2017_2018学年高中数学第二章数列课时作业13等比数列的前n项和新人教B版必修5 Word版 含答案

合集下载

(新课标)高中数学 第2章 数列 2.5 等比数列的前n项和 第1课时 等比数列的前n项和课时作业

(新课标)高中数学 第2章 数列 2.5 等比数列的前n项和 第1课时 等比数列的前n项和课时作业

时等比数列的前n项和课时作业新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2017春高中数学第2章数列2.5 等比数列的前n项和第1课时等比数列的前n项和课时作业新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2017春高中数学第2章数列2.5 等比数列的前n项和第1课时等比数列的前n项和课时作业新人教A版必修5的全部内容。

数列的前n项和课时作业新人教A版必修5基础巩固一、选择题1.等比数列{a n}的前n项和S n=3n+a,则a的值为导学号 54742466( C )A.3 B.0C.-1 D.任意实数[解析]S1=a1=3+a,S2-S1=a2=32+a-3-a=6,S3-S2=a3=33+a-32-a=18,错误!=63+a,所以a=-1。

2.若等比数列{a n}各项都是正数,a1=3,a1+a2+a3=21,则a3+a4+a5的值为错误!( D )A.21 B.42C.63 D.84[解析]∵a1+a2+a3=21,∴a1(1+q+q2)=21,又∵a1=3,∴1+q+q2=7,∵a n>0,∴q>0,∴q=2,∴a3+a4+a5=q2(a1+a2+a3)=22×21=84。

3.等比数列{a n}中,已知前4项之和为1,前8项和为17,则此等比数列的公比q为错误!( C )A.2 B.-2C.2或-2 D.2或-1[解析]S4=1,S8=S4+q4·S4=1+q4=17∴q=±2.4.在等比数列{a n}中,a1=a,前n项和为S n,若数列{a n+1}成等差数列,则S n等于错误! ( C )A.a n+1-a B.n(a+1)C.na D.(a+1)n-1[解析]利用常数列a,a,a,…判断,则存在等差数列a+1,a+1,a+1,…或通过下列运算得到:2(aq+1)=(a+1)+(aq2+1),∴q=1,S n=na.5.已知等比数列前20项和是21,前30项和是49,则前10项和是导学号 54742470( D ) A.7 B.9C.63 D.7或63[解析]由S10,S20-S10,S30-S20成等比数列,∴(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21),∴S10=7或63.6.已知{a n}是等比数列,a2=2,a5=错误!,则a1a2+a2a3+…+a n a n+1=错误!( C ) A.16(1-4-n)B.16(1-2-n)C.错误!(1-4-n)D.错误!(1-2-n)[解析]∵错误!=q3=错误!,∴q=错误!.∴a n·a n+1=4·(错误!)n-1·4·(错误!)n=25-2n,故a1a2+a2a3+a3a4+…+a n a n+1=23+21+2-1+2-3+…+25-2n=错误!=323(1-4-n).二、填空题7.(2015·湖南理,14)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n=3n-1.错误![解析]考查等差数列与等比数列的性质.∵3S1,2S2,S3成等差数列,∴4S2=3S1+S3,∴4(a1+a2)=3a1+a1+a2+a3⇒a3=3a2⇒q=3.又∵{a n}为等比数列,∴a n=a1q n-1=3n-1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.8.已知S n为等比数列{a n}的前n项和,S n=93,a n=48,公比q=2,则项数n=5.错误![解析]由S n=93,a n=48,公比q=2,得错误!⇒2n=32⇒n=5.三、解答题9.(2015·福建文,17)等差数列{a n}中,a2=4,a4+a7=15.错误!(1)求数列{a n}的通项公式;(2)设b n=2a n-2+n,求b1+b2+b3+…+b10的值.[解析](1)设等差数列{a n}的公差为d.由已知得错误!解得错误!所以a n=a1+(n-1)d=n+2。

