(完整版)昆明理工大学物理习题集(下)第十六章元答案
2020学年人教版物理第十六章电压电阻单元复习题(含答案)

物理第十六章电压电阻单元复习题一、选择题1、一部录音机要求电源电压是9伏,如果用干电池作电源,则需要将()A.6节干电池并联B.6节干电池串联C.3节干电池并联D.3节干电池串联2.下列说法中正确的是()A.导体中没有电流通过时,电阻为零B.导体中通过的电流越大,其对电流的阻碍作用越大,电阻越大C.导体中通过的电流越小,其对电流的阻碍作用越大,电阻越小D.导体的电阻跟导体中有无电流和电流的大小无关3.下列电路中,当开关S闭合时,电压表能直接测出灯泡L1两端电压的是()4、为了研究电阻跟哪些因素有关,实验中必须()A.保持一个因素不变,改变其它因素,比较电阻中电流的大小B.一次只改变某一因素,保持其它因素不变,比较每次电阻中的电流大小C.同时变化多个因素,保持其它因素不变,比较每次电阻中电流的大小D.保持电阻两端电压不变,同时改变一个或几个因素,比较电阻中电流大小5.如图是实验电路连接完毕后,滑动变阻器接入电路的四种情形,已经可以闭合开关进行实验的是()6.把甲、乙两段电阻线接在相同的电压下,通过甲线的电流大于通过乙线的电流,忽略温度的影响,下列判断正确的是()A.甲线的电阻大B.乙线的电阻大C.甲、乙两线的电阻一样大D.无法判断7.如图所示,电源两极间电压为6V,电压表示数为4V,则()A. 灯泡L1两端电压为6VB. 灯泡L2两端电压为6VC. 灯泡L2两端电压为4VD. 灯泡L1两端电压为4V8、在某电路中,两只灯泡两端的电压相等,由此可知,两灯泡的连接方式是()A.一定是串联的B.一定是并联的C.串联、并联都有可能D.无法判断9、关于导体的电阻说法错误的是()A.两根长短、粗细都相同的铜导线和铝导线,铜导线的电阻小。
B.长短相同的铜导线,粗的导线比细的导线电阻小。
C.粗细相同的铝导线,长的导线比短的导线电阻大。
D.用铝导线换下输电线路中的铜导线,保持电阻值不变,铝导线的横截面积应和原来铜导线的横截面积一样。
昆明理工大学物理习题集(下)第十四章元答案

S 1S 2 第十四章 光学一、选择题1. 有三种装置(1)完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2)同一盏钠光灯,用黑纸盖住其中部,将钠光灯分成上下两部分,同时照射到屏上;(3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行,且间距很小的两条狭缝,此二亮缝的光照射到屏上。
以上三种装置,能在屏上形成稳定干涉花样的是:[ A ](A )装置(3) (B )装置(2) (C )装置(1)、(3) (D )装置(2)(3)2. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为:[ A ](A )1.5λ (B )1.5λ/n (C )1.5n λ (D )3λ3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中:[ C ](A )传播的路程相等,走过的光程相等; (B )传播的路程相等,走过的光程不相等;(C )传播的路程不相等,走过的光程相等; (D )传播的路程不相等,走过的光程不相等。
4. 如图,如果S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分为真空,光沿这两条路径的光程差等于:[ B ](A ) 222111()();r n t r n t +-+(B ) 222111[(1)][(1)];r n t r n t +--+- (C ) 222111()();r n t r n t ---(D ) 2211n t n t -5. 双缝干涉实验中,入射光波长为λ,用玻璃纸遮住其中一缝,若玻璃纸中光程比相同厚度的空气大λ5.2,则屏上原0级明纹中心处 [ B ](A ) 仍为明纹中心 (B ) 变为暗纹中心(C ) 不是最明,也不是最暗 (D ) 无法确定6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为:[ B ](A ) 5.0×10-4cm (B ) 6.0×10-4cm(C ) 7.0×10-4cm (D ) 8.0×10-4cm7. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。
昆明理工大学物理习题集(下)第十三章元答案

u
u2
(C) y Acos[(t x )] (D) y Acos[(t x) ]
u
u
5、一平面简谐波以波速 u 沿 x 轴正方向传播, O 为坐标原点。已知 P 点的振动方程为
y Acost ,则:[ CC ]
(A) O 点的振动方程为 y Acos(t l / u)
(B)波的表达式为 y Acos[t (l / u) (x / u)]
(A)λ
(B)λ/2
(C)3λ/4
(D)λ/4
12、若在弦线上的驻波表达式是 y 0.20sin 2x cos20t 。则形成该驻波的两个反向进行
的行波为:[ CC ]
(A)
y1
0.10cos[2
(10t
x)
2
]
y2
0.10cos[2
(10t
x)
2
]
(B)
y1
0.10cos[2
(10t
x)
4
S2
C
N
引起的振动
均干涉相消,则 S 2 的初相应为2
2k
3 2
,k
0,1,2,。
8.如图所示,一平面简谐波沿 x 轴正方向传播,波长为 ,若 P1 点处质点的振动方程
为 y1 Acos(2vt ) , 则 P2 点 处 质 点 的 振 动 方 程 为
y2
A c os [2v
2
(L1
L2 )]
]
y2
0.10cos[2
(10t
x)
3 4
]
(C)
y1
0.10
cos[2
(10t
x)
2
]
