2019高考数学总复习第二章基本初等函数Ⅰ2.1.1指数与指数幂的运算第二课时同步练习新人教A版必修1
高中数学第二章基本初等函数(ⅰ)2.1.1指数与指数幂的运算第二课时指数幂及其运算性质

数为分数,化带分数为假分数进行( jìnxíng)运算,便于进行( jìnxíng)乘除、乘方、开方运算,
以达到化繁为简的目的.
2021/12/12
第二十二页,共三十七页。
即时训练 2-1:计算下列各式的值:
2
(1)1.
5
1 3
×(-
7
)0+80.25×
4
2
+(
3
2
×
6
3 )6-
2 3 3
;
解:(1)原式=(
2
)
1 3
×1+(23)
1 4
×
1
24
+(
1
23
1
× 32
)6-(
2
)
1 3
=2+4×27=110.
3
3
2021/12/12
第二十三页,共三十七页。
7
(2) 3 a 2 a3 ÷ a 3 8 3 a15 ÷ 3 a3 a1 .
解:(2)原式=
3
7 3
a2a 2
÷
8 15
a 3a 3
2021/12/12
第二十七页,共三十七页。
3
3
(3) a2 a 2 .
1
1
a2 a 2
解:(3)由于
3
a2
-
3
a2
=(
1
a2
)3-(
1
a2
)3,
3
3
1 a2
1
a2
a
a1
1
a2
1
a 2
所以有 a2 a 2 =
1
1
高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
2019_2020学年高中数学第二章基本初等函数(Ⅰ)2.1.1.2指数幂及运算课件新人教A版必修1

(2)化简指数幂的几个常用技巧如下: ①ba-p=abp(ab≠0);
探究 1 利用指数幂的运算性质化简与求值 解
拓展提升 负数指数、零指数在计算中的注意事项
(1)负数指数化成正数指数. (2)注意计算的顺序.
【跟踪训练 1】 计算或化简下列各式(其中式子中的字 母均为正数).
对于条件求值问题,一般先化简代数式,再将字母取值 代入求值.但有时字母的取值不知道或不易求出,这时可将 所求代数式恰当地变形,构造出与已知条件相同或相似的结 构,从而通过“整体代入法”巧妙地求出代数式的值.
利用“整体代入法”求值常用的变形公式如下(a>0, b>0):
解
根式与分数指数幂运算应注意的问题 (1)指数幂的一般运算步骤一定要遵循有括号,负数指数 幂,底数是负数、小数、带分数的转化方法. (2)根式一般先转化成分数指数幂,然后再利用有理数指 数幂的运算性质进行运算,在将根式化为分数指数幂的过程 中,一般采用由内到外逐层变换为指数的方法,然后运用运 算性质准确求解. (3)对于含有字母的化简求值结果,一般用分数指数幂 的形式表示.
解
解
拓展提升 指数幂的一般运算步骤
有括号先算括号里的;无括号先做指数运算.负指数幂 化为正指数幂的倒数.底数是负数,先确定符号,底数是小 数,先要化成分数,底数是带分数,先要化成假分数,然后 要尽可能用幂的形式表示,便于利用指数幂的运算性质.
解
探究 2 条件求值问题 解
拓展提升 解决条件求值问题的一般方法——整体代入法
a
相乘.(
Hale Waihona Puke ×)(3)0 的任何指数幂都等于 0.( × )
2.做一做
(1) 5 a-3化为分数指数幂为___a_-_53___.
指数与指数幂的运算 .ppt

三.n次方根的性质
例1:试根据n次方根的定义分别求出下列各数的n次方根.
8的3次方根是__2_. -8的3次方根是_-_2__. -32的5次方根是_-_2_.
A.a16 B. a8 C. a4 D. a2
C 2.2-(2k+1)-2-(2k-1)+2-2k等于(
)
A.2-2k B. 2-(2k-1) C. -2-(2k+1)
D.2
3x y
3.若10x=2,10y=3,则 10 2
26
3
。
81的4次方根是__±_3__. 记作: 4 81 3 64的6次方根是_±__2__. 记作: 6 64 2.
1.正数的偶次方根有两个且互为相反数 偶次方根 2.负数的偶次方根没有意义
正数a的n次方根用符号 n a 表示(n为偶数)
知识小结
(1) 奇次方根有以下性质: 正数的奇次方根是正数. 负数的奇次方根是负数. 零的奇次方根是零.
(2)利用(1)的规律,你能表示下列式子吗?
5 43
3
45;
5
3 75 73;
2
3 a2 a 3;
9
7 a9 a7 .
类比
总结:当根式的被开方数的指数不能被根指数整除 时,根式可以写成分数指数幂的形式.
(3)你能用方根的意义解释(2)的式子吗?
3
5 43 45;
5
3 75 73;
3
43的5次方根是 45 ;
(2)(m
1 4
n
人教A高中数学必修一2.1.1指数与指数幂的运算

