统计学答案第九章
《统计学》第9章课后习题参考答案

第9章习题参考答案
9.1
解:(1)长度Y(厘米)与重量X(克)之间的散点图如下所示:
由Y与X的散点图可以大致推测长度Y关于重量X是线性相关,且二者呈正相关关系。
(2)首先,先分别求出平均重量和平均长度:
;;
其次,计算回归参数,其计算表如下:
表1:回归方程参数的计算表
(X-(Y-
最后,根据公式(9.6)计算相应的回归参数:
;
所以,Y关于X的一元线性回归方程为:
9.5
解:总变差,回归平方和,残差平方和的计算如下:
表2:总变差,回归平方和,残差平方和的计算表
∴残差平方和:;
回归平方和:
9.6
解:由表2得:
判定系数
又∵习题9.1的散点图显示Y与X是呈正相关关系
∴相关系数
显著性检验:
(1)回归方程的显著性检验:
原假设H0:该回归方程不显著;备择假设H1:该回归方程显著
计算F统计量:
∵在α=0.05的显著性水平下,有4454.79>F0.05(1,4)=7.71
∴拒绝原假设,认为该回归方程式显著的。
(2)回归参数的假设检验:
原假设H0:备择假设H1:
计算t统计量:;
[其中] ∵在α=0.05的显著性水平下,有15.98>t0.05(4)=2.776
∴拒绝原假设,即认为自变量X对因变量Y有显著性影响。
(3)相关关系的显著性检验:
原假设H0:ρ=0;备择假设H1:ρ
计算t统计量:;
∵在α=0.05的显著性水平下,有66.64> t0.05(4)=2.776
∴拒绝原假设,认为总体相关系数不为0。
梁前德《统计学》(第二版)学习指导与习题训练答案:09第九章 统计综合评价 习题答案

第九章统计综合评价习题答案一、名词解释用规范性的语言解释统计学中的名词。
1.统计综合评价:是根据分析研究的目的,依据已有的资料,运用统计方法,综合事物所处的具体环境,对现象总体的规模大小、水平高低、速度快慢、质量优劣等方面做出量的判断。
2. 功效系数法:是对多目标规划原理中的功效系数加以改进,经计算得到综合判断的分数。
3.德尔菲法:是借助专家的经验与主观判断的结果来确定各指标的权数,并在不断的反馈和修改中逐步得到比较满意的结果。
4. 指标比较法:是将相邻两个指标进行比较,以其中一个指标作为对比的基础,确定另一个指标的重要程度,并将重要程度数量化,依次顺序比较,确定各指标权数的方法。
5.变异系数法:是直接利用各指标所包含的信息计算出相应指标的权重,是一种客观赋权的方法。
二、填空题根据下面提示的内容,将准确的名词、词组或短语填入相应的空格之中。
11.统计指标、统计指标体系2.性质相同3.同度量4. 权数5. 定量方法、分析法6.标准值、标准值7.消除量纲、阈值、不容许值、满意值8.正态分布、0、19.直接、所包含的信息10.分值、分值三、选择题从各题给出的四个备选答案中,选择一个或多个正确答案,填入相应的括号中。
1.BCD 2. A 3. CD 4. AB 5. AD6. A7. AD8. AB9. BD 10. ABCD2四、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 变异系数法赋权是一种人工赋权法。
(×)客观2. 资产负债率、万元产值消耗能源比率和物耗率皆为逆指标。
(√)3. 进行归一化处理后,权数之和一定为1。
(√)4. 综合评价指标体系中的各指标要从同一方向说明总体。
(×)不一定5. 在对指标的无量纲处理时,如果指标是相对数,就不要进行无量纲处理。
(×)也要6. 在对学生的各科考试成绩进行综合评价时,各科考试成绩的单位都是分,因此就不需要进行无量纲化操作。
统计学第九章课后习题答案

9.1(1)设原假设为H:不同收入群体对某种特定商品的购买习惯相同:即不同收入群体对某种特定商品的购买习惯不完全相同H1(2)由SPSS计算可得χ2值为17.626(3)自由度=(3-1)×(4-1)=6,当α=0.1时,χ0.12(6)=10.64∵χ2=17.626>10.64=χ0.12(6)故拒绝原假设,即不同收入群体对某种特定商品的购买习惯不完全相同。
(4)由SPSS计算可得φ系数为0.183、c系数为0.180、V系数为0.1299.2解:设原假设为H0:现在情况与经验数据相比没有发生变化;H1:现在情况与经验数据相比发生了变化。