高中数学第二章数列2.5等比数列的前n项和第1课时等比数列的前n项和aa高二数学

高中数学第二章数列2.5等比数列的前n项和第1课时等比数列的前n项和aa高二数学
第十五页,共五十页。
• 『规律总结(zǒngjié)』 在等比数列{an}的五个量a1,q,an,n,Sn 中,a1,q是最基本的元素,当条件与结论间的联系不明显时 ,均可以用a1,q列方程组求解.
第十六页,共五十页。
〔跟踪练习1〕 (2015·重庆文,16)已知等差数列{an}满足a3=2,前3项和S3=92. (1)求{an}的通项公式; (2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
!果真是这样吗?我们一起来帮他算一算.
第六页,共五十页。
• 1.等比数列(děnɡ bǐ shù liè)的前n项和公式
已知量 公式
首项、公比与项数
Sn=__a_1_n1_a-_1 _q_n_q=1 ___1_-__q____q≠1
首项、末项与公比 Sn=__a_1-_n_aa_1 _nq_q=1
第三十一页,共五十页。
(2)由(1),得bn=an+k及{bn}是公比为2的等比数列,得 Tn=b111--22n=b1(2n-1), 由bn=an+k得Tn=Sn+nk,∴Sn=b1(2n-1)-nk. ∵S6=T4,S5=-9, ∴6331bb11- -65kk= =1-5b91,, 解得k=8.
新课标导学
数学
必修5 ·人教A版
第一页,共五十页。
第二章
数列(shùliè)
等比数列 的前 项和 2.5
(děnɡ bǐ shù liè)
n
课时 第1
(kèshí)
等比数列的前n项和
第二页,共五十页。
1
自主预习学案
2
互动探究学案
3
课时作业学案
第三页,共五十页。
自主预习(yùxí)学案

高中数学第二章数列课时作业等比数列前n项和的性质与数列求和新人教B版必修01386

高中数学第二章数列课时作业等比数列前n项和的性质与数列求和新人教B版必修01386

课时作业(十四) 等比数列前n 项和的性质与数列求和 A 组(限时:10分钟)1.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19解析:设数列{a n }的公比为q ,若q =1,则由a 5=9,得a 1=9,此时S 3=27,而a 2+10a 1=99,不满足题意,因此q ≠1.∵q ≠1时,S 3=a 11-q 31-q=a 1·q +10a 1, ∴1-q 31-q=q +10,整理得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19. 答案:C2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15解析:∵a n =(-1)n (3n -2),则a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.数列{a n }的通项公式a n =11+2+3+…+n ,则其前n 项和S n =( ) A.2n n +1 B.n +12n C.n +1n2 D.n 2+n +2n +1解析:∵a n =11+2+3+…+n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =a 1+a 2+…+a n=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 答案:A4.等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所得偶数项和S 偶=-126,末项是192,则首项a 1=( )A .1B .2C .3D .4解析:设等比数列{a n }共有2k +1(k ∈N *)项,则a 2k +1=192,S 奇=a 1+a 3+…+a 2k -1+a 2k +1=1q (a 2+a 4+…+a 2k )+a 2k +1=1q S 偶+a 2k +1=-126q +192=255,解得q =-2,而S 奇=a 1-a 2k +1q 21-q 2=a 1-192×-221--22=255,解得a 1=3.答案:C 5.已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 解:(1)设{a n }的公差为d ,则S n =na 1+n n -12d . 由已知可得⎩⎪⎨⎪⎧ 3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=13-2n 1-2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1, 从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为 12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1 =n1-2n .B 组(限时:30分钟)1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( )A .2 B.73C.83 D .3 解析:∵S 6S 3=S 31+q 3S 3=1+q 3=3,∴q 3=2, ∴S 9S 6=S 31+q 3+q 6S 31+q 3=1+2+41+2=73. 答案:B2.