y2
0.10cos[2
昆明理工大学物理习题集(下)第十二章元答案

第十二章 振动一.选择题1、劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为: [ C ](A )21212)(2k k k k m T +=π (B )212k k m T +=π (C )2121)(2k k k k m T +=π(D )2122k k m T +=π 2. 一弹簧振子作简谐振动,当位移的大小为振幅的一半时,其动能为振动总能量的[ D ](A )1/4 (B )1/2 (C )2/1 (D )3/4 (E )2/33. 一质点作简谐振动,当它由平衡位置向x 轴正方向运动时,对应的振动相位是: [ C ](A )π (B )0 (C )-π/2 (D )π/24. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,角频率为ω,则此简谐振动的振动方程为:[ C ](A ))cm )(32cos(πω+=t x (B ))cm )(32cos(2πω-=t x (C ))cm )(32cos(2πω+=t x (D ))cm )(32cos(2πω+-=t x 5. 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为:[ C ](A )T /4 (B )T /12 (C )T /6 (D )T /86.一质点在x 轴上做简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为:[ B ](A )1s (B )(2/3)s (C )(4/3)s (D )2s7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m /2的物体,则系统振动周期T 2等于:[ D ](A ) 2 T 1 (B ) T 1 (C ) 2/1T (D ) T 1/2 (E ) T 1 /48.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相ϕ=-π/3,则下图中与之对应的振动曲线是:[ A ]9.一倔强系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示,则振动系统的频率为:[ B ](A ) m k π21(B ) m k 621π (C )m k 321π (D ) m k 321π 10.一质点作简谐振动,振动方程为x =cos(ωt +ϕ),当时间t =T /2时,质点的速为:[ A ](A ) A ωsin ϕ (B )-A ωsin ϕ (C ) -A ωcos ϕ (D ) A ωcos ϕ11.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ C ](A ) θ (B ) π (C ) 0 (D ) π/212.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为x 1=A cos(ωt +α),当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:[ B ](A ) x 2=A cos (ω t +α +π/2) (B ) x 2=A cos (ω t +α -π/2)(C ) x 2=A cos (ω t +α-3π/2) (D ) x 2=A cos (ω t +α + π)13.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为下图中哪一图?[ B ]14. 一质点在x 轴作简谐振动,已知0=t 时,m x 01.00-=,s m /03.00=v ,s /3=ω,则质点的简谐振动方程为:[ B ](A ) ))(3cos(02.032SI t x π+= (B ) ))(3cos(02.034SI t x π+=(C ) ))(3cos(01.032SI t x π+= (D ) ))(3cos(01.034SI t x π+=15. 如图所示为质点作简谐振动时的x -t 曲线,则质点的振动方程为:[ C ](A ) ))(cos(2.03232SI t x ππ+=(B ) ))(cos(2.03232SI t x ππ-=(C ) ))(cos(2.03234SI t x ππ+=(D ) ))(cos(2.03234SI t x ππ-=16. 两个同方向、同频率、等振幅的简谐振动,合成后振幅仍为A ,则这两个分简谐振动的(C) (B) (A) (D)O x ω -A /2 A O x A /2 ω A x O A /2 A ω O x A ω -A /2相位差为:[ C ](A ) 60° (B ) 90° (C ) 120° (D ) 180°17. 两个同周期简谐振动曲线如图所示,1x 的相位比2x 的相位:[ B ](A )落后2/π(B )超前2/π(C )落后π(D )超前π18. 一质点做简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,这质点的初相位应为:[ C ](A )6/π(B ) 6/5π(C ) 6/5π-(D ) 6/π-19. 弹簧振子在光滑水平面上做简谐振动时,弹性力在半个周期内所做的功为:[ D ](A ) 2kA (B ) 221kA (C ) 241kA (D ) 020. 一简谐振动振幅A ,则振动动能为能量最大值一半时振动物体位置x 等于:[ B ](A ) 2A (B ) 22A (C ) 23A (D ) A 二、填空题 1、一质点作简谐振动,速度最大值cm/s 5m =v ,振幅A =2cm 。
大一物理习题及答案 (下)

(A) (B) .