由已知条件可得χ2值为:χ2=(28−0.1×200)20.1×200+(56−0.2×200)20.2×200+(48−0.3×200)20.3×200+(36−0.2×200)20.2×200+(32−0.2×200)20.2×200=14P[χ2(5−1)>14]=0.007295<0.1=α,故拒绝原假设。
9.3设原假设为H0:π1=π2=π3=π4(即阅读习惯与文化程度无关)H1:π1,π2,π3,π4不完全相等(即阅读习惯与文化程度有关)表中各项的期望值:E11=n1×n1n=77×50254=15.16E12=n2×n1n=91×50254=17.91E13=n3×n1n=42×50254=8.27E14=n4×n1n=44×50254=8.66E21=n1×n2n=77×44254=13.34E22=n2×n2n=91×44254=15.76E23=n3×n2n=42×44254=7.28E24=n4×n2n=44×44254=7.62E31=n1×n3n=77×95254=28.80E32=n2×n3n=91×95254=34.04E33=n3×n3n=42×95254=15.71E34=n4×n3n=44×95254=16.46E41=n1×n4n=77×65254=19.70E42=n2×n4n=91×65254=23.29E43=n3×n4n=42×65254=10.75E44=n4×n4n=44×65254=11.26所以χ2=(6-15.16)2/15.16+(12-13.34)2/13.34+……+(13-11.26)2/11.26=31.86。
统计学(第六版)第九章分类数据分析(课后习题答案)

H 0 : 1 2 3 4 0.3 H1: 1 , 2 , 3 , 4不全相等
(2)计算样本统计量 χ2 fo 25 40 47 46 69 51 74 57 36 fe 39 35 42 42 62 56 67 67 29 fo-fe -14 5 5 4 7 -5 7 -10 7 (fo-fe)2 196 25 25 16 49 25 49 100 49 (fo-fe)2/fe 5.025641026 0.714285714 0.595238095 0.380952381 0.790322581 0.446428571 0.731343284 1.492537313 1.689655172
9.2 从总体中随机抽取了 n=200 的样本,调查后按不同属性归类,得到如下 结果: n1=28,n2=56,n3=48,n4=36,n5=32 依据经验数据,各类别在总体中的比例分别为: π1=0.1,π2=0.2,π3=0.3,π4=0.2,π5=0.2 以 α=0.1 的显著性水平进行检验, 说明现在的情况与经验数据相比是否发生 了变化(用 P 值) 解:虚拟假设 H0:样本数据的各类数据的比例与总体中各类数据的比例相同 H1:样本数据的各类数据的比例与总体中各类数据的比例不同 计算样本统计量 χ2 fo 28 56 48 36 32 fe 20 40 60 40 40 fo-fe 8 16 -12 -4 -8 (fo-fe)2 64 256 144 16 64 (fo-fe)2/fe 3.2 6.4 2.4 0.4 1.6 14 χ2 的自由度为(5-1)=4,P=0.007 远小于显著性水平 α=0.1,故拒绝 H0,现 在的情况与经验数据相比已经发生了变化(显著差异) 。
26 19 37
统计学习题答案(九、十、十一)

统计学习题答案(九、⼗、⼗⼀)第九章习题⼀、名词解释时间序列:是指反映客观现象的同⼀指标在不同时间上的数值,按时间先后顺序排列⽽形成的序列。
发展⽔平:是指时间序列中的每⼀项具体指标数值,反映的是现象在不同时间发展所达到的规模和⽔平。
增长⽔平:简称增长量,是时间序列中两个不同时期发展⽔平之差,其计算公式为:增长量=报告期发展⽔平-基期发展⽔平。
由于所采⽤的基期不同,增长量可以分为逐期增长量和累积增长量。
发展速度:是两个时期发展⽔平对⽐⽽得到的结果,表明现象发展的程度,说明报告期⽔平是基期⽔平的百分之⼏(或若⼲倍)。
增长速度:是根据增减量与基期⽔平对⽐⽽求得的⼀种相对数,反映现象在⼀段时期内数量增减的⽅向和程度的动态分析指标。
加法模型:假设各构成部分对时间序列的影响是可加的,并且是相互独⽴的,这样就可以把时间序列Y表⽰为:Y=T+S+C+I。
