概率论与数理统计1.3-1.4

合集下载

概率论与数理统计目录

概率论与数理统计目录

概率论与数理统计目录一、随机事件及其概率1.1 随机事件的基本概念定义与分类事件的运算1.2 概率的定义与性质概率的公理化定义概率的基本性质1.3 古典概型与几何概型古典概型的计算几何概型的计算1.4 条件概率与独立性条件概率事件的独立性1.5 全概率公式与贝叶斯公式全概率公式贝叶斯公式及其应用二、随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的分类2.2 离散型随机变量及其分布常见的离散型分布分布律与分布函数2.3 连续型随机变量及其分布常见的连续型分布概率密度函数与分布函数2.4 随机变量函数的分布离散型随机变量函数的分布连续型随机变量函数的分布三、多维随机变量及其分布3.1 多维随机变量的概念联合分布函数边缘分布3.2 多维离散型随机变量联合分布律边缘分布律3.3 多维连续型随机变量联合概率密度函数边缘概率密度函数3.4 条件分布离散型条件分布连续型条件分布3.5 随机变量的独立性独立性的定义独立性的判定与性质四、数字特征4.1 数学期望数学期望的定义与性质数学期望的计算4.2 方差方差的定义与性质方差的计算4.3 协方差与相关系数协方差的定义与性质相关系数的定义与性质4.4 矩与协矩阵矩的定义与计算协矩阵的定义与计算五、大数定律与中心极限定理5.1 大数定律切比雪夫大数定律伯努利大数定律5.2 中心极限定理林德贝格-莱维中心极限定理德莫佛尔-拉普拉斯中心极限定理六、数理统计的基本概念6.1 总体与样本总体的定义与性质样本的定义与性质6.2 统计量与抽样分布统计量的定义与性质常见的抽样分布七、参数估计与假设检验7.1 参数估计点估计区间估计7.2 假设检验假设检验的基本概念单侧检验与双侧检验正态总体的假设检验八、回归分析与方差分析8.1 回归分析一元线性回归多元线性回归回归模型的检验与预测8.2 方差分析单因素方差分析双因素方差分析方差分析的应用。

概率论与数理统计浙大版

概率论与数理统计浙大版

四种理想受控电源的模型
电 I1=0
I2

控+
制 电 压
U1 -
+
+
_ U1
U2 -

(a)VCVS
电 压
I1=0
控+
制 电
U1
流-

I2
+ gU1 U2
-
(c) VCCS
电 I1

控+
制 电
U1=0 -


I2
+
+
_
U2
I1 -
(b)CCVS
电 I1

控+

制 电 流
U1=0
-

I2
+
I1 U2
1. 2 基尔霍夫定律
I1
a
I2
US1
R1 1 I3
R2 3 R3 2
US2
b 支路:电路中的每一个分支。
一条支路流过一个电流,称为支路电流。 节点:三条或三条以上支路的联接点。
回路:由支路组成的闭合路径。 网孔:内部不含支路的回路。
例1: d
a
I1
I2
IG
G
c
R4 I3 b I4 I
+ US–
R1
R2
对节点 a:I1+I2 = I3
US1
I3 R3
US2
或 I1+I2–I3= 0
b
实质: 电流连续性的体现。
基尔霍夫电流定律(KCL)反映了电路中任一
节点处各支路电流间相互制约的关系。
2.推广
电流定律可以推广应用于包围部分电路的任一 假设的闭合面。

山东建筑大学概率论与数理统计作业纸答案完整版

山东建筑大学概率论与数理统计作业纸答案完整版

(5) A、B、C中至少有两个发生; ABC ABC ABC ABC 或 AB BC AC
(6) A、B、C中最多有一个发生。
ABC ABC ABC ABC
或 AB BC AC
或 1
AB
BC
AC
2、对飞机进行两次射击,每次射一弹,设事件A={第一次击
中飞机},B={第二次击中飞机},试用A、B表示下列事件:
则A所包含的基本事件的数: M A33 A88

P( A) M N
8!3! 10!
1 1153
0.067
三、将C、C、E、E、I、N、S等7个字母随机的排成一行, 求恰好排成英文单词SCIENCE的概率。