设f (n )=2+24+27+210+…+23n +1(n ∈N ),则f (n )等于( ) A.27(8n -1) B.27(8n +1-1) C.27(8n +3-1) D.27(8n +4-1) 解析:f (n )=2[1-23n +1]1-23=27(8n +1-1). 答案:B3.已知等比数列{a n }中,公比q =12,且a 1+a 3+a 5+…+a 99=60,则a 1+a 2+a 3+…+a 100=( )A .100B .90C .120D .30解析:∵S 奇=60,q =12,∴S 偶=S 奇·q =30, ∴S 100=S 奇+S 偶=90.答案:B4.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =2n -1,那么a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1)2 C .4n -1 D.13(4n -1) 解析:由S n =2n -1,可得a n =2n -1,∴a 2n =4n -1,∴a 21+a 22+…+a 2n =1-4n1-4=13(4n -1). 答案:D5.已知数列{a n }满足a 1=1,a n +1=a n +n +2n (n ∈N *),则a n 为( )A.n n -12+2n -1-1 B.n n -12+2n -1 C.n n +12+2n +1-1 D.n n -12+2n +1-1解析:解法一:当n =1时,a 1=1,可以排除A 、C 、D ,∴选B.解法二:∵a n +1-a n =n +2n ,∴a n =(a n -a n +1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(n -1)+2n -1+(n -2)+2n -2+…+1+21+1=(1+2+…+n )+(2+22+…+2n -1)=n n -12+2n-1.答案:B6.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln nC .2+n ln nD .1+n +ln n解析:∵a n +1-a n =ln(n +1)-ln n ,∴a n =(a n -a n -1)+(a n -1-a n -2)…+(a 2-a 1)+a 1=ln n -ln1+2=2+ln n .答案:A7.在等比数列{a n }中,a 1+a 2=2,a 3+a 4=4,则a 5+a 6=________. 解析:∵a 1+a 2,a 3+a 4,a 5+a 6成等比数列,∴a 5+a 6=8.答案:88.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N +),则a 5=________;前8项的和S 8=________.(用数字作答)解析:由a 1=1,a n +1=2a n 知a n =2n -1,故a 5=24=16,S 8=1-281-2=255. 答案:16 2559.已知数列{a n }的前n 项和满足log 2(S n +1)=n +1,则a n =________. 解析:由S n +1=2n +1得S n =2n +1-1,∴a n =⎩⎪⎨⎪⎧ 3n =12nn ≥2)答案:⎩⎪⎨⎪⎧3n =12n n ≥2) 10.已知数列{a n }是公差不为0的等差数列,a 1=1且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项公式; (2)求数列{2a n }的前n 项和. 解:(1)由题设知公差d ≠0,由a 1,a 3,a 9成等比数列得1+2d 1=1+8d 1+2d . 解得d =1或d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n . (2)由(1)知2a n =2n, ∴S n =2+22+23+…+2n =21-2n 1-2=2n +1-2.11.已知数列{a n }是首项a 1=4,公比q ≠1的等比数列,S n 是其前n 项和,且4a 1,a 5,-2a 3成等差数列.(1)求公比q 的值;(2)设A n =S 1+S 2+S 3+…+S n ,求A n .解:(1)由已知2a 5=4a 1-2a 3,即2a 1·q 4=4a 1-2a 1·q 2,∵a 1≠0,整理得,q 4+q 2-2=0,解得q 2=1,即q =1或q =-1,又∵q ≠1,∴q =-1.(2)S n =4[1--1n ]1--1=2-2(-1)n ,∴A n =S 1+S 2+…+S n=2n -2·-1[1--1n ]1--1=2n +1-(-1)n .12.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n. 解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数.a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎪⎨⎪⎧ S 2b 2=6+d q =64,S 3b 3=9+3d q 2=960,解得⎩⎪⎨⎪⎧ d =2q =8或⎩⎪⎨⎪⎧ d =-65q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1.(2)S n =3+5+…+(2n +1)=n (n +2).所以1S 1+1S 2+…+1S n=11×3+12×4+13×5+…+1n n +2=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-2n +32n +1n +2.。

