昆明理工大学物理习题集(下)第十二章元答案

合集下载

昆明理工大学物理习题册第十二章 气体动理论(参考答案动答案(改)

昆明理工大学物理习题册第十二章 气体动理论(参考答案动答案(改)

平衡时有:
,代入前式得
由题意,
时,


又有题给物体的振动周期为
,可得角频率为

所以
解二: (1)从静止释放,显然拉长量等于振幅 A(5cm) ,
频率 所以:
(2)总能量
J

时,

占总能量的

占总能量的

E k (24 / 25) E 1.07 10 2 J
10.解: (1) 两个振动方向相同,频率相同的简谐振动合成后还是简谐振动,合振动方程为
二、填空题参考答案:
5 5 3 cos( t ) (SI) , x 2 10 2 cos( t ) 2 2 2 2 4 2、 0.05cm arccos (或 37 0 ) 5 3 3、(1) (2) 或 3 2 2 2 3 2 4、(1) x A cos( t ) (SI) t ) 或 x A cos( T 2 T 2 2 ( 2 ) x A cos( t ) (SI) T 3
1 0、振动系统本身性质;初始条件 11 、
T 2
2m k4、 (1) 2 15、 2 : 1
2 4 或 3 3
(2)2 2 :1 m 2k
16 、
2 A 2 2 3T 8
1.6Hz
T 8 18 、 4 : 1
17、 19 、 200 N/m

解上面两式可得 由图可知质点由位移x 0 = -5 和v 0 程得: (SI) 则有 故所求振动方程为 ,所以 (SI) 的状态到x=0 和v 的状态所需时间为 2s,代入振动方
3.解: 平衡位置 当 时,平衡点为 C 处。设此时进入水中的深度为 a

《大学物理》第12单元课后答案 高等教育出版社

《大学物理》第12单元课后答案 高等教育出版社


0 I 1 I 2 ( d i ctg d j ) 2
20. 均匀带电刚性细杆 AB, 电荷线密度为 , 绕垂直于直线的轴 O 以 角速度匀速转动(O 点在细杆 AB 延长线上), 求: (1) O 点的磁感应强度 Bo ; [ Bo (2) 磁矩 Pm ; Pm

kh
,方向如图所示。
所以: IBS cos 2 a sg sin , tg
2
半圆弧 AaB 所受作用力: FAaB
杭州电子科技大学
da

后 答
案 网
M pm B , M IBS sin

IB 0 , 15.1 2 sg
0 I 1 I 2 2
行。 四、计算题:
da
Page67
16. 两个平行放置的同轴圆环形导体,若通以电流后,它们彼此排斥,则两环中电流流动的方向平 【 错 】
17. 一无限长直导线通以电流 I 1 , 其旁有一直角三角形线圈通以电流 I 2 , 线圈与长直导线在同一平
kh
面内,尺寸如图所示求 bc, ca 两段导线所受的安培力.
I I I I d l d l tg 1 , Fca 0 1 2 ln ( i j ) ,安培力大小: Fca 0 1 2 ln d d 2 2
18. 一边长 a 10cm 的正方形铜线圈,放在均匀外磁场中, B 竖直向上,且 B 9.4 10 T 线圈中 电流为 I=10A. (1) 今使线圈平面保持竖直,问线圈所受的磁力矩为多少?[M=9.4×10 Nm]
ww
w.
(A) Fa Fb Fc
(B) Fa Fb Fc (C) Fb Fc Fa

昆明理工大学物理习题册带答案

昆明理工大学物理习题册带答案
(A) . (B) . (C) . (D) .
16.某人骑自行车以速率 向正西方向行驶,遇到由北向南刮的风(设风速大小也为 ),则他感到风是从 [ ]
(A)东北方向吹来;(B)东南方向吹来;(C)西北方向吹来;(D)西南方向吹来.
二.填空题:
1.在XY平面内有一运动的质点,其运动方程为 ,则 时刻其速度 ,其切向加速度的大小 ;该质点运动的轨迹是_____________.
(C)变加速直线运动,加速度沿X轴正方向.
(D)变加速直线运动,加速度沿X轴负方向.
3.质点在某瞬时位于矢径 的端点处其速度大小为[ ]
(A) (B) (C) (D)
4.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率 收绳,绳不伸长,湖水静止,则小船的运动是:[ ]
第一章质点运动学
一.选择题:
1.质点是一个:[ ]
(A)质量很小的物体.
(B)体积很小的物体.
(C)只能作平动的物体.
(D)根据其运动情况,被看作具有质量而没有大小和形状的理想物体.
2.质点的运动方程为 ,则该质点作[ ]
(A)匀加速直线运动,加速度沿X轴正方向.
(B)匀加速直线运动,加速度沿X轴负方向.
(A)匀加速运动 (B)匀减速运动
(C) 变加速运动 (D) 变减速运动 (E) 匀速直线运动
5.一个质点在做匀速率圆周运动时[ ]
(A)切向加速度改变,法向加速度也改变. (B)切向加速度不变,法向加速度改变.
(C)切向加速度不变,法向加速度也不变.(D)切向加速度改变,法向加速度不变.
6.如右图所示,几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选[ ]