按照这种模型,时间序列的发展变化是4种因素叠加⽽成的。
乘法模型:假设四个因素变动之间存在某些相互影响的关系,则时间序列各期⽔平的数值就是四种因素相乘的乘积,其分解模型为:Y=T×S×C×I。
按照这种模型,时间序列的发展变化是4种因素乘积⽽成的倍⽐关系。
⼀次指数平滑法:⼀次指数平滑法是指以最后的⼀个第⼀次指数平滑。
如果为了使指数平滑值敏感地反映最新观察值的变化,应取较⼤α值,如果所求指数平滑值是⽤来代表该时间序列的长期趋势值,则应取较⼩α值。
季节变动:由于季节⽓候(春、夏、秋、冬、晴、阴、⾬等)和社会习惯(春节、端午、重阳等)等原因,客观现象普遍存在季节变动影响(服装的销售量,农作物的⽣长,旅游⼈次;等等)。
测定季节变动的规律,主要在于测定季节指数,常⽤的测定季节指数的⽅法有简单平均法和移动平均趋势剔除法。
循环波动:循环波动的周期在⼀年以上且长短不⼀,可采⽤剩余法对循环波动进⾏分析。
⼆、单项选择1~5:D A B C D 6~10:B A D C D三、简答题1、根据时点序列计算序时平均数分别有哪⼏种类型?请分别予以说明。
统计学习题答案 第9章 时间序列分析

第9章 时间序列分析——练习题●1. 某汽车制造厂2003年产量为30万辆。
(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车产量将达到多少?(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到7.8%,问以后9年应以怎样的速度增长才能达到预定目标?(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?解:设i 年的环比发展水平为x i ,则由已知得:x 2003=30, (1)又知:320042005200620032004200516%x x x x x x ≥+(),2200720082006200715%x x x x ≥+(),求x 2008由上得32200820072008200320032007(16%)(15%)x x x x x x =≥++ 即为3220081.061.0530x ≥,从而2008年该厂汽车产量将达到 得 x 2008≥30× 31.06×21.05= 30×1.3131 = 39.393(万辆) 从而按假定计算,2008年该厂汽车产量将达到39.393万辆以上。
(2)规定201320032x x =,20042003x x =1+7.8%由上得=107.11%==可知,2004年以后9年应以7.11%的速度增长,才能达到2013年汽车产量在2003年的基础上翻一番的目标。
(3)设:按每年7.4%的增长速度n 年可翻一番, 则有 201320031.0742na a == 所以 1.074log 20.30103log 29.70939log1.0740.031004n ====(年)可知,按每年保持7.4%的增长速度,约9.71年汽车产量可达到在2003年基础上翻一番的预定目标。
原规定翻一番的时间从2003年到2013年为10年,故按每年保持7.4%的增长速度,能提前0.29年即3个月另14天达到翻一番的预定目标。
(整理)统计学原理第九章相关与回归习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
高中数学必修二第九章统计基础知识点归纳总结(带答案)

高中数学必修二第九章统计基础知识点归纳总结单选题1、下列调查所抽取的样本具有代表性的是()A.利用某地七月份的日平均最高气温值估计该地全年的日平均最高气温B.在农村调查市民的平均寿命C.利用一块实验水稻田的产量估计水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验答案:D分析:根据抽取样本要具的广泛性和代表性,抽取的样本必须是随机的,逐个分析判断即可A项中某地七月份的日平均最高气温值不能代表全年的日平均最高气温;B项中在农村调查得到的平均寿命,不具代表性;C项中利用一块实验水稻田的产量估计水稻的实际产量,不具代表性;D项抽取的样本是随机的,具有代表性.