续方法:图像通常源于物理世界,它们服从可用连续数学描述的规律,因此具有连续性应该使用连续数学方法进行图像处理。

与该方法相关的主要概念是频率域。

频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生的反映频率信息的图像进行处理。

3.数字化的两个过程:(1)采样:将空间上连续的图像变换成离散点(即像素)的操作称为采样。

(2)量化:是将像素的灰度值转换成整灰度级的过程。

4.相干图像:微波遥感所产生的图像。

5.通用遥感图像数据格式:(1)BSQ格式:像素按波段顺序一次排列的数据格式(2)BIL格式:像素先以行为单位分块,在每个块内,按照波段顺序排列像素(3)BIP格式:以像素为核心,保持行的顺序不变,在列的方向上按列分块,每个块内为当前像素不同波段的像素值6.遥感图像可以表示为某一时刻t,在不同波长入和不同极化(偏振)方向p,能够收集到的位于坐标(x,y)的目标物所辐射的电磁波能量7.卷积是空间域上针对特定窗口进行的运算,是图像平滑、锐化中使用的基本的计算方法。

设窗口大小为mXn,(i,j)是中心像素,f(x,y)是图像像素值,g(i,j)是运算结果,h(x,y)是窗口模板(或称为卷积核,kernel),那么,卷积计算的公式为对于整个图像,从左上角开始,由左到右、由上到下按照窗口大小顺序进行遍历,即可完成整个图像的卷积计算。

对于图像边缘,由于无法满足窗口对中心像素的要求,其窗口外部的像素值可以用以下任意一种方法来处理:①设为0值;②按照对称原则从图像中取值;③保留原值,不进行计算8.纹理可分为人工纹理和自然纹理。

人工纹理:是由自然背景上的符号排列组成的,这些符号可以是线条、点、字母、数字等。

遥感数字图像处理-第四章_遥感数字图像增强处理(一)[研究材料]

遥感数字图像处理-第四章_遥感数字图像增强处理(一)[研究材料]
度值或亮度值区间像元出现的频率的分布图。
计算方法:
Pi
mi M
M表示整幅图像的像元个数
M表示整幅图像的像元个数
Pi表示第i灰度级的像元比例频率
X和
调研学习
13
直方图的性质
(1)直方图反映了图像中的灰度分布规律,描述每个灰度 级具有的像元个数,但不包含这些像元在图像中的位置;
(2)任何图像有唯一的直方图,不同的图像可能有相同的 直方图;
六、图像运算 Image Calcu.
七、多光谱增强 M调u研l学ti习-spectral Enhancement
1
一、图像增强概述
➢ 什么是图像增强?
Image enhancement is the process of making an image more interpretable for a particular application ( Faust, 1989).
空间域增强:空间域是指图像平面所在的二维平面。 直接处理图像上的像素,主要对灰度进行操作;
1)点处理:每次对单个像元进行灰度增强的处理 2)邻域处理或模板处理:对一个像元及其周围的小区域子
图像进行处理
频率域增强:对图像经傅立叶变换后的频谱成分进 行操作,然后经傅立叶逆变换获得所需结果
调研学习
6
➢图像增强的分类
调研学习
2
➢ 图像增强的目的
主要目的:(1)采用一系列技术改善图像的视觉效 果,提高图像的清晰度;(2)将图像转换成一种 更适合于人或机器进行解译和分析处理的形式。
改变图像的灰度等级,提高图像的对比度; 消除边缘和噪声,平滑图像; 突出边缘和线状地物,锐化图像; 合成彩色图像; 压缩图像数据量,突出主要信息等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章遥感图像数字处理的基础知识
C方向 20 卢昕
一、名词解释
1.光学影像:一种以胶片或其他的光学成像载体的形式记录的图像。

它是一个二维的连续的光密度函数。

2.数字影像:以数字形式进行存储的图像,它是一个二维的离散的光密度函数。

3.空间域图像:用空间坐标x,y的函数表示的形式。

有光学影像和数字影像。

4.频率域图像:以频率域的形式表示的影像,频率坐标Vx,Vy的函数。

5.图像采样:图像空间坐标(x,y)的数字化称为图像采样。

6.灰度量化:图像灰度的数字化称为图像量化。

7 .ERDAS:是美国 ERDAS 公司开发的遥感图像处理系统。

它以模块化的方式提供给用户,可使用户根据自己的应用要求、资金情况合理的选择不同功能模块及不同组合,对系统进行剪裁,充分利用软硬件资源,并最大限度地满足用户的专业应用要求。

ERDAS Imagine面向不同需求的用户,对于系统的扩展功能采用开放的体系结构以Imagine Essentials、Imagine Advantage、Imagine Professional的形式为用户提供低、中、高三档产品架构,并有丰富的功能扩展模块供用户选择,产品模块的组合比较灵活。