(C) (D)
解:
二. 填空题:
1.一段导线被弯成圆心在O点、半径为R的三段圆弧 、 、 ,它们构成了一个闭合回路, 位于XOY平面内, 和 分别位于另两个坐标面中(如图)。均匀磁场 沿X轴正方向穿过圆弧 与坐标轴所围成的平面。设磁感应强度随时间的变化率为K(K>0),则闭合回路a b c a中
5.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝。当导线中的电流I为2.0A时,测得铁环内的磁感应强度的大小B为1.0T,则可求得铁环的相对磁导率 为(真空磁导率 ):[B]
(A) (B)
(C) (D)63.3
解:n=10匝/cm=1000匝/m
二.填空题:
1.铜的相对磁导率 ,其磁化率 ,它是抗磁性磁介质。 ∴
方向:
或:
(2)取顺时针方向为回路L的正方向.
, 的方向与L的正方向一致;
, 的方向与L的正方向相反.
4.如图所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:
(1) 在任意时刻t通过矩形线圈的磁通量.
4.关于稳恒磁场的磁场强度 的下列几种说法哪个是正确的?[C]
(A) 仅与传导电流有关。(还与磁化电流有关)
(B)若闭合曲线内没有包围传导电流,则曲线上各点的 必为零。(闭合曲线外有传导电流)
(C)若闭合曲线上各点 均为零,则该曲线所包围传导电流的代数和为零。
昆明理工大学习题解题答案

城市学院物理习题解答(48学时)第一章 质点运动学一、选择题:1(D ),2(D ), 3(C ), 4(B ), 5(D ), 6(B ), 7(B ), 8(B ),9(D ), 10(C ), 11(B ), 12(C ) 二、填空题:1、 )]()5cos()5sin([50SI j t i t+-, 0, 圆;2、]sin 2cos )[(22t t Aetωβωωωββ+--, 2,1,0)21(=+n n ωπ;3、tS ∆,t v ∆-02 ;4、24020)(,R bt v b bt v +++;5、)/(4,1622s rad Rt ; 6、(1),(3),(4);7、)1(22S S +;8、)(4SI j i+-; 9、)/(20s m ;10、)/(1.02s m ;11、)(1,)(,2RC b cRct b c ±--;12、)/(20),/(3.17s m s m三、计算题1.解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 10022)(103/23SI t x +=.3.解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.解:由t kv dt dv 2/-=ktdt v dv -=2 积分:⎰⎰-=tdt k v dv2C kt v +-=-2211当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 5.解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x v dx x vdv 020)62(s m x x v /)(22/13+=6.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030牵连速度:s m v s s /35=',方向水平; 相对速度:s p v '大小未知,方向偏向车后045. 由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:3530sin 30cos 00=+ps ps v vss 's m v ps /6.25=.第二章 牛顿定律一、选择题:1(B ),2(D ), 3(E ), 4(C ), 5(B ), 6(C )。
大学物理练习册答案(下册)-
(1) x Acos( 2π t )
T
(2)
x Acos( 2π t 1 )
T2
(3)x Acos( 2π t 1 ) (4) x Acos( 2π t 3 )
T3
T4
2.两位外星人A和B生活在一个没有自转,没有大气, 表面光滑的匀质球形小星球上。有一次他们决定进 行一场比赛,从他们所在的位置出发,各自采用航 天技术看谁能先达到星球的对径位置。A计划穿过星 体直径凿一条通道,采用自由下落方式到达目标位 置;B计划沿着紧贴着星球表面的空间轨道,象人造 卫星一样航行到目标位置。试问A和B谁会赢得比赛?