故选:D2、为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间答案:C分析:根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.02+0.04=0.06=6%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.04+0.02×3=0.10=10%,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.10+0.14+0.20×2=0.64=64%> 50%,故D正确;该地农户家庭年收入的平均值的估计值为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+ 9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.小提示:本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的×组距.估计值.注意各组的频率等于频率组距3、下列调查方式合适的是().A.为了了解一批头盔的抗压能力,采用普查的方式B.为了了解一批玉米种子的发芽率,采用普查的方式C.为了了解一条河流的水质,采用抽查的方式D.为了了解一个寝室的学生(共5个人)每周体育锻炼的时间,采用抽查的方式答案:C分析:根据抽查和普查的特点,对每个选项进行逐一分析,即可判断和选择.对于选项A,采用普查的方式测试头盔的抗压能力,成本较高,不适合,故A错误;对于选项B,采用普查的方式测试玉米种子的发芽率,较为繁琐且工作量较大,不适合,故B错误;对于选项C,采用抽查的方式了解河流的水质,适合,故C正确;对于选项D,为了了解5个人每周体育锻炼的时间,适合采用普查的方式,故D错误.故选:C.4、2021年3月12日是全国第43个植树节,为提高大家爱劳动的意识,某中学组织开展植树活动,并收集了高三年级1~11班植树量的数据(单位:棵),绘制了下面的折线图.根据折线图,下列结论不正确的是()A.各班植树的棵数不是逐班增加的B.4班植树的棵数低于11个班的平均值C.各班植树棵数的中位数为6班对应的植树棵数D.1至5班植树的棵数相对于6至11班,波动更小,变化比较平稳答案:C分析:从图中直接观察可以判定AD正确,结合平均数的定义,将比4班多的里面取出部分补到比4班少的班中,可以使得4班的植树量最少,从而判定B正确;结合中位数的定义可以判定C错误.从图可知,2班的植树量少于1班,8班的植树量少于7班,故A正确;4班的指数棵数为10,11个班中只有2、3、8班三个的植树棵数少于10,且大于5棵,其余7个班的植树棵数都超过10棵,且有6、7、9、10、11班五个班的植树棵数都不少于15棵,将这五个班中的植树棵数各取出5棵,加到2、3、8班中取,除4班外,其余各班的植树棵数都超过了4班,所以4班植树的棵数低于11个班的平均值,故B正确;比6班植树多的只有9、10、11三个班,其余七个班都比6班少,故6班所对应的植树棵数不是中位数,故C是错误的;1到5班的植树棵数的极差在10以内,6到11班的植树棵数的极差超过了15,另外从图明显看出,1至5班植树的棵数相对于6至11班,波动更小,变化比较平稳,故D正确;综上,不正确的只有C,故选:C.小提示:本题考查频数折线图的意义,涉及平均数,中位数,波动大小的判定,难点是平均数的估算,这里采用取长补短法进行估算,可以避免数字的计算.5、2020年广东12月份天气预报历史记录中1号至8号的数据如表所示,则()C.这8天的最低气温的极差为5°C D.这8天的最低气温的中位数为11.5°C答案:D分析:由极差等于一组数据中的最大值与最小值的差,并根据中位数的定义,求最高、最低气温数据的中位数即可判断各项的正误.=22°C,这8天的最低气温的这8天的最高气温的极差为23−19=4°C,这8天的最高气温的中位数为21+232=11.5°C,故选:D.极差为15−9=6°C,这8天的最低气温的中位数为11+1226、某工厂利用随机数表对生产的50个零件进行抽样测试,先将50个零件进行编号,编号分别为01,02,…,50,从中抽取5个样本,下面提供随机数表的第1行到第2行:66674037146405711105650995866876832037905716031163149084452175738805905223594310若从表中第1行第9列开始向右依次读取数据,则得到的第4个样本编号是()A.10B.09C.71D.20答案:B分析:按照题意依次读出前4个数即可.