【单元练】昆明市云大附中高中物理必修3第十二章【电能-能量守恒定律】经典测试卷(含答案解析)

【单元练】昆明市云大附中高中物理必修3第十二章【电能-能量守恒定律】经典测试卷(含答案解析)

一、选择题1.在如图所示的电路中,当滑动变阻器的滑动片向下移动时,关于电灯L 的亮度及电容器C 所带电荷量Q 的变化判断,正确的是( )A .L 变暗,Q 增大B .L 变暗,Q 减小C .L 变亮,Q 增大D .L 变亮,Q 减小B解析:B当滑动变阻器的滑动片向下移动时,变阻器接入电路的电阻减小,外电路总电阻减小,由闭合电路欧姆定律EI R r=+ 得知,干路电流增大,则电源的内电压增大,由U E Ir =-知路端电压减小,灯L 变暗。

电容器板间电压等于变阻器两端的电压。

由上得知,路端电压减小,则通过灯L 的电流减小,而干路电流增大,则通过R 1的电流1R L I I I =-增大,R 1的电压也增大,则变阻器两端的电压减小,电容器所带电量Q CU =减小。

故选B 。

2.在如图所示的电路中,闭合开关S 后,L 1、L 2两灯泡都正常发光,后来由于某种故障使L 2突然变亮,电压表读数减小,由此推断,该故障可能是( )A .L 1灯丝烧断B .电阻R 2断路C .电阻R 2短路D .电容器被击穿短路D解析:DA. 若L 1灯丝烧断,相当于L 1电阻增大,根据串反并同规律,与L 1并联的电压表的读数增大,与题意不符,A 错误;B. 若电阻R 2断路,相当于R 2的阻值增大,根据串反并同规律,与R 2并联的电压表的读数增大,与题意不符,B 错误;C. 若电阻R 2短路,L 2熄灭,与题意不符,C 错误;D. 若电容器被击穿短路,相当于电阻减小,根据串反并同规律,与电容器并联的电压表的读数减小,与电容器串联的L 2的功率增大,L 2变亮,D 正确。

故选D 。

3.四个定值电阻连成如图所示的电路。

R A 、R C 的规格为“6V 6W”,R B 、R D 的规格为“6V 12W”。

将该电路接在输出电压U =11V 的恒压电源上,则( )A .R A 的功率最大,为6WB .R B 的功率最小,为0. 67WC .R C 的功率最小,为1.33WD .R D 的功率最大,为12W A 解析:A根据规格可算出R A 、R C 的电阻为6Ω,R B 、R D 的电阻为3Ω,故电路总电阻为11Ω,可得回路总电流为1A ,即过R A 、R D 的电流为1A ,过R B 的电流为23A ,过R C 的电流为13A ,根据2P I R =可得R A 、R B 、R C 、R D 的功率依次是6W 、43W 、23W 、3W ,故 A 正确,BCD 错误。

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答

第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。

昆明理工大学物理习题册带答案

昆明理工大学物理习题册带答案
(A) , . (B) , . (C) , . (D) ,0.
9.一质点沿 轴作直线运动,其 曲线如下图所示,如 时,质点位于坐标原点,则 时 质点在 轴上的位置为[ ]
(A) . (B) .(C) . (D) . (E) .
10.一小球沿斜面向上运动,其运动方程为 ,则小球运动到最高点的时刻是 [ ]。
(C)物体作曲线运动时,有可能在某时刻的法向加速度为零.
(D)物体加速度越大,则速度越大.
14.某物体的运动规律为 式中的k为大于零的常数。当t=0时,初速为v0,则速度v与时间t的函数关系是 [ ]
(A) (B)
(C) (D)
15.在相对地面静止的坐标系内,A、B二船都是以 的速率匀速行驶,A船沿 轴正向,B船沿 轴正向,今在A船上设置与静止坐标系方向相同的坐标系( 、 方向单位矢量用 、 表示),那么在A船上的坐标系中,B船的速度为:[ ]
第一章质点运动学
一.选择题:
1.质点是一个:[ ]
(A)质量很小的物体.
(B)体积很小的物体.
(C)只能作平动的物体.
(D)根据其运动情况,被看作具有质量而没有大小和形状的理想物体.
2.质点的运动方程为 ,则该质点作[ ]
(A)匀加速直线运动,加速度沿X轴正方向.
(B)匀加速直线运动,加速度沿X轴负方向.
12.试说明质点作何种运动时将出现下述各种情况( ):
(1) , ;___________.
(2) , ;__________.
13.一物体作如右图所示的斜抛运动,测得在轨道A点处速度 的大小为 ,其方向与水平方向成 的夹角,则物体在A点的切向加速度 __________,轨道的曲率半径 _____________.