高中数学《等比数列及其前n项和》(答案)

高中数学《等比数列及其前n项和》(答案)

§6.3 等比数列及其前n 项和题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × ) (5)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( × )(6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 题组二 教材改编2.[P51例3]已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.答案 12解析 由题意知q 3=a 5a 2=18,∴q =12.3.[P54A 组T8]在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.题组三 易错自纠4.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.答案 -12解析 ∵1,a 1,a 2,4成等差数列, ∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0,∴b 2=2,∴a 1-a 2b 2=-(a 2-a 1)b 2=-12. 5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-qa 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11. 6.一种专门占据内存的计算机病毒开机时占据内存1 KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机________分钟,该病毒占据内存64 MB(1 MB =210 KB). 答案 48解析 由题意可知,病毒每复制一次所占内存的大小构成一等比数列{a n },且a 1=2,q =2,∴a n =2n ,则2n =64×210=216,∴n =16. 即病毒共复制了16次. ∴所需时间为16×3=48(分钟).题型一 等比数列基本量的运算1.(2018·开封质检)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18答案 C解析 由{a n }为等比数列,得a 3a 5=a 24, 又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.故选C.2.(2018·济宁模拟)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=________. 答案 2n -1解析 ∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n =4⎝⎛⎭⎫1-12n 42n=2n -1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.题型二 等比数列的判定与证明典例 (2018·潍坊质检)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, 故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2. 引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. (2)利用递推关系时要注意对n =1时的情况进行验证.跟踪训练 (2016·全国Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0, 所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎫λλ-1n . 由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.题型三 等比数列性质的应用1.(2019·郑州三模)已知等比数列{a n },且a 6+a 8=4,则a 8(a 4+2a 6+a 8)的值为( ) A .2 B .4 C .8 D .16 答案 D解析 ∵a 6+a 8=4,∴a 8(a 4+2a 6+a 8)=a 8a 4+2a 8a 6+a 28=(a 6+a 8)2=16.故选D.2.(2017·云南省十一校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( ) A .40 B .60 C .32 D .50 答案 B解析 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 12=4+8+16+32=60,故选B. 思维升华 等比数列常见性质的应用 等比数列性质的应用可以分为三类: (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n (n ∈N *).[3分](2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n(2n-1),n 为偶数.[6分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=32+23=136.[8分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=34+43=2512.[10分]故对于n ∈N *,有S n +1S n ≤136.[12分]1.(2019·福建漳州八校联考)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31 D .33 答案 D解析 设等比数列{a n }的公比为q ,则由已知得q ≠1.∵S 3=2,S 6=18,∴1-q 31-q 6=218,得q 3=8,∴q =2. ∴S 10S 5=1-q 101-q5=1+q 5=33,故选D. 2.(2019·武汉市武昌区调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( ) A .-2 B .-1 C.12 D.23答案 B解析 由S 2=3a 2+2,S 4=3a 4+2,得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍去)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1,故选B.3.(2019张掖市一诊)已知等比数列{a n }中,a 3=2,a 4a 6=16,则a 10-a 12a 6-a 8的值为( )A .2B .4C .8D .16 答案 B解析 a 5=±a 4·a 6=±16=±4, ∵q 2=a 5a 3>0,∴a 5=4,q 2=2,则a 10-a 12a 6-a 8=q 4=4. 4.(2019山西太原三模)已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( )A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1 答案 D解析 由题意可得S n +3=3×2n ,S n =3×2n -3,由等比数列前n 项和的特点可得数列{a n }是首项为3,公比为2的等比数列,数列的通项公式a n =3×2n -1,设b n =b 1q n -1,则b 1q n -1+b 1q n =3×2n -1,当n =1时,b 1+b 1q =3,当n =2时,b 1q +b 1q 2=6, 解得b 1=1,q =2,数列{b n }的通项公式b n =2n -1,由等比数列求和公式有:T n =2n -1,观察所给的选项: S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1.5.(2019广元模拟)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( )A .5B .9C .log 345D .10 答案 D解析 由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9, 则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.6.(2018·长春质检)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .192里 B .96里 C .48里 D .24里 答案 B解析 设等比数列{a n }的首项为a 1,公比为q =12,由题意得a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.7.已知{a n }是各项都为正数的等比数列,其前n 项和为S n ,且S 2=3,S 4=15,则a 3=________. 答案 4解析 S 4-S 2=a 3+a 4=12,S 2=a 1+a 2=3, ∴a 3+a 4a 1+a 2=q 2=123=4,q =2或q =-2(舍去),∴a 3+a 4=a 3(1+q )=3a 3=12,a 3=4.8.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 答案 4解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4,得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),a 6=a 2q 4=1×22=4.9.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和为________. 答案 2n -1解析 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2, ∴数列{a n }的前n 项和为1-2n 1-2=2n -1. 10.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案 12n解析 ∵a n +S n =1,①∴a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), 又a 1=12, ∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×⎝⎛⎭⎫12n -1=12n . 11.(2016·全国Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1≠0,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 12.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n .∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12,∴b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .13.(2017·新乡三模)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =________.答案 3n -1+12解析 ∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 14.(2018·徐州质检)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.答案 43⎝⎛⎭⎫1-14n +2 解析 由题意,得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1 =43⎝⎛⎭⎫1-14n +2.15.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( )A .4B .5C .6D .7答案 C解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6,故选C.16.(2019·武汉市武昌区调研)设S n 为数列{a n }的前n 项和,S n +12n =(-1)n a n (n ∈N *),则数列{S n }的前9项和为________.答案 -3411 024解析 因为S n +12n =(-1)n a n , 所以S n -1+12n -1=(-1)n -1a n -1(n ≥2). 两式相减得S n -S n -1+12n -12n -1 =(-1)n a n -(-1)n -1a n -1,即a n -12n =(-1)n a n +(-1)n a n -1(n ≥2), 当n 为偶数时,a n -12n =a n +a n -1, 即a n -1=-12n , 此时n -1为奇数,所以若n 为奇数,则a n =-12n +1; 当n 为奇数时,a n -12n =-a n -a n -1, 即2a n -12n =-a n -1, 所以a n -1=12n -1,此时n -1为偶数, 所以若n 为偶数,则a n =12n . 所以数列{a n }的通项公式为 a n =⎩⎨⎧-12n +1,n 为奇数,12n ,n 为偶数.所以数列{S n }的前9项和为S 1+S 2+S 3+…+S 9=9a 1+8a 2+7a 3+6a 4+…+3a 7+2a 8+a 9=(9a 1+8a 2)+(7a 3+6a 4)+…+(3a 7+2a 8)+a 9=-122-124-126-128-1210 =-122×⎣⎡⎦⎤1-⎝⎛⎭⎫1451-14=-3411 024.。