从随机数表第1行的第9列数字开始由左向右每次连续读取2个数字,删除超出范围及重复的编号,符合条件的编号有14,05,11,09,所以选出来的第4个个体的编号为09,故选:B7、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,中位数在[400,500)且占该组的4,5×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题8、2021年是中国共产党成立100周年,某学校团委在7月1日前,开展了“奋斗百年路,启航新征程”党史知识竞赛.团委工作人员将进入决赛的100名学生的分数(满分100分且每人的分值为整数)分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]得到如图所示的频率分布直方图,则下列关于这100名学生的分数说法错误的是()A.分数的中位数一定落在区间[85,90)B.分数的众数可能为97C.分数落在区间[80,85)内的人数为25D.分数的平均数约为85答案:B分析:根据小矩形的面积之和等于1,求出b=0.05,根据中位数的求法可判断A;根据众数的求法可判断B;由在区间[80,85)上的概率可判断C;由平均数的的计算公式:小矩形的底边中点横坐标与小矩形面积的乘积之和可判断D.A,由频率分布直方图可得(0.01+0.02×2+0.03+b+0.07)×5=1,解得b=0.05,前三组的概率为(0.02×2+0.05)×5=0.45<0.5,前四组的概率为(0.02×2+0.05+0.07)×5=0.7>0.5,所以分数的中位数一定落在第四组[85,90)内,故A正确;B,分数的众数可能为87.5,故B错误;C,分数落在区间[80,85)内的人数约为0.05×5×100=25,故C正确.D,分数的平均数为:72.5×0.02×5+77.5×0.02×5+82.5×0.05×5+87.5×0.07×5+92.5×0.03×5+97.5×0.01×5=85,故D正确.故选:B多选题9、2020年突如其来的新冠肺炎疫情对房地产市场造成明显的冲击,如图为某市2020年国庆节7天假期的楼房认购量与成交量的折线图,某同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断,则判断正确的是()A.日成交量的中位数是16B.日成交量超过平均成交量的只有1天C.10月7日认购量量的增长率大于10月7日成交量的增长率D.日认购量的方差大于日成交量的方差答案:BD解析:根据拆线图判断各数据特征后判断各选项.由拆线图日成交量的中位数是26,A错;日成交量均值为13+8+32+16+26+38+1667≈42.7,大于均值的只有一天,B正确;10月7日认购量量的增长率为y1=276−112112≈1.464,成交量的增长率为y2=166−3838≈3.368,显然C错;日认购量的均值为223+105+91+107+100+112+276≈144.857,7由各数据与均值的差可以看出日认购量的方差大于日成交量的方差,D正确.故选:BD.小提示:关键点点睛:本题考查统计图表,考查拆线图的识别.解题关键是由拆线图得出各数据,然后求得各数据特征.如中位数,均值,增长率,方差,解题中还要善于估值,如本题中的方差,从而大致比较出大小.10、成立时间少于10年.估值超过10亿美元且未上市的企业,称为独角兽企业.2021年中国新经济独角兽企业分布较广泛、覆盖居民生活的各个方面.如图为2021年中国新经济独角兽企业TOP200的行业分布图,中国新经济独角兽企业TOP200榜单中,京、沪、粤三地的企业数量共同占比达到69%.下列说法正确的是()A.随着智能出行与共享经济观念的普及,汽车交通行业备受投资者关注B.这12个行业TOP200榜单中独角兽企业数量的中位数是17C.中国新经济独角兽企业TOP200榜单中,京、沪、粤三地的企业超过130家D.2021年中国新经济独角兽企业TOP200榜单中汽车交通、企业服务、文化娱乐的企业数量共同占比超过40% 答案:ABC分析:结合图表对选项进行分析,由此确定正确选项.A选项,由图可知,汽车交通行业独角兽企业TOP200榜单中数量最多,是由A选项正确.