2 2 P( A)
1 0.000794
A77
1260
四、 为减少比赛场次,把20个球队任意分成两组(每组10队)
概率论与数理统计作业1(§1.1~§1.2) 一、填空题
1.设 A、 B、 C 表示三个随机事件,试将下列事件用 A、B 、C
表示出来:
(1) 仅 A 发生; A B C
(2) A、B、C都不发生; A B C (3) A、B、C不都发生; ABC
(4) A不发生,且B、C中至少有一发生; A(B C )
十一、袋中有a个白球与b个黑球,每次从袋中任 取一球,取出后
不再放回,求第二次取 出的球与第一次取出的 球颜色相同 的概率.
解 用Ai 表示第i次取到白球,( i 1,2)
则,所求事件的概率为
P( A) P( A1 A2 A1 A2 ) P( A1 A2 ) P( A1 A2 ) P( A1 )P( A2 | A1 ) P( A1 )P( A2 | A1 )

概率论与数理统计

概率论与数理统计

A
3)在应用上,那些不便直接求某一事件的概 B2
率时,先找到一个合适的划分,再用全概率公式计算
ቤተ መጻሕፍቲ ባይዱ
7/21
§1.5 条件概率
2.贝叶斯(Bayes)公式 (计算后验概率问题)
事件A的发生,iff构成S划分的事件B1,B2,…,Bn中的一个发生时才发 生,一般在实验之前仅知道Bi的先验概率,那么如果试验后事件A已经发 生了,Bi发生的概率又是多少呢?这种问题我们称他为后验概率问题,有 利于我们查找事件发生的原因。解决此类问题可采用贝叶斯(Bayes)公式
在实际应用 中,对于事 件的独立性 常常根据事 件的实际意 义来判断,
注意:仅满足前三个等式的三个事件称为两两相互独立 见习题33 如果两个事
当然,如果事件A,B,C相互独立
件关联很弱 也可以看作
则 A, B,C; A, B,C; ... ; A, B,C 也相互独立
是独立的。
推广到多个事件
由定义可以得到以下两点推论: 1.若事件A1, A2, … , An相互独立,n2,则其中任意k(2kn)个事件也是相互独立 的。 2.若n个事件A1, A2, … , An(n2)相互独立,则将A1, A2, … , An中任意多个事件换13/成21 他们的对立事件,所得的n个事件仍相互独立
§1.6 独立性
对样本空间适当分解的思想,有利于解决稍微复杂一点的概率问题
首先看一下关于划分的概念
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件。若
(i) BiBj=Φ,i≠j,i,j=1,2,…,n; (ii) B1∪B2∪…∪Bn=S 则称B1,B2,…,Bn为S的一个划分。
※每次试验,事件B1,B2,…,Bn中有且仅有一个发生

概率论与数理统计浙大第四版

概率论与数理统计浙大第四版
必然事件——全体样本点组成的事件,记 为S, 每次试验必定发生的事件.
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
事件的关系和运算 文氏图 ( Venn diagram )
A
随机事件的关系和运算 雷同集合的关系和运算
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
非负性: A , P( A) 0
归一性: P( ) 1
可列可加性:P
i 1
Ai
P ( Ai )
i 1
其中 A1, A2 , 为两两互斥事件,
概率的性质
P() 0
有限可加性: 设 A1,A2,An 两两互斥
P
n i1
Ai
n i1
P(Ai )
P(A)1P(A) P(A)1
解 P(AB) P(A)P(B)P(AB)
P(AB) P(A) P(B) P(AB)
P(A)P(B)10.3 —— 最小值
最小值在 P( A B) 1 时取得
P( A B) P( A) 0.6 —— 最大值
最大值在 P(AB) P(B) 时取得
§1.4 古典概型
概率的 设 随机试验E 具有下列特点: 古典定义 基本事件的个数有限
(2) nB C31C122C150C55
P( A) 25 91
P(B) 6 91
例2 把标有 1,2,3,4 的 4 个球随机地放入 标有1,2,3,4 的 4 个盒子中,每盒放一球, 求有至少有一个盒子的号码与放入的球 的号码一致的概率。
解 n A44 4!
设 Ai 表示 i 号球入 i 号盒, i = 1,2,3,4
§1.1 随机事件