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。

【同步练习】2017-2018学年 高中数学 必修5 等比数列的前n项和 课时作业本一(含答案)

【同步练习】2017-2018学年 高中数学 必修5 等比数列的前n项和 课时作业本一(含答案)

2017-2018学年 高中数学 必修5 等比数列的前n 项和课时作业本一、填空题:1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则25S S =________. 2.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 3.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则510S S =________. 4.设等比数列{a n }的公比q=2,前n 项和为S n ,则24a S =________. 5.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q=________.6.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________.7.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为________.8.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=____________.9.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________.10.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n -1+k ,则实数k 的值为________.二、解答题:11.在等比数列{a n }中,a 1+a n =66,a 3a n -2=128,S n =126,求n 和q.12.求和:S n=x+2x2+3x3+…+nx n (x≠0).13.已知等比数列前n项,前2n项,前3n项的和分别为S n,S2n,S3n,求证:S2n+S22n=S n(S2n+S3n).14.已知数列{a n}的前n项和S n=2n+2-4.(1)求数列{a n}的通项公式;(2)设b n=a n·log2a n,求数列{b n}的前n项和T n.答案1.-11;解析:由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q=-2.2.3; 解析:S 6=4S 3⇒q q a --1)1(16=qq a --1)1(431⇒q 3=3(q 3=1不合题意,舍去). ∴a 4=a 1·q 3=1×3=3.3.33;解析:由题意知公比q ≠1,36S S ==1+q 3=9,∴q=2,510S S ==1+q 5=1+25=33. 4.215; 解析:由等比数列的定义,S 4=a 1+a 2+a 3+a 4=q a 2+a 2+a 2q +a 2q 2, 得=24a S q1+1+q +q 2=215. 5.1;解析:∵a n 是等比数列,∴a n =a 1q n -1,∵{S n }是等差数列.∴2S 2=S 1+S 3.即2a 1q +2a 1=a 1+a 1+a 1q +a 1q 2,化简得q 2-q=0,q ≠0,∴q=1.6.10;解析:S n =111--q a a n ,∴-341=qq -+15121, ∴q=-2,又∵a n =a 1q n -1,∴-512=(-2)n -1,∴n=10.7.510;解析:由a 1+a 4=18和a 2+a 3=12,得方程组a 1+a 1q 3=18,a 1q+a 1q 2=12,解得a 1=2,q=2或a 1=16,q=0.5.∵q 为整数,∴q=2,a 1=2,S 8=29-2=510. 8.431; 解析:∵{a n }是由正数组成的等比数列,且a 2a 4=1,∴设{a n }的公比为q ,则q>0,且a 23=1,即a 3=1.∵S 3=7,∴a 1+a 2+a 3=21q +q1+1=7,即6q 2-q -1=0. 故q=21或q=-31(舍去),∴a 1=21q =4.∴S 5==8(1-521)=431. 9.2n -1;解析:当n=1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1)∴a n =2a n -1,∴{a n }是等比数列,∴a n =2n -1,n ∈N *.10.-31; 解析:当n=1时,a 1=S 1=1+k ,当n ≥2时,a n =S n -S n -1=(3n -1+k)-(3n -2+k)=3n -1-3n -2=2·3n -2.由题意知{a n }为等比数列,所以a 1=1+k=32,∴k=-31. 11.解:∵a 3a n -2=a 1a n ,∴a 1a n =128,解方程组a1an=128,a1+an=66,得a1=64,an=2①或a1=2,an=64②将①代入S n =qq a a n --11,可得q=21,由a n =a 1q n -1可解得n=6. 将②代入S n =qq a a n --11,可得q=2,由a n =a 1q n -1可解得n=6. 故n=6,q=21或2. 12.解:分x=1和x ≠1两种情况.(1)当x=1时,S n =1+2+3+…+n=2)1(+n n . (2)当x ≠1时,S n =x +2x 2+3x 3+…+nx n ,xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1,∴(1-x)S n =x +x 2+x 3+…+x n -nx n +1=x x x n --1)1(-nx n +1.∴S n =2)1()1(x x x n ---x nx n -+11. 综上可得S n =2)1(+n n (x=1);S n =2)1()1(x x x n ---xnx n -+11.(x ≠1且x ≠0). 13.证明:设此等比数列的公比为q ,首项为a 1,当q=1时,则S n =na 1,S 2n =2na 1,S 3n =3na 1,S 2n +S 22n =n 2a 21+4n 2a 21=5n 2a 21,S n (S 2n +S 3n )=na 1(2na 1+3na 1)=5n 2a 21, ∴S 2n +S 22n =S n (S 2n +S 3n ).当q ≠1时,则S n =)1(11n q q a --,S 2n =)1(121n q q a --,S 3n =)1(131n q qa --, ∴S 2n +S 22n =21)1(q a -·[(1-q n )2+(1-q 2n )2]=21)1(qa -·(1-q n )2·(2+2q n +q 2n ). 又S n (S 2n +S 3n )=21)1(q a -·(1-q n )2·(2+2q n +q 2n ),∴S 2n +S 22n =S n (S 2n +S 3n ). 14.解:(1)由题意,S n =2n +2-4,n ≥2时,a n =S n -S n -1=2n +2-2n +1=2n +1,当n=1时,a 1=S 1=23-4=4,也适合上式,∴数列{a n }的通项公式为a n =2n +1,n ∈N *.(2)∵b n =a n log 2a n =(n +1)·2n +1,∴T n =2·22+3·23+4·24+…+n ·2n +(n +1)·2n +1,①2T n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2.②②-①得,T n =-23-23-24-25-…-2n +1+(n +1)·2n +2 =-23-21)21(213---n +(n +1)·2n +2 =-23-23(2n -1-1)+(n +1)·2n +2=(n +1)·2n +2-23·2n -1=(n +1)·2n +2-2n +2=n ·2n +2.。