大学物理习题集(下)答案

一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。

3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。

昆明理工大学理学院物理实验习题参考答案

6 m 习 题(参考答案)1.仪器误差为0.005mm 的螺旋测微计测量一根直径为D 的钢丝,直径的10次测量值如下表:D U DrU 准形式表示测量结果。

解: 平均值 mm DD i i054.2101101==∑=标准偏差: mm D Di iD0029.0110)(1012≈--=∑=σ算术平均误差: mm D D i i D 0024.010101≈-=∑=δ不确定度A 类分量mm U D A 0029.0==σ, 不确定度B 类分量mm U B 005.0=∆=仪∴ 不确定度mm U UUB AD006.0005.00029.02222≈+=+=相对不确定度%29.0%100054.2006.0%100≈⨯=⨯=DU U D Dr钢丝的直径为:%29.0)006.0054.2(=±=Dr D mmD或 不确定度A 类分量mm U D A 0024.0==δ , 不确定度B 类分量mm U B 005.0=∆=仪∴ 不确定度mm U UUB AD006.0005.00024.02222≈+=+=相对不确定度%29.0%100054.2006.0%100≈⨯=⨯=DU U D Dr钢丝的直径为: %29.0)006.0054.2(=±=Dr D mm D2.指出下列测量值为几位有效数字,哪些数字是可疑数字,并计算相对不确定度。

(1) g =(9.794±0.003)m ·s 2-答:四位有效数字,最后一位“4”是可疑数字,%031.0%100794.9003.0≈⨯=grU;(2) e =(1.61210±0.00007)⨯1019- C答:六位有效数字,最后一位“0”是可疑数字,%0043.0%10061210.100007.0≈⨯=er U ;(3) m =(9.10091±0.00004) ⨯1031-kg答:六位有效数字,最后一位“1”是可疑数字,%00044.0%10010091.900004.0≈⨯=mr U ;(4) C =(2.9979245±0.0000003)810⨯m/s 答:八位有效数字,最后一位“5”是可疑数字,%00001.0%1009979245.20000003.0≈⨯=Cr U 。

大学物理课后习题答案第十二章

第12章 机械振动 习题及答案1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1);(2);(3);(4).答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。

对于简谐振动,有,故(3)表示简谐振动。

2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍?(1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。

解:当时,(1)劲度系数k 不变。

(2)频率不变。

(3)总机械能(4)最大速度(5) 最大加速度3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为212k k mT +='π4. 完全相同的弹簧振子,时刻的状态如图所示,其相位分别为多少?解:对于弹簧振子,时,,(a ),故km(a)kmv(b)kmv(c)km(d),故(b ),故,故(c ),故,故 (d ),故 ,故5、如图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R 。

昆明理工大学大学物理习题册下

第十章气体动理论一、选择题1.关于温度的意义,有以下几种说法:〔1〕气体的温度是分子平均平动动能的量度;〔2〕气体的温度是大量气体分子热运动的集体表现,具有统计意义;〔3〕温度的上下反映物质局部子运动剧烈程度的不同;〔4〕从微观上看,气体的温度表示每个气体分子的冷热程度。