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。

它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。

1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。

概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。

方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。

1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。

这些性质能够帮助我们更好地理解随机事件的规律和特征。

二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。

统计学广泛应用于社会调查、市场研究以及科学实验等领域。

2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。

它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。

2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。

点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。

2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。

它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。

2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。

方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。

三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。

通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。

3.2 医学研究数理统计在医学研究中具有广泛的应用。

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。

概率论与数理统计

记下颜色, 重复 m 次.
E: 球编号, 一次取出 m个球, 记下颜色.
(或 Ab )1) #S P (a ,b)( a
k # A Cm Pak Pbmk ,
m ab
m ab
#b S n C , (a 1)
m ab
k mk # A Ca Cb ,
—— 超几何分布—— 注: 不放回地逐次取 m 个球与一次取 m 个球所得结果相同.
解: A = “取到的数被 6 整除”, B = “取到的数被 8 整除”.

P ( A) 333 , 2000 P ( B) 250 , 2000 P( AB) 83 , 2000
所求为:P( A
B ) P ( A B) 1 P ( A B )
1 [ P( A) P( B) P( AB )] 1 ( 333 250 83 ) 3 . 4 2000 2000 2000
1
例1. 一个盒中装有10个大小形状完全相同的球. 依次将球
编号为1-10 . 把球搅匀,蒙上眼睛,从中任取一球 . 1. 样本空间 S = { 1 2 3 4 5 6 7 8 9 10 }?
2. 记 A = “摸到 2 号球”,则 P(A) = ?
A = { 2 },
P( A) # A 1 ; # S 10
5 1 9 4 6 7 2 3 10 8
3. 记 B = “摸到红色球”,则 P(B) = ? B = { 1 2 3 4 5 6 }, P( B) # B 6 . # S 10
第一章 概率论的基本概念
2
例2 (p.13 例6). 在 1~2000 的整数中随机地取一个数,求
该数既不能被 6 整除, 又不能被 8 整除的概率.

概率论与数理统计

概率论与数理统计
主讲:
第一章 随机事件及其概率
1.1 随机事件及其运算 1.2 随机事件的概率及性质 1.3 概率的计算 1.4 事件的独立性 1.5 独立事件概型
1.1.1 随机事件
手拿一枚硬币,松开手,硬币向下落。 结果唯一
种瓜得瓜,种豆得豆。

太阳每天从东方升起。
确定性现象
概率统计的 硬币落下时哪一面向上?
4040 验
10000
次 数
12000 不
24000
断 增
30000 大
正面出现的频数 1061 2048 4979 6019 12012 14994
频率 0.5181频 0.5069率稳 0.4979定 0.5016在 0.5005附 0.4998近
0.5
频率的特点
(1)波动性 (2)稳定性
当试验次数n增大时,(A) 逐渐趋向一个稳定 值。可将此稳定值记作P(A),作为事件A的 概率。称为统计概率。
问题二:既然取到白粉笔的概率是确定的值,如何在白粉笔数 量确定但未知的情况下计算?
1.2.1 概率的统计定义
定义 设随机事件A在n次重复试验中发生了m次,则称比值m/n为 随机事件A在n次重复试验中发生的频率,记做 ( A) ,即
频率的性质:
( A) m
n
(1)对如何事件A,0 (A) 1;
A63

0.4762
A3 {从中有放回地连取三件都是正品}
P( A3)

63 103

0.216
思考 A1, A2 的概率相等是否巧合?
1.2.2 概率的古典定义
例2.3的推广
一批产品共N件,其中M件次品,N-M件正品,从中取出n个,记A={取出