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波在t时刻的波形曲线如图所示, 则该时刻能量为最大值的媒y质质元的位置是:
A. o, b, d, f B. a, c, e, g O'
C. o, d
D. b, f O
d
a
eg
c
b
fx
(二) 填空题 1.一横波的波动方程为: y 0.01cos(250πt 10πx)(m)
解: 以星球中心为原点在直径 通道上设置x轴,A在x处受引力:
Fx
G
Mm R3
x
(注: 只有半径为x的星球部分对A有引力)
式中M为星球质量, R为星球半径, m为A的质量
A做简谐振动, 周期为 T 2 m / k k GMm / R3
A到达目标所需的时间为 tA T / 2 R R / GM B以第一宇宙速度做圆周运动 vB GM / R B到达目标所需的时间为 tB R / vB R R / GM
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s, 其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动, 则质点第二次通过 x=-2cm,处时刻为:[]
昆明理工大学物理习题册下册答案
第十章 气体动理论一、选择题参考答案1. B ;2. A ;3. B ;4. B ;5. B ;6. A ;7. C ;8. B ;9. C ;10. C ;11. A ;12. C ; 13. C ;14. D ;15. D ;16. C ;17. B ;18. C ;19. B ;20. C ;21. B ;22. B ;23. D ;24. D ;25. C ;26. A ;27. B ;28. B ;29. A ;30. D二、填空题参考答案1、(1)气体分子的大小与气体分子的距离比较,可以忽略不计;)气体分子的大小与气体分子的距离比较,可以忽略不计; (2)除了分子碰撞的瞬间外,分子之间的相互作用力可以忽略;)除了分子碰撞的瞬间外,分子之间的相互作用力可以忽略; (3)分子之间以及分子与器壁之间的碰撞是完全弹性碰撞。
)分子之间以及分子与器壁之间的碰撞是完全弹性碰撞。
2、体积、温度和压强,分子的运动速度(或分子运动速度、分子的动量、分子的动能)3、一个点;一条曲线;一条封闭曲线。
、一个点;一条曲线;一条封闭曲线。
4、s /m kg 101.2-23×´;s ×´229m /1031;a 5P 104´5、1;46、kT 23;kT 25;mol/25M MRT7、12.5J ;20.8J ;24.9J 。
8、1:1;2:1;10:3。
9、241092.3´10、1:1:1 11、(1)ò¥100d )(v v f ;(2)ò¥100d )(v v Nf12、(1)ò¥d )(v v v Nf ;(2)òò¥¥v v f(v)dv v v v /d )(0f ;(3)ò¥0d )(vv v f13、氩;氦、氩;氦14、1000m/s ; 10002´m/s15、2000m/s ;500m/s16、保持不变、保持不变17、495m/s 18、219、12M M20、17s 1042.5-´;cm 1065-´三、计算题参考答案1.解:.解:据力学平衡条件,当水银滴刚好处在管的中央维持平衡,表明左、右两边氢气的体积相等,压强也相等。
大学物理习题集加答案
大学物理习题集加答案大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量=×10-8W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0=×1012F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h=×1034J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A)试验电荷是电量极小的正电荷;(B)试验电荷是体积极小的正电荷;(C)试验电荷是体积和电量都极小的正电荷;(D)试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E=q r/(40r3),以下说法正确的是(A)r→0时,E→∞;(B)r→0时,q不能作为点电荷,公式不适用;(C)r→0时,q仍是点电荷,但公式无意义;(D)r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A)其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B)一个正点电荷和一个负点电荷组成的系统;(C)两个等量异号电荷组成的系统;(D)一个正电荷和一个负电荷组成的系统.(E)两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f,其电场强度的大小为f/q0,以下说法正确的是(A)E正比于f;(B)E反比于q0;(C)E正比于f且反比于q0;(D)电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A)f12的大小不变,但方向改变,q1所受的总电场力不变;(B)f12的大小改变了,但方向没变,q1受的总电场力不变;(C)f12的大小和方向都不会改变,但q1受的总电场力发生了变化;(D)f12的大小、方向均发生改变,q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP,则和Q的数量关系式为,且与Q为号电荷(填同号或异号).2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环,缺口宽度为d(d<<r)环上均匀带正电,总电量为q,如图所示,则圆心o处的场强大小< p=""> E=,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R,设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形,电荷线密度为=0sin,式中0为一常数,为半径R与X轴所成的夹角,如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1.以下说法错误的是(A)电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A)球面上的电场强度矢量E处处不等;(B)球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C)球面上的电场强度矢量E的方向一定指向球心;(D)球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A)电场线上各点的电场强度大小相等;(B)电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A)开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D)在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2.