上述说法中正确的选项是:[ (B) ]〔A〕〔1〕、〔2〕、〔4〕〔B〕〔1〕、〔2〕、〔3〕〔C〕〔2〕、〔3〕、〔4〕〔D〕〔1〕、〔3〕、〔4〕2.一瓶氦气和一瓶氧气,它们的压强和温度都一样,但体积不同,那么它们的[ (A ) ] 〔A〕单位体积的分子数一样〔B〕单位体积的质量一样〔C〕分子的方均根速率一样〔D〕气体能一样3.一瓶氦气和一瓶氮气质量密度一样,分子平均平动动能一样,而且它们都处于平衡状态,那么它们[ (B) ]〔A〕温度一样、压强一样〔B〕温度一样,但氦气的压强大于氮气的压强〔C〕温度、压强都不一样〔D〕温度一样,但氮气的压强大于氦气的压强4.两容器分别盛有氢气和氦气,假设它们的温度和质量分别相等,那么:[ (A) ]〔A〕两种气体分子的平均平动动能相等〔B〕两种气体分子的平均动能相等〔C〕两种气体分子的平均速率相等〔D〕两种气体的能相等.5.在标准状态下,体积比为1:2的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的能之比为[ (C) ]6.在常温下有1mol的氢气和1mol的氦气各一瓶,假设将它们升高一样的温度,那么[ (A ) ] 〔A〕氢气比氦气的能增量大〔B〕氦气比氢气的能增量大〔C〕氢气和氦气的能增量一样〔D〕不能确定哪一种气体能的增量大7.温度、压强一样的氦气和氧气,它们分子的平均动能ε和平均平动动能w一定有如下关系[ (C ) ]〔A〕ε和w都相等〔B〕ε相等,而w不相等〔C 〕w 相等,而ε不相等 〔D 〕ε和w 都不相等8.1mol 刚性双原子分子理想气体,当温度为T 时,其能为 [ (C) ]9.在容积不变的封闭容器,理想气体分子的平均速率假设提高为原来的2倍,那么 [ (D) ] 〔A 〕温度和压强都提高为原来的2倍〔B 〕温度为原来的2倍,压强为原来的4倍〔C 〕温度为原来的4倍,压强为原来的2倍〔D 〕温度和压强都为原来的4倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 振动一.选择题1、劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为: [ C ](A )21212)(2k k k k m T +=π (B )212k k m T +=π (C )2121)(2k k k k m T +=π(D )2122k k m T +=π 2. 一弹簧振子作简谐振动,当位移的大小为振幅的一半时,其动能为振动总能量的[ D ](A )1/4 (B )1/2 (C )2/1 (D )3/4 (E )2/33. 一质点作简谐振动,当它由平衡位置向x 轴正方向运动时,对应的振动相位是: [ C ](A )π (B )0 (C )-π/2 (D )π/24. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,角频率为ω,则此简谐振动的振动方程为:[ C ](A ))cm )(32cos(πω+=t x (B ))cm )(32cos(2πω-=t x (C ))cm )(32cos(2πω+=t x (D ))cm )(32cos(2πω+-=t x 5. 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为:[ C ](A )T /4 (B )T /12 (C )T /6 (D )T /86.一质点在x 轴上做简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为:[ B ](A )1s (B )(2/3)s (C )(4/3)s (D )2s7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m /2的物体,则系统振动周期T 2等于:[ D ](A ) 2 T 1 (B ) T 1 (C ) 2/1T (D ) T 1/2 (E ) T 1 /48.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相ϕ=-π/3,则下图中与之对应的振动曲线是:[ A ]9.一倔强系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示,则振动系统的频率为:[ B ](A ) m k π21(B ) m k 621π (C )m k 321π (D ) m k 321π 10.一质点作简谐振动,振动方程为x =cos(ωt +ϕ),当时间t =T /2时,质点的速为:[ A ](A ) A ωsin ϕ (B )-A ωsin ϕ (C ) -A ωcos ϕ (D ) A ωcos ϕ11.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ C ](A ) θ (B ) π (C ) 0 (D ) π/212.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为x 1=A cos(ωt +α),当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:[ B ](A ) x 2=A cos (ω t +α +π/2) (B ) x 2=A cos (ω t +α -π/2)(C ) x 2=A cos (ω t +α-3π/2) (D ) x 2=A cos (ω t +α + π)13.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为下图中哪一图?[ B ]14. 一质点在x 轴作简谐振动,已知0=t 时,m x 01.00-=,s m /03.00=v ,s /3=ω,则质点的简谐振动方程为:[ B ](A ) ))(3cos(02.032SI t x π+= (B ) ))(3cos(02.034SI t x π+=(C ) ))(3cos(01.032SI t x π+= (D ) ))(3cos(01.034SI t x π+=15. 如图所示为质点作简谐振动时的x -t 曲线,则质点的振动方程为:[ C ](A ) ))(cos(2.03232SI t x ππ+=(B ) ))(cos(2.03232SI t x ππ-=(C ) ))(cos(2.03234SI t x ππ+=(D ) ))(cos(2.03234SI t x ππ-=16. 两个同方向、同频率、等振幅的简谐振动,合成后振幅仍为A ,则这两个分简谐振动的(C) (B) (A) (D)O x ω -A /2 A O x A /2 ω A x O A /2 A ω O x A ω -A /2相位差为:[ C ](A ) 60° (B ) 90° (C ) 120° (D ) 180°17. 两个同周期简谐振动曲线如图所示,1x 的相位比2x 的相位:[ B ](A )落后2/π(B )超前2/π(C )落后π(D )超前π18. 一质点做简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,这质点的初相位应为:[ C ](A )6/π(B ) 6/5π(C ) 6/5π-(D ) 6/π-19. 弹簧振子在光滑水平面上做简谐振动时,弹性力在半个周期内所做的功为:[ D ](A ) 2kA (B ) 221kA (C ) 241kA (D ) 020. 一简谐振动振幅A ,则振动动能为能量最大值一半时振动物体位置x 等于:[ B ](A ) 2A (B ) 22A (C ) 23A (D ) A 二、填空题 1、一质点作简谐振动,速度最大值cm/s 5m =v ,振幅A =2cm 。