高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学

2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。

2017-2018年度高中数学 第二章 数列 2.3 等差数列的前n项和讲义 新人教A版必修5

+a6+a7+a8)-S4=16d,解得 d=14,a11+a12+a13+a14=S4问题
[例 4] 已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当 n 为何值时,数列{an}的前 n 项和取得最大值. 【思路点拨】
跟踪训练 2 已知数列{an}的前 n 项和 Sn=-2n2+n+2. (1)求{an}的通项公式; (2)判断{an}是否为等差数列?
解析:(1)因为 Sn=-2n2+n+2, 所以当 n≥2 时,Sn-1=-2(n-1)2+(n-1)+2 =-2n2+5n-1,
所以 an=Sn-Sn-1 =(-2n2+n+2)-(-2n2+5n-1)
A.138
B.135
C.95
D.23
解析:由 a2+a4=4,a3+a5=10,可得 d=3,a1=-4. 所以 S10=-40+10× 2 9×3=95. 答案:C
3.(教材同类改编)等差数列{an}中,d=2,an=11,Sn=35, 则 a1 等于( )
A.5 或 7 B.3 或 5 C.7 或-1 D.3 或-1
令 an≥0,则 11-2n≥0,解得 n≤121. ∵n∈N+,∴n≤5 时,an>0,n≥6 时,an<0. ∴S5 最大.
方法归纳,
求等差数列的前 n 项和 Sn 的最值有两种方法: (1)通项法 ①当 a1>0,d<0 时,{an}只有前面的有限项为非负数,从某 项开始其余所有项均为负数,所以由am≥0, am+1≤0 可得 Sn 的最大值为 Sm;②当 a1<0,d>0 时,{an}只有前面的有限项为负 数,从某项开始其余所有项均为非负数,所以由
=-4n+3.
又 a1=S1=1,不满足 an=-4n+3, 所以数列{an}的通项公式是

高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)

(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5的全部内容。

2。

5 错误!第一课时等比数列的前n项和(1)公比是1的等比数列的前n项和如何计算?(2)能否根据首项、末项与项数求出等比数列的前n项和?(3)能否根据首项、公比与项数求出等比数列的前n项和?(4)等比数列前n项和的性质有哪些?[新知初探]1.等比数列的前n项和公式已知量首项a1与公比q首项a1,末项a n与公比q公式S n=错误!S n=错误![在应用公式求和时,应注意到S n错误!常数列求和,即S n=na1.2.等比数列前n项和的性质(1)等比数列{a n}中,若项数为2n,则错误!=q;若项数为2n+1,则错误!=q。