练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?
高中数学 第二章 基本初等函数(Ⅰ)2.1.1.2 指数幂及运

ab1
a.
答案: a
b
b
类型一 根式与分数指数幂的互化 【典例1】用分数指数幂表示下列各式(a>0,b>0), (1)a2 a .(2) a a . (3) 3 a2 a3 .(4) ( 3 a )2 ab3 .
【解题指南】首先把根式转化为分数指数幂的形式,然 后运用分数指数幂的运算性质化简.
第2课时 指数幂及运算
主题1 根式与分数指数幂的互化
1.观察下列各式,你能得出什么结论?
10
1 5 210 5 22 5 22 2 5 .
12
2 3 412 3 44 3 44 4 3 .
提示:通过观察上面两式可以得出,当根式的被开方数 的指数能被根指数整除时,根式可以表示为分数指数幂 的形式.
(
)
A.5
B.15
C.25
D.125
【解析】选D.原式=
3
(52 ) 2
=53=125.
3. 4 3 =__________.
81 92
【解析】
4
81
9
3 2
4
2 3
81 3 2
4 81 27
4
37
7
34.
答案:
7
34
4.化简: 3 a g6 a =________.
【解析】因为 6 中a -a≥0,所以a≤0,
(3)0的正分数指数幂等于_0_,0的负分数指数幂_没__有__ _意__义__.
【微思考】
请你根据所学知识思考公式
m
an
n am
为什么规定a>0?
提示:(1)若a=0,0的正分数指数幂恒等于0,即
高中数学《第二章基本初等函数(Ⅰ)2.1指数函数习题2.1》457教案教学设计 一等奖名师公开课比赛优质课评比
12.1.1指数与指数幂的运算一.根式(1)根式的概念如果一个数的n次方等于a(n>1且,n∈N*),那么这个数叫做a的n次方根.也就是,若xn=a,则x叫做a的n次方根,其中n>1且n∈N*.式子na叫做根式,这里n叫做根指数,a叫做被开方数.(2)根式的性质①当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号na表示.②当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号na表示,负的n次方根用符号-na表示.正负两个n次方根可以合写为±na(a>0).③nan=a.;④当n为奇数时,nan=a;当n为偶数时,nan=a=aa-aa<.⑤负数没有偶次方根.二.有理数指数幂(1)幂的有关概念①正整数指数幂:an=(n∈N*);②零指数幂:a0=1(a≠0);③负整数指数幂:a-p=1ap(a≠0,p∈N*);④正分数指数幂:amn=nam(a>0,m、n∈N*,且n>1);⑤负分数指数幂:a-mn=1amn=1nam(a>0,m、n∈N*且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质①aras=ar+s(a>0,r、s∈Q);②(ar)s=ars(a>0,r、s∈Q);③(ab)r=arbr(a>0,b>0,r∈Q).例1、计算或化简下列各式323424(1)8(2)10(3)3(4)abab例2、计算下列各式2(1)48373271021.097203225.0(2)24130.753323(3)0.04[(2)]168(3)014323112325671027.0(4)43512525(5)5.00312603.1232366141例3.(1)化简321132132)(abbababa=__________.(2)化简382313232xxxxxx=__________.例4.(1).已知11223aa,求下列各式的值(1)1aa=;(2)22aa=(2)若11225xx,则21xx的值是变式、已知,32121xx求3212323xxxx练习巩固1.下列命题中,正确命题的个数为①nna=a②若a∈R,则(a2-a+1)0=1③yxyx34334④623)5(5A.0B.1C.2D.32.与aa1的值相等是()A.aB.aC.aD.a3.使代数式(x-1)31有意义的x的取值范围为()A.x≥1B.-1<x<1C.x>1D.x≠±14.若10x=3,10y=4,则102x-y=__________.5.计算0.02731-(-71)-2+25643-3-1+(2-1)0=__________.3.若210,5100ba,则ba2的值为()A、0B、1C、2D、32.1.2指数函数及其性质31.指数函数的定义一般地,函数xay叫做指数函数(其中1,0aa且),x是自变量,函数的定义域为Rx。
高中数学必修1知识点总结:第二章 基本初等函数