=17,B选项正确.B选项,数据为8,8,12,13,16,17,17,18,18,19,25,29,中位数为17+172C选项,200×69%=138>130,所以C选项正确.×100%=36.5%<40%,D选项错误.D选项,汽车交通、企业服务、文化娱乐占比29+25+19200故选:ABC11、立德中学举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[50,60)、[60,70)、[70,80)、[80,90)、[90,100]分成5组,绘制了如图所示的频率分布直方图,根据图中信息,下列说法正确的是()A.图中的x值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的平均数的估计值为77答案:ACD分析:根据频率分布直方图中所有长方形的面积和为1,以及极值、频数以及平均数的计算,对每个选项进行逐一分析,即可判断和选择.由(0.005+x+0.035+0.030+0.010)×10=1,可解得x=0.020,故选项A正确;频率分布直方图无法看出这组数据的最大值和最小值,故选项B不正确;得分在80分及以上的人数的频率为(0.030+0.010)×10=0.4,故人数为1000×0.4=400,故选项C正确;这组数据的平均数的估计值为:55×0.05+65×0.2+75×0.35+85×0.3+95×0.1=77故选项D正确.故选:ACD.填空题12、某学校有高中学生1000人,其中高一年级、高二年级、高三年级的人数分别为320,300,380,为了调查学生参加“社区志愿服务”的意向,现采用分层抽样的方法从该校学生中抽取一个样本量为200的样本,那么应抽取高二年级学生的人数为________答案:60分析:根据分层抽样,每层的抽样比相同计算即可.因为学校有高中学生1000人,抽取一个样本量为200的样本,故应抽取高二年级学生的人数为2001000×300=60.所以答案是:6013、有一组样本数据x1,x2,x3,x4,该样本的平均数和方差均为m.在该组数据中加入一个数m,得到新的样本数据,则新样本数据的方差为__________.答案:45m##0.8m分析:由平均数和方差的计算公式直接计算即可.样本数据x1,x2,x3,x4,该样本的平均数和方差均为m,在该组数据中加入1个数m,则新样本数据的平均数x̅=15×(4×m+m)=m,方差为s2=15×[4×m+(m−m)2]=45m.所以答案是:45m.14、由6个实数组成的一组数据的方差为S12,将其中一个数5改为2,另一个数4改为7 ,其余的数不变,得到新的一组数据的方差为S22,则S22−S12=________.答案:2分析:根据平均数和方差的定义进行求解即可.因为将其中一个数5改为2,另一个数4改为7,其余的数不变,所以这6个实数组成的一组数据的平均数不变,设为x,设没有变化的4个数与平均数差的平方和为S,所以S22−S12=[S+(2−x)2+(7−x)2]−[S+(5−x)2+(4−x)2]6=2,所以答案是:2解答题15、从甲、乙两人中选选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲78686591074乙9578768677(1)分别计算甲、乙两人射击命中环数的平均数:(2)选派谁去参赛更好?请说明理由.答案:(1)甲乙的平均数均为7;(2)选派乙,理由见解析.分析:(1)应用平均数的求法求甲乙平均数;(2)由(1)知甲乙平均数相同,求出甲乙的方差并比较大小,即可确定选派方法.(1)由题设,甲的平均数为x̅1=7+8+6+8+6+5+9+10+7+410=7,乙的平均数为x̅2=9+5+7+8+7+6+8+6+7+710=7.(2)甲的方差为s12=110∑(x i−x̅1)210i=1=0+1+1+1+1+4+4+9+0+910=3,乙的方差为s22=110∑(x i−x̅2)210i=1=4+4+0+1+0+1+1+1+0+010=1.2.由(1)知:x̅1=x̅2,而s12>s22,所以选派乙去参赛更好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 列联分析是利用列联表来研究()。
A.两个分类变量的关系
B.两个数值型变量的关系
C.一个分类变量和一个数值型变量的关系
D.两个数值型变量的分布