(B)R2E/2.(C)R2E.(D)R2E.5.真空中有AB两板,相距为d,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2).(B)q2/(0S).(C)2q2/(0S).(D)q2/(20S).二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则=,=.2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度,可将园盘分成无数个同心的细园环,园环宽度为d r,半径为r,此面元的面积d S=,带电量为d q=,此细园环在中心轴线上距圆心x的一点产生的电场强度E=.3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q的点电荷,O、P间距离为h, 试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A)S面上的E必定为零;(B)S面内的电荷必定为零;(C)空间电荷的代数和为零;(D)S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A)S面上所有点的E必定不为零;(B)S面上有些点的E可能为零;(C)空间电荷的代数和一定不为零;(D)空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A)如高斯面上E处处为零,则该面内必无电荷;(B)如高斯面内无电荷,则高斯面上E处处为零;(C)如高斯面上E处处不为零,则高斯面内必有电荷;(D)如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E)高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小,r表示离对称轴的距离)(A)“无限长”均匀带电直线;(B)半径为R的“无限长”均匀带电圆柱体;(C)半径为R的“无限长”均匀带电圆柱面;(D)半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q的点电荷位于立方体的A角上,则通过侧面abcd的电场强度通量等于:(A)q/240.(B)q/120.(C)q/60.(D)q/480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为(0)及2,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量=;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量=,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′,两球心间距离=d,如图所示,求:(1)在球形空腔内,球心O处的电场强度E0;(2)在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且=d.练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A)都是常量.(B)都不是常量.(C)E是常量,U不是常量.(D)U是常量,E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S,并把它移至无穷远处(如图, 若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].(B)i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].(C)i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].(D)-i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A)沿着电力线移动负电荷,负电荷的电势能是增加的;(B)场强弱的地方电位一定低,电位高的地方场强一定强;(C)等势面上各点的场强大小一定相等;(D)初速度为零的点电荷,仅在电场力作用下,总是从高电位处向低电位运动;(E)场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A).(B).(C).(D).5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A)从A到B,电场力作功最大.(B)从A到各点,电场力作功相等.(C)从A到D,电场力作功最大.(D)从A到C,电场力作功最大.二.填空题1.电量分别为q1,q2,q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R,则b点处的电势U=.2.如图,在场强为E的均匀电场中,A、B两点距离为d,AB连线方向与E方向一致,从A点经任意路径到B点的场强线积分=.3.如图所示,BCD是以O点为圆心,以R为半径的半圆弧,在A点有一电量为+q的点电荷,O点有一电量为–q的点电荷,线段=R,现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点).2.一均匀带电的球层,其电荷体密度为,球层内表面半径为R1,外表面半径为R2,设无穷远处为电势零点,求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A)电场强度相等的地方电势一定相等;(B)电势梯度绝对值大的地方场强的绝对值也一定大;(C)带正电的导体上电势一定为正;(D)电势为零的导体一定不带电2.以下说法中正确的是(A)场强大的地方电位一定高;(B)带负电的物体电位一定为负;(C)场强相等处电势梯度不一定相等;(D)场强为零处电位不一定为零.3.如图,真空中有一点电荷Q及空心金属球壳A,A处于静电平衡,球内有一点M,球壳中有一点N,以下说法正确的是(A)E M≠0,E N=0,Q在M处产生电场,而在N处不产生电场;(B)E M=0,E N≠0,Q在M处不产生电场,而在N处产生电场;(C)E M=E N=0,Q在M、N处都不产生电场;(D)E M≠0,E N≠0,Q在M、N处都产生电场;(E)E M=E N=0,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1,球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3,q1受的总电场力为F,则(A)F1=F2=F3=F=0.