(2)若等比数列{a n}的前n项和为S n,则S n,S2n-S n,S3n-S2n…成等比数列(其中S n,S2n -S n,S3n-S2n…均不为0).(3)若一个非常数列{a n}的前n项和S n=Aq n-A(A≠0,q≠0,n∈N*),则数列{a n}为等比数列,即S n=Aq n-A(A≠0,q≠0,q≠1,n∈N*)⇔数列{a n}为等比数列.错误!1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)求等比数列{a n}的前n项和时可直接套用公式S n=a11-q n1-q来求( )预习课本P55~58,思考并完成以下问题(2)首项为a的数列既是等差数列又是等比数列,则其前n项和为S n=na()(3)若某数列的前n项和公式为S n=-aq n+a(a≠0,q≠0且q≠1,n∈N*),则此数列一定是等比数列( )解析:(1)错误.在求等比数列前n项和时,首先应看公比q是否为1,若q≠1,可直接套用,否则应讨论求和.(2)正确.若数列既是等差数列,又是等比数列,则是非零常数列,所以前n项和为S n=na。

2017-2018学年高中数学 课时作业12 等比数列的前n项和 新人教A版必修5

③若- 为-2q与-2的等差中项,则q+1= ,
∴q2+q-2=0.
∴q=-2或q=1(舍去).
∴三个数为4,1,-2.
综合①②③可知,这三个数排成的等差数列为4,1,-2或-2,1,4.
答案:4,1,-2或-2,1,4
13.(课标全国Ⅱ)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.
(2)由b1=1,T3=21得q2+q-20=0.
解得q=-5或q=4.
当q=-5时,由①得d=8,则S3=21.
当q=4时,由①得d=-1,则S3=-6.
14.设数列{an}(n=1,2,3…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
解析:本题考查了等差、等比数列.
设{an}的公差为d,{bn}的公比为q,则an=-1+(n-1)d,bn=qn-1.
由a2+b2=2得d+q=3.①
(1)由a3+b3=5得2d+q2=6.②
联立①和②解得 (舍去),或
因此{bn}的通项公式为bn=2n-1.
课时作业12等比数列的前n项和
|
一、选择题(每小题5分,共25分)
1.在等比数列{an}中,如果a1+a2=40,a3+a4=60,那么a7+a8=()
A.135B.100
C.95 D.80
解析:由等比数列的性质知,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,其首项为40,公比为 = .
答案:C
3.(河南八市第三次测评)在等比数列{an}中,a1+an=82,a3·an-2=81,且数列{an}的前n项和Sn=121,则此数列的项数n等于()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 6 3
上一年增加 30%,那么 7 年后该公司共有资金________万元. 解析:设第 n 年投入的资金为 an 万元,则 an+1=an+an×30%=1.3an,则
an+1 =1.3,所 an
以数列 {an} 是首项为 500 ,公比为 1.3 的等比数列,所以 7 年后该公司共有资金 S7 =
1-2
答案:B 2 2.设首项为 1,公比为 的等比数列{an}的前 n 项和为 Sn,则( 3 A.Sn=2an-1 B.Sn=3an-2 C.Sn=4-3an D.Sn=3-2an 2 1- an 3 a11-q a1-anq 解析:Sn= = = =3-2an,故选 D. 1-q 1-q 2 1- 3
6 2 2 2
)
∴代入公式 Sn=
n
n a11-qn 21-3 ,得 26= . 1-q 1-3
整理得 3 =27,∴n=3. B 组
(限时:30 分钟) 1.在等比数列{an}中,公比 q=-2,S5=44,则 a1 的值为( A.4 C.2 D.-2 解析:∵S5= B.-4 )
a1[1--25] 33a1
a11-q7 500×1-1.37 5000 7 = = (1.3 -1)万元. 1-q 1-1.3 3
50001.3 -1 答案: 3 9.若等比数列{an}满足 a2+a4=20,a3+a5=40,则公比 q=________;前 n 项和 Sn= ________. 解析:由题意知 q=