分布的自由度为()。
2 设R为列联表的行数,C为列联表的列数,则2
A.R
B. C
C.R×C
D.(R-1)×(C-1)
3 列联表中的每个变量()。
A.只能有一个类别
B.只能有两个类别
C.可以有两个或两个以上的类别
D.只能有三个类别
4 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如下:
这个表格是()。
A.4×4列联表
B.2×2列联表
C.2×3列联表
D.2×4列联表
5 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
这个列联表的最右边一列称为()。
A.列边缘频数
B.行边缘频数
C.条件频数
D.总频数
6 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
这个列联表的最下边一行称为()。
A.列边缘频数
B.行边缘频数
C.条件频数
D.总频数
7 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
根据这个列联表计算的赞成上网收费的行百分比分别为()。
A.51.7%和48.3%
B.57.4%和42.6%
C.30%和70%
D.35%和65%
8 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
根据这个列联表计算的男学生的列百分比分别为()。
A.51.7%和48.3%
B.57.4%和42.6%
C.30%和70%
D.35%和65%
9 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
根据这个列联表计算的男女学生赞成上网收费的期望频数分别为()。
A.48和39
B.102和81
C.15和14
D.25和19
10 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
根据这个列联表计算的男女学生反对上网收费的期望频数分别为()。
A.48和39
B.102和81
C.15和14
D.25和19
11 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
根据这个列联表计算
χ统计量为()。
的2
A.0.617 6
B.1.617 6
C.0.308 8
D.1.308 8
12 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
如果要检验男女学生对上网收费的看法是否相同,提出的原假设为()。
A.H0:π1=π2=270
B. H0:π1=π2=87
C. H0:π1=π2=150
D. H0:π1=π2=0.3222
13 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
如果要检验男女学生
χ检验统计量的自由度是对上网收费的看法是否相同,即检验假设H0:π1=π2=0.3222, 2
()。
A.1
B.2
C.3
D.4
14 一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男学生和120名女学生进行调查,得到的结果如上。
如果根据显著性水平α=005,检验男女学生对上网收费的看法是否相同,即检验假设H0:π1=π2=0.3222,得出的结论是()。
A.拒绝原假设
B.不拒绝原假设
C.可以拒绝也可以不拒绝原假设
D.可能拒绝也可能不拒绝原假设
χ分布进行独立性检验,要求样本容量必须足够大,特别是每个单元中的期望频数
24 利用2
f e不能过小。
如果只有两个单元,每个单元的期望频数必须()。
A.等于或大于1
B.等于或大于2
C.等于或大于5
D.等于或大于10
25 如果列联表有两个以上的单元,不能应用χ2检验的条件是()。
A.20%的单元期望频数f e大于5
B.20%的单元期望频数f e小于5
C.10%的单元期望频数f e大于5
D.10%的单元期望频数f e小于5
1 A
2 D
3 C
4 B
5 B
6 A
7 A
8 C
9 A10 B11 A12 D13 A14 B15 A16 A17 D18 A19 A20 D21 D22 C23 C24 C25 B。