8.BSQ:遥感数字图像的一种存储格式,即按波段记载数据文件。

9.BIL:也是遥感数字图像的一种存储格式,是一种按照波段顺序交叉排列的遥感数据格式。

二、简答题
1、叙述光学影像与数字影像的关系和不同点。

答:光学图像可以看成一个二维的连续的光密度函数,像片上的密度随空间坐标的变化而变化。

而数字图像是一个二维的离散的光密度函数。

光学图像可以通过采样和量化得到数字图像,数字图像可以通过显示终端设备或照相或打印的方式得到光学图像。

与光学图像相比数字图像的处理简捷快速,并可以完成一些光学处理方法所无法完成的各种特殊处理等。

2、怎样才能将光学影像变成数字影像?
答:将光学影像变成数字影像要经过采样和量化两步。

采样是将图像空间的坐标(X,Y)进行数字化,此时实现了空间的离散化。

然后再进行图像灰度的数字化,实现连续灰度的离散化。

3、叙述空间域图像与频率域图像的关系和不同点。

答:空间域图像是以空间坐标进行表示的,而频率域图像是以频率坐标来表示图像的。

通过傅立叶变换可以将空间域图像变换为频率域图像,利用傅立叶逆变换可以将频率域图像变换为空间域图像。

4、如何实现空间域图像与频率域图像间的相互转换?
答:通过傅立叶变换可以将空间域图像变换为频率域图像,利用傅立叶逆变换可以将频率域图像变换为空间域图像。

5、你所知道的遥感图像的存贮格式有哪些?
答:1)BSQ格式。

是按波段记载数据文件,每一个文件记载的是某一个波段的
图像数据。

LandSat-4、5 的CCT格式就是BSQ格式。

2)BIL格式。

是一种按照波段顺序交叉排列的遥感数据格式。

3)GeoTIFF格式。

能够记录地理信息。

4) TIFF格式、BMP格式等。

6、遥感图像处理软件应具备哪些基本功能?
答:图像文件管理、图像处理、图像校正、多影像处理、图像信息获取、图像分类、遥感专题图的制作、与GIS系统的接口。

三、能力训练题
1、查阅资料或搜索网站资源,调查分析国内外主要的遥感图像处理软件。

现以制作武汉大学影像地图为需求,在充分分析利用遥感影像制作正射影像地图技术需求的基础上,请编写购买遥感图像处理软件的论证报告。

答:随着遥感技术的发展,目前市场上遥感软件琳琅满目。

国内软件首当其冲就是 CASM IMAGE INFO 和泰坦遥感图像处理软件(Titan Image),以Titan为例,它是在充分吸收了国内外优秀遥感软件优点的基础上,由北京东方泰坦科技股份有限公司研发的完全自主知识产权的新一代优秀的国产遥感图像处理软件平台。

主要特点:1、强大的数据支持能力,
2、丰富高效的遥感图像处理功能,
3、方便友好的操作方式,
4、强大的GIS功能
5、丰富的二次开发函数库
6、紧密的更新升级机制。

主要的板块有:1.影像处理工具箱模块,涵盖了常规影像处理功能,包括:大气校正、影像增强、影像滤波、影像变换、影像分类、影像融合、投影设置与变换、常用影像操作和其他影像处理等功能,是一个强大的影像数据处理模块。

2. 无人机数据处理,以无人机所获取影像为主要数据源,提供从相机畸变校正、空中三角测量到镶嵌成果生成的一整套解决方案,适合常规模式下的标准产品生产和应急模式下的快速影像处理。

3.雷达处理系统,根据雷达影像的传感器特征和雷达影像自身特点,设计了专门的雷达影像处理模块,用于雷达影像分析和处理操作,模块主要包括雷达数据的读取、入射角计算、纹理分析、坐标转换、模拟SAR影像、雷达影像的几何校正及多种雷达影像处理算法。

4.高光谱数据处理,将野外光谱数据分析技术与遥感数据的提取技术有机地统一起来,既能处理遥感图像数据又能分析野外实测光谱数据,可更精准地提取高光谱遥感图像数据中的各种信息。

软件主要侧重于典型地物(岩石(矿物)、土壤与植被)的野外光谱数据分析,通过数据的光谱曲线特征、傅里叶波形、二维散点图,波形参数与曲线特征的关系等研究不同地物的可识别特征。

5.泰坦影像分类模块,主要采用的是面向对象分类技术,图像分析的基本处理单元不是单个像素,而是影像分割后提取的影像对象。

相对于单个像素,均质的影像对象提供的除光谱特征外,还有形状、纹理等特征信息。

利用这些信息,可使地物目标分类识别更加详细、准确。

6.泰坦三维可视化处理,能把海量影像数据、地形数据、矢量数据、道路、植被、地物模型和动态模型等叠加到数字地球上,从而在数字地球上实现浏览,查
看三维虚拟景观的功能。

7.流程化定制模块,提供一个工作流处理的定制工具,提供了遥感图像常用操作和处理算法,用户只需根据数据处理的要求,很方便地定制所需的数据处理流程,系统即可根据用户的要求自动、批量地处理图像数据。

用户也可以根据数据处理要求的变化而相应地更改数据处理流程。

国外的软件包括:ERDAS,ENVI,PCI,像素工厂,ER MAPPER 等等,以ER MAPPER 为例,它主要的特点:1.独特的软件设计思想,算法概念贯穿整个图像处理过程,更适用于大型工程的图像处理作业;
2.遥感、GIS、数据库全面集成;
3.数据高比例压缩算法的应用,最大幅度的节约用户硬件投资;
4.全模块设计,满足用户各方面需;
5.完美良好的用户界面,易于使用的操作向导;
6.方便创新的用户开发环境。

主要功能有:小波压缩技术,图像拼接、匀色功能,地理配准,坐标、投影变换,批处理,三维显示,空间增强及滤波,图像分析,分类技术,栅格化及等高线的生成,专题制图等。

利用遥感影像制作正射影像地图技术:为了制作满足需要的数字正射影像图,必须分别对两部分数据进行正射纠正和配准,再进行分辨率融合,形成高分辨率空间信息和多光谱彩色信息的融合影像数据。

所以所选取的软件必须包含以下几个功能:1.全色波段卫星影像正射纠正;
2.多光谱影像数据配准;
3.影像分辨率融合;
4.影像增强与调色;
5.数字正射影像制图。

相关文档
最新文档