课时作业(十三) 等比数列的前 n 项和
A 组 (限时:10 分钟) 1.已知等比数列的公比为 2,且前 5 项和为 1,那么前 10 项的和等于( A.31 C.35 D.37 解析:∵S5=1,∴ ∴S10= B.33 )
a11-25
1-2 =33.
1 =1,即 a1= . 31
a11-210
a1=1, 解析:设公比为 q ,则 3 1 a1q = , 8 a11-q10 = 1-q
答案:B 1 1- 10 2 1 =2- 9. 1 2 1- 2
3.在等比数列{an}中 a3=7,前 3 项和 S3=21,则公比 q 的值为( 1 A.1 B.- 2 1 C.1 或- 2 1 D.-1 或 2
1--2 = 3
=11a1=44.
∴a1=4,∴选 A. 答案:A 1 2.在等比数列{an}中,若 a1=1,a4= ,则该数列前 10 项和为( 8 A.2- C.2- 1 1 B.2- 9 8 2 2 1 1 D.2- 11 10 2 2 1 解得 q = ,则该数列的前 10 项和为 S10 = 2 )
2 7
a3+a5 40 = =2. a2+a4 20
2
由 a2+a4=a2(1+q )=a1q(1+q )=20, 21-2 n+1 ∴a1=2.∴Sn= =2 -2. 1-2 答案:2 2
n+1 n
-2 13 364 ,S6= ,求 an. 9 9
10.在等比数列{an}中,S3=
解:由已知 S6≠2S3,则 q≠1.
a4 a3
S4 a2
)
解析:S4=
a11-24
1-2
=15a1,a2=a1q=2a1,
S4 15 ∴ = . a2 2
答案:C 6.设{an}是由正数组成的等比数列,Sn 为其前 n 项和,已知 a2a4=1,S3=7,则 S5 等于 ( ) A. C. 15 2 33 4 31 B. 4 17 D. 2
)
7 7 2 解析:由 2+ +7=21,得 2q -q-1=0,解得:
q
q
q=1 或 q=- ,∴选 C.
答案:C 4. 设 Sn 为等比数列{an}的前 n 项和, 已知 3S3=a4-2,3S2=a3-2, 则公比 q 等于( )
1 2
A.3 B.4 C.5 D.6 解析:由题意,得 3S3-3S2=(a4-2)-(a3-2),则 3a3=a4-a3,则 a4=4a3,∴q= = 4. 答案:B 5.设等比数列{an}的公比 q=2,前 n 项和为 Sn,则 等于( A.2 B.4 C. 15 2 17 D. 2
① 13 364 又 S = ,S = ,即 9 9 a 1-q 364 = 1-q 9 ②
3 6 6 1
a11-q3 13 = 1-q 9
)
1 3 ②÷①,得 1+q =28,∴q=3.可求得 a1= . 9 因此 an=a1q
n-1
=3
n-3
.
11.某工厂去年 1 月份的产值为 a 元,月平均增长率为 p,求这个工厂去年全年产值的 总和. 解:该工厂去年 2 月份的产值为 a(1+p)元,3 月、4 月、…的产值分别为 a(1+p) 、
解析:设等比数列{an}的公比为 q,
a1q·a1q =1, 则a11-q3 =7, 1-q
3
1 4×1- 5 1 2 31 解得 a1=4,q= ,所以 S5= = . 2 1 4 1- 2
答案:B 7.设等比数列{an}的前 n 项和为 Sn,若 a1=1,S6=4S3,则 a4=________. 1-q 1-q 3 3 解析:∵ =4· ,∴1+q =4,∴q =3, 1-q 1-q ∴a4=a1·q =3. 答案:3 8.今年,某公司投入资金 500 万元,由于坚持改革、大胆创新,以后每年投入资金比
n
)
答案:D 3.一个等比数列的前 7 项和为 48,前 14 项和为 60,则前 21 项和为( A.180 B.108 C.75 D.63 解析:由性质可得 S7,S14-S7,S21-S14 成等比数列,故(S14-S7) =S7·(S21-S14). 又∵S7=48,S14=60,∴S21=63. 答案:D 4.已知等比数列{an}是递增数列,Sn 是{an}的前 n 项和.若 a1,a3 是方程 x -5x+4=0 的两个根,则 S6=________. 解析:x -5x+4=0 的两根为 1 和 4,又数列递增, 所以 a1=1,a3=4,q=2. 1×1-2 所以 S6= =63. 1-2 答案:63 5.在等比数列{an}中,已知 a1=2,q=3,若 Sn=26,求 n. 解:a1=2,q=3,Sn=26,
相关文档
最新文档