若令速度具有正最大值的那一时刻为t =0时刻,则质点振动方程为:)SI ()225cos(1022π-⨯=-t x ,)SI ()2325cos(1022π+⨯=-t x 。

2、一简谐振动的振动方程为)3cos(ϕ+=t A x ,已知t =0时的初始位移为0.04m ,初速度为0.09m/s,则振幅为 0.05CM ,初相为)37(54arccos 05.00--或cm 3、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示。

若t =0时,(1)振子在位移为A /2处,且向负方向运动,则初相位为 。

(2)振子在平衡位置向正方向运动,则初相位为23223πππ或)(- 4、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点。

已知周期为T ,振幅为A 。

(1)若t =0时质点过x =0处且朝x 轴正方向运动,则振动方程为:x =)SI ()22cos()SI ()232cos(ππππ-=+=t T A x t T A x 或(2)若t =0时质点过x =A /2处且向x 轴负方向运动,则振动方程为:x =)SI ()32cos(ππ+=t T A x 。

5、一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为0x ,此振子自由振动的周期=T gx T 02π= 6、右图中用旋转矢量法表示了一个简谐振动,旋转矢量的长度为0.04m ,旋转角速度4π rad 。

此简谐振动以余弦函数表示的振动方程为:=x (SI )7、一简谐振动的旋转矢量图如图所示,振幅矢量长cm 2,则该简谐振动的初相位为4π,振动方程为:)SI ()4cos(1022ππ+⨯=-t x8、一质点沿x 作简谐振动,周期为T 。

质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移所需要的时间为:12T 。

9、一简谐振动曲线如右图所示,试由图确定在s t 2=时刻质点的位移为: 0 ,速度为: 3PAI CM/S 。

10、简谐振动的周期和频率由 振动系统本身性质所决定,对于给定的简谐振动系统,其振幅、初相由 初始条件决定。

11、一倔强系数为k 的轻质弹簧,下端挂一质量为m 的物体,系统的振动周期为T 。

现将此弹簧截去一半,下端换挂质量为m /2的另一物体,则系统的振动周期变为:2T 。

12、用40N 的力拉一轻弹簧,可使其伸长20cm ,此弹簧下应挂 2 kg的物体,才能使弹簧振子作简谐振动的周期为0.2πs 。

13、一质点作简谐振动,其振动曲线如右图所示,根据此图,它的周期=T3.43s ,用余弦函数描述时初相位=φ 三分之四π 。

14、有两相同的弹簧,其倔强系数均为k 。

(1)把它们串联起来,下面挂一质量为m 的重物,此系统作简谐振动的周期为 。

(2)把它们并联起来,下面挂一质量为m 的重物,此系统作简谐振动的周期为km k m22)2(22)1(ππ。

15、两个简谐振动曲线如图所示,两个简谐振动的频率之比=21:νν2:1 ,加速度最大值之比=m m a a 21: 4:1 始速率之比=2010:v v2:1 。

16、一物体作简谐振动,振动方程为)4cos(πω+=t A x ,在4T t =(T 为周期)时刻,物体的加速度为:222ωA 。

17、一系统作简谐振动,周期为T ,以余弦函数表达振动时,初相位为零,在20T t ≤≤范围内,系统在=t 838T T 时刻动能和势能相等。

18、两弹簧各悬一质量相同的物体,以1:2的频率作振幅相同的简谐振动,则它们的振动能量之比为 4:1 。

19、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为:,振子的振动频率为:Hz 6.1N/m200。

20、两个同方向同频率的简谐振动,其振动方程分别为:)S I ()2/5cos(10621π+⨯=-t x 和 )S I ()5sin(10222t x -⨯=-π,则它们的合振动的振幅为: ,初相位为2m 1042π-⨯。

相关文档
最新文档