概率论与数理统计公式

概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。

2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需求P(B│A). (1)在缩减的样本空间中计算.因第一次已经取得了次品, 剩下的产品共19件其中3件次品,从而
P(B│A)=3/19 (2)在原样本空间中计算,由于
上一页 下一页 返 回
2、乘法定理 设P(A)>0,则有 P(AB)=P(A)P(B│A) 同样,当P(B)>0时,有: P(AB)=P(B)P(A│B)
上一页 下一页 返 回
例3 甲、乙两射手射击同一目标,射击结果互不影响。 他们击中目标的概率分别为0.9与0.8,求在一次射击中 (每人各射一次)目标被击中的概率
上一页 下一页 返 回
2、 贝努里试验模型 定义10:
上一页 下一页 返 回
定理1 推论 事件A在第k次试验才首次发生的概率为p(1- p)k-1
上一页 下一页 返 回
贝叶斯公式
上一页 下一页 返 回
全概率公式:很多实际问题中事件B的概率不易 轻易求得,如果能找到空间的一个划分,且划分 的概率易求,则可以由全概率公式求出B的概率。
贝叶斯公式:已知事件B发生,考察引发该事件 发生的各种原因的可能性大小。
例4 某工厂由甲,乙,丙三台机器生产同一型号的产品,它 们的产量各占30%,35%,35%,废品率分别为5%,4%,3%. 产品混在一起.(1)从该厂的产品任取一件,求它是废品的 概率.(2)若取出产品是废品,求它是由甲,乙,丙三台机器 生产的概率各是多少?
推论
上一页 下一页 返 回
定义8:
上一页 下一页 返 回
注:
1,独立表示两个事件的发生互无影响,无法用维 恩图展示相互关系;
2,当P(A)>0,P(B)>0时,A、B相互独立与A、B互 不相容不能同时成立;
3,如A、B既相互独立,又互斥,则A、B至少有 一个为零概率事件。
例1 从52张扑克中任取一张,记A={抽到K}, B={抽到黑色牌},问A、B是否独立?
乘法定理可推广至任意有限个事件的情形:
上一页 下一页 返 回
例3 设袋中有10个红球,20个白球,每次取一个球,看后放回, 再放入1个与所取颜色相同的球。如果连续取三次,求第一次、 第二次取红球,第三次取白球的概率
上一页 下一页 返 回
3、全概率公式与贝叶斯公式
上一页 下一页 返 回
全概率公式
例1 一袋中装10个球,3黑7白,先后从袋中两次 各取一球(不放回),求
1)已知第一次是黑球,第二次仍为黑球的概率? 2)已知第二次是黑球,第一次也为黑球的概率?
第三节 条件概率、全概率公式
1、条件概率的定义
上一页 下一页 返 回
上一页 下一页 返 回
例2 某批产品共20件,其中4件为次品,其余为正品,不放 回地从中任取两次,一次取一件.若第一次取到的是次品, 问第二次再取到次品的概率是多少? 解 :令A={第一次取到次品},B={第二次取到次品},
则根据bernoulli公式,P(B)

C61
pห้องสมุดไป่ตู้ (1
p)61

( 5 )5 6
P(C) P(B) P({没有出现过3}) (5)5 (5)6 66
上一页 下一页 返 回
例4 随机扔一个骰子,连续6次,问1)恰有一次出 现3的概率;2)至多有一次出现3的概率
解:
每次扔骰子是相互独立的事件,结果均为{出现3,不出现3},
且每次事件{出现3}的概率相同,因此为Bernoulli试验
令Ai {第i次扔出3点},则Ai {第i次没扔出3点} 事件B {恰有一次出现3点},C {至少有一次出现3点}
方法1: 定义判断
P(A) 4 P(B) 26 P(AB) 2
52
52
52
P(AB) P(A)P(B) 独立
方法2 : 条件概率公式判断
P(A) 4 P(A | B) 2
52
26
P(A) P(A|B) 独立
例2 假设我们掷两次骰子,并定义事件A={第一次掷得偶 数},B={第二次掷得奇数},C={两次都掷得奇数或偶数}, 证明A,B,C两两独立,但A,B,C不相互独立. 证明: 容易算出
上一页 下一页 返 回
上一页 下一页 返 回
例5 有三个罐子装球,1号罐子有2红1黑,2号罐子有3红1 黑,3号罐子有2红2黑,随机取一个球,问这个球是红球的 概率?若已知摸到的球是红球,问这个球是从3号罐子取出 来的概率有多大?
上一页 下一页 返 回
第四节
1、事件的独立性 定义7:
独立性
定理
相关文档
最新文档