(B)F1=q1q2/(40d2),F2=0,F3=0,F=F1.(C)F1=q1q2/(40d2),F2=0,F3=q1q2/(40d2)(即与F1反向),F=0.(D)F1=q1q2/(40d2),F2与F3的合力与F1等值反向,F=0.(E)F1=q1q2/(40d2),F2=q1q2/(40d2)(即与F1反向),F3=0,F=0.5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q,则B球(A)带正电.(B)带负电.(C)不带电.(D)上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中,P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A=.2.若静电场的某个立体区域电势等于恒量,则该区域的电场强度分布是;若电势随空间坐标作线性变化,则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q的质点以直线为轴线作匀速圆周运动,该质点的速率v=.三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度2之比值1/2.2.已知某静电场的电势函数U=-+ln x(SI),求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D,电势分别为U A、U C、U D,其附近的电场强度分别为E A、E C、E D,则:(A)A>D,C=0,E A>E D,E C=0,U A=U C=U D.(B)A>D,C=0,E A>E D,E C=0,U A>U C=U D.(C)A=C,D≠0,E A=E C=0,E D≠0,U A=U C=0,U D≠0.(D)D>0,C<0,A<0,E D沿法线向外,E C沿法线指向C,E A平行AB 指向外,U B>U C>U A.2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B)Q.(C)+Q/2.(D)–Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A)带正电.(B)带负电.(C)不带电.(D)左边带正电,右边带负电.4.半径不等的两金属球A、B,R A=2R B,A球带正电Q,B球带负电2Q,今用导线将两球联接起来,则(A)两球各自带电量不变.(B)两球的带电量相等.(C)两球的电位相等.(D)A球电位比B球高.5.如图,真空中有一点电荷q,旁边有一半径为R的球形带电导体,q距球心为d(d>R)球体旁附近有一点P,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A)(20)+q/[40(d-R)2];(B)(20)-q/[40(d-R)2];(C)0+q/[40(d-R)2];(D)0-q/[40(d-R)2];(E)0;(F)以上答案全不对.二.填空题1.如图,一平行板电容器,极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图,把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间,则导体薄板C的电势U C=.2.地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度=,地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1=和r2=的两个球形导体,各带电量q=×108C,两球心相距很远,若用细导线将两球连接起来,并设无限远处为电势零点,求:(1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量,有一关系式为P=0(r1)E,电位移矢量公式为D=0E+P,则(A)二公式适用于任何介质.(B)二公式只适用于各向同性电介质.(C)二公式只适用于各向同性且均匀的电介质.(D)前者适用于各向同性电介质,后者适用于任何电介质.2.电极化强度P(A)只与外电场有关.(B)只与极化电荷产生的电场有关.(C)与外场和极化电荷产生的电场都有关.(D)只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R,带电量为Q的导体球,测得距中心O为r处的A点场强为E A=Q r/(40r3),现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A)A点的电场强度E A=E A/r;(B);(C)=Q/0;(D)导体球面上的电荷面密度=Q/(4R2).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C,极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A)C↓,U↑,W↑,E↑.(B)C↑,U↓,W↓,E不变.(C)C↑,U↑,W↑,E↑.(D)C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A)2倍.(B)1/2倍.(C)1/4倍.(D)4倍.二.填空题1.一平行板电容器,充电后断开电源,然后使两极板间充满相对介电常数为r的各向同性均匀电介质,此时两极板间的电场强度为原来的倍,电场能量是原来的倍.2.在相对介电常数r=4的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E=.3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d,则电介质中的电场能量密度w=.三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R1=2cm,R2=5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1)球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功?(2)使球上电荷从零开始加到Q的过程中,外力共作多少功?练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A)I1=I2J1=J2I1=I2J1=J2.(B)I1=I2J1>J2I1<I2J1=J2.(C)I1<I2J1=J2I1=I2J1>J2.(D)I1<I2J1>J2I1<I2J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A)I1<I2J1<J2I1=I2J1=J2.(B)I1=I2J1=J2I1=I2J1=J2.