高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:na =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N,即log eN (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aM M N N-=③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a an M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(图象关.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a<时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2b x a=-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =02a )q()f p) ②若③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.xxxx xxfx。
2019_2020学年高中数学第二章基本初等函数(Ⅰ)2.1.1指数与指数幂的运算课件新人教A版
跟踪训练 1 求下列各式的值:
(1) 3 -23;
(2) 4 -32;
(3) 8 3-π8; (4) x2-2xy+y2+ 7 y-x7.
解析:(1) 3 -23=-2; (2) 4 -32= 4 32= 3; (3) 8 3-π8=|3-π|=π-3; (4)原式= x-y2+y-x=|x-y|+y-x. 当 x≥y 时,原式=x-y+y-x=0; 当 x<y 时,原式=y-x+y-x=2(y-x). 所以原式=02, y-x≥xy,,x<y.
① 5 -a5=________.
② 6 3-π6=________.
③
614- 3 383-3 0.125=________.
D. 5 -55=-5
【解析】 (1)由于n an=|aa,|,nn为为奇偶数数,, 则选项 A,C 排除, D 正确,B 需要加条件 a≠0.
(2)① 5 -a5=-a. ② 6 3-π6=6 π-36=π-3.
跟踪训练 2 下列根式与分数指数幂的互化正确的是( )
1
A.- x=(-x) 2 (x>0)
B.6
y2=y
1 3
(y<0)
C.x
3 4
=
4
1x3(x>0)
D.x
1 3
=-3
x(x≠0)
解析:-
x=-x
1 2
(x>0);6
y2=(y2)
1 6
=-y
1 3
(y<0);x
3 4
=(x-3)
n>1)
分数 指数 幂
负分数 指数幂
规定:a
-
m n
高一数学必修1第二章基本初等函数知识点总结归纳
必修1第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式: log 10a =,log 1aa =,logb a a b =.(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02x a->,则()M f p =xxxxx x(q)0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()mf p =.xfxfx xx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 指数与指数幂的运算(第二课时)
一、选择题
1.有下列各式:
①;②若a∈R,则(a2-a+1)0=1;
③;④.
其中正确的个数是()
A. 0 B. 1
C. 2 D. 3
【答案】B
2.可化为()
A B.C.D.-
【答案】C
【解析】当根式化为分数指数幂时,注意分子与分母,.
考点:根式与分数指数幂的互化
3.当有意义时,化简的结果是()A.-1 B.- 2x-1 C.2x-5 D.5-2x
【答案】A
【解析】由题意知,即,原式=
,故选A.
考点:根式化简
4.若,则等于()
A、 B、 C、 D、
【答案】B
【解析】由知,即,所以,答案选B 5.化简的结果是()
A.B.C.D.
【答案】A
【解析】原式=.
考点:分数指数幂求值
6.若则化简的结果是()
A.B.C.D.
【答案】B
考点:根式的化简
二、填空题
7.计算:[(-2)3] -(-1)0=________.
【答案】-3
【解析】原式,填-3.
8.[(-2)2] --2-2×=__________.
【答案】-
【解析】∵=1,2-2×=×4=1,又2->0,∴=[(2-)2]
=2-,∴原式=2--1-1=-.
9.已知则=__________.
【答案】
考点:根式与分数指数幂的互化
10.计算:
【答案】6
【解析】原式=
=
=6
三、解答题
11.计算:(1) ;
(2)
【答案】(1)(2)100
【解析】试题分析:(1)利用指数幂的运算性质即可得出;(2)利用指数幂的运算性质即可得出.
试题解析:
(1)原式=.
(2)原式=
12.化简下列各式(式中字母都是正数):
(1)(2)
【答案】(1)24(2)
考点:分数指数幂化简。