(C)I1=I2J1=J2I1<I2J1<J2.(D)I1<I2J1<J2I1<I2J1<J2.3.室温下,铜导线内自由电子数密度为n=×1028个/米3,电流密度的大小J=2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B)×10-2米/秒.(C)×102米/秒.(D)×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r的点的电场强度为:(A)2rI/(l2).(B)I/(2rl).(C)Il/(2r2).(D)I(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3,方向如图,则由A到B的电势增量U B-U A为:(A)2-1-I1R1+I2R2-I3R.(B)2+1-I1(R1+r1)+I2(R2+r2)-I3R.(C)2-1-I1(R1-r1)+I2(R2-r2).(D)2-1-I1(R1+r1)+I2(R2+r2).二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2=.(铜电阻率×106·cm,铝电阻率×106·cm,)2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成,设电子的电量为e,其平均漂移率为v,导体中单位体积内的自由电子数为n,则电流密度的大小J=,J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a,r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2=7V,内阻分别为r1=3和r2=1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A)=arccos(eBD/p).(B)=arcsin(eBD/p).(C)=arcsin[BD/(ep)].(D)=arccos[BD/(ep)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B)粒子的电荷可以同号也可以异号.(C)两粒子的动量大小必然不同.(D)两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B)其动能和动量都改变.(C)其动能不变,动量改变.(D)其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B)a、b都不会回到出发点.(C)a先回到出发点.(D)b先回到出发点.5.如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A)T1=T2,q1和q2都向顺时针方向旋转;(B)T1=T2,q1和q2都向逆时针方向旋转(C)T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D)T1=T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1.一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向,电子速度大小为.2.磁场中某点处的磁感应强度B=-(T),一电子以速度v=×106i+×106j(m/s)通过该点,则作用于该电子上的磁场力F=.3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B=.三.计算题1.如图所示,一平面塑料圆盘,半径为R,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
(完整版)昆明理工大学物理习题集(下)第十六章元答案
第十六章 量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A ) 频率高的光子易显示波动性 (B ) 个别光子产生的效果以显示粒子性(C ) 光的衍射说明光具有粒子性 (D ) 光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A ) 入射光的频率 (B ) 入射光的强度(C ) 金属的逸出功 (D ) 入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比 (B )与入射光的强度成正比(C )与入射光的频率成线性关系 (D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同 (B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同 (D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加 (B )逸出的光电子初动能增大(C )光电效应的红限频率增大 (D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B ) 1ν<2ν (C ) 1ν=2ν (D )不能确定8. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 量子物理基础
一、选择题:
1. 关于光的波粒二象性,下述说法正确的是 [ D ]
(A ) 频率高的光子易显示波动性 (B ) 个别光子产生的效果以显示粒子性
(C ) 光的衍射说明光具有粒子性 (D ) 光电效应说明光具有粒子性
2. 金属的光电效应的红限依赖于:[ C ]
(A ) 入射光的频率 (B ) 入射光的强度
(C ) 金属的逸出功 (D ) 入射光的频率和金属的逸出功
3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ]
(A )21νν> (B )21νν<
(C )21νν= (D )1ν与2ν的关系还不能确定
4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ]
(A )与入射光的频率成正比 (B )与入射光的强度成正比
(C )与入射光的频率成线性关系 (D )与入射光的强度成线性关系
5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ]
(A )两种情况下的红限频率相同 (B )逸出电子的初动能相同
(C )在单位时间内逸出的电子数相同 (D )遏止电压相同
6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ]
(A )单位时间内逸出的光电子数增加 (B )逸出的光电子初动能增大
(C )光电效应的红限频率增大 (D )发射光电子所需的时间增长
7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ]
(A )1ν>2ν (B ) 1ν<2ν (C ) 1ν=2ν (D )不能确定
8. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ]
(A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.1
9. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ]
(A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h
(D )频率为c /λ (E )以上结论都不对
10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
今要制造能在可见光(频率范围为Hz 109.314⨯—Hz 105.714⨯)下工作的光电管,在这些
材料中应选:[ C ]
(A )钨 (B )钯 (C )铯 (D )铍
11. 关于光电效应有下列说法,其中正确的是: [ D ]
(1)任何波长的可见光照射到任何金属表面都能产生光电效应;
(2)对同一金属如有光电子产生,则入射光的频率不同,光电子的初动能不同;
(3)对同一金属由于入射光的波长不同,单位时间内产生的光电子的数目不同;
(4)对同一金属,若入射光频率不变而强度增加一倍,则饱和光电流也增加一倍。
(A )(1)、(2)、(3) (B )(2)、(3)、(4) (C )(2)、(3) (D )(2)、(4)
12. 某金属产生光电效应的红限波长为0λ,今以波长为λ)(0λλ<的单色光照射该金属,金属释放出的电子(质量为e m )的动量大小为:[ E ]
(A )λh (B ) 0
λh (C )00)(2λλλλ+hc m e (D )02λhc m e (E )00)(2λλλλ-hc m e 13. 入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么:[ C ]
(A )从光照射至金属表面上到发射出光电子之间的时间间隔将明显增加
(B )逸出的光电子的最大初动能将减小
(C )单位时间内从金属表面逸出的光电子数目将减少
(D )有可能不发生光电效应
14. 光电效应中发射的光电子初动能随入射光频率ν的变化关
系如右图所示,由图中的可以直接求出普朗克常数的是:[ C ]
(A )OQ (B )OP (C )OQ OP / (D)OS QS /
15. 康普顿散射中,当散射光子与入射光子方向成夹角φ为[ ]时,散射光子的频率变小得最多;当φ为 [ A ]时,散射光子的频率与入射光子相同。
(A ) 0 (B )2
π (C )π (D )23π 16. 康普顿效应的主要特点是:[ D ]
(A )散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关
(B )散射光的波长均与入射光波长相同的,与散射角、散射体性质无关
(C )散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的,这与散射体的性质无关
(D )散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同,这都与散射体的性质无关
17. 用强度为I ,波长为λ的X 射线分别照射锂(Z =3)和铁(Z =26),若在同一散射角下测得康普顿散射的X 射线波长分别为1L λ和Fe λ,),(1λλλ>Fe L 它们对应的强度分别为Fe Li I I 和,则:[ C ]
(A ) Fe Li Fe Li I I <>,λλ (B ) Fe Li Fe Li I I ==,λλ
(C ) Fe Li Fe Li I I >=,λλ (D ) Fe Li Fe Li I I ><,λλ
18. 光电效应和康普顿效应都包含电子与光子的相互作用,仅就光子和电子的相互作用而言,下列就法正确的是:[ B ]
(A )两种效应都属于光子和电子的弹性碰撞过程
(B )光电效应是由于金属电子吸收光子而形成光电子,康普顿效应是由于光子和自由电子弹性碰撞而形成散射光子和反冲电子
(C )康普顿效应同时遵从动量守恒和能量守恒定律,光电效应只遵从能量守恒定律
(D )两种效应都遵从动量守恒和能量守恒定律
19. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的:[ A ]
(A )动量相同 (B )能量相同 (C )速度相同 (D )动能相同
20. 一个光子和一个电子具有同样的波长,则:[ C ]
(A )光子具有较大的动量 (B )电子具有较大的动量
(C )它们具有相同的动量 (D )它们的动量不能确定
(E )光子没有动量
21. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.4Å,则U 约为(普朗克常量s J 1064.634⋅⨯=-h ):[ D ]
(A )150V (B )330V (C )630V (D )940V
22. 若α粒子(电量为e 2)在磁感应强度为B 的均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是:[ A ]
(A )eRB h 2 (B )eRB
h (C )eRBh 21 (D )eRBh 1 23. 设氢原子的动能等于氢原子处于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为:[ A ]
(A )mkT h 3=λ (B )mkT
h 5=λ (C )h mkT 3=λ (D )h mkT 5=λ 24. 如图所示,一束动量为P 的电子,通过缝宽为a 的狭缝,在距离狭缝为R 处放置一荧光屏,屏上衍射图样中央最大的宽度d 等于:[ D ]
(A )R
a 2
2 (B )P ha 2 (C )RP ha 2 (D )aP
Rh 2 25. 若外来单色光把氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱线的条数是:[ C ]
(A )1 (B )2 (C )3 (D )6
26. 由氢原子理论知,当大量氢原子处于3=n 的激发态时,原子跃迁将发出:[ C ]
(A )一种波长的光 (B )两种波长的光
(C )三种波长的光 (D )连续光谱
27. 关于不确定关系η≥⋅∆∆x p x 有以下几种理解,正确的是:[ C ]
(1)粒子的动量不可能确定
(2)粒子的坐标不可能确定
(3)粒子的动量和坐标不可能同时确定
(4)不确定关系不仅适用于电子和光子,也适用于其它粒子
(A )(1)、(2) (B )(2)、(4) (C )(3)、(4) (D )(1)、(4)
28. 如果电子被限制在边界x 与x x ∆+之间,x ∆为0.5nm 。
则电子动量x 分量的不确定度。