【精编】2016-2017年内蒙古呼和浩特市实验教育集团九年级(上)数学期中试卷和参考答案

合集下载

呼和浩特市实验教育集团九年级(上)期中测试卷

呼和浩特市实验教育集团九年级(上)期中测试卷

呼和浩特市实验教育集团九年级(上)期中数学试卷阅卷人·一、选择题(共10题,共30.0分)评分(3分)1、下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题的是()A.①②B. ②③C. ①③D. ①②③(3分)2、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a的值为( )A.1或﹣1B.﹣1C.1D.0(3分)3、下列方程中,有两个不相等的实数根的是()A.x2+x+1=0B.x2﹣x﹣1=0C.x2﹣6x+9=0D.x2﹣2x+3=0(3分)4、已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)(3分)5、已知抛物线y=﹣x2+2x+3的顶点为P,与x轴的两个交点为A,B,那么﹣ABP的面积等于( )A.16B.8C.6D.4(3分)6、如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过() A.第一、二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第二、三、四象限(3分)7、2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机﹣受金融危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A.200(1+a%)2=148B.200(1﹣a%)2=148C.200(1﹣2a%)=148D.200(1﹣a2%)=148(3分)8、已知抛物线y=x2+2x上三点A(﹣5,y1),B(1,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1 < y2 < y3B.y3 < y2 < y1C.y2 < y1 < y3D.y3 < y1 < y2(3分)9、抛物线y=ax2+bx+c与抛物线y=2x2+x﹣3关于x轴对称,则此抛物线的解析式为( )A.y=﹣2x2﹣x+3B.y=﹣2x2+x+3C.y=2x2﹣x+3D.y=﹣2x2+x﹣3(3分)10、二次函数y=ax2+bx+c的图象如图所示,则下列结论﹣﹣abc < 0,﹣b < a+c,﹣4a+2b+c﹣0,﹣2c < 3b,﹣a+b < m(am+b)(m≠1)中正确的是()A.﹣﹣﹣B.﹣﹣﹣C.﹣﹣﹣D.﹣﹣﹣﹣阅卷人·二、填空题(共6题,共18.0分)评分(3分)11、关于x的方程mx2﹣2x+1=0有实数解,则m需满足_________﹣(3分)12、若x1,x2是方程x2﹣4x+2=0的两根,则x1x2+x2x1的值为_________﹣(3分)13、根据下列表中的对应值﹣x2.12.22.32.4ax2+bx+c﹣1.39﹣0.76﹣0.110.56判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的取值范围为_________﹣(3分)14、将二次函数y=x2﹣2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为_________﹣(3分)15、如图所示,已知二次函数y=ax2+bx+c的图象经过两点(﹣1,0)和(0,﹣1),则化简代数式√(a+1a )2−4+√(a−1a)2+4=_________﹣(3分)16、已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1 < x1 < 2,与y轴的正半轴的交点在(0,2)的下方﹣下列结论﹣﹣4a﹣2b+c=0;﹣a < b < 0;﹣2a+c﹣0;﹣2a﹣b+1 < 0﹣其中正确结论有_________﹣(填序号)阅卷人·三、解答题(共8题,共72.0分)评分(15分)17、解下列方程(5分)(1).x2﹣4x﹣3=0;(5分)(2).3x(x﹣1)=2(x﹣1);(5分)(3).y4﹣3y2﹣4=0﹣(6分)18、已知关于x的一元二次方程x2+(4m+1)x+2m﹣1=0;(3分)(1).求证﹣不论m任何实数,方程总有两个不相等的实数根;(3分)(2).若方程的两根为x1、x2且满足1x1+1x2=−12,求m的值﹣(6分)19、如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米﹣(7分)20、已知抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m﹣(3分)(1).请说明此抛物线与x轴的交点情况;(4分)(2).若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值﹣(9分)21、阅读理解题﹣我们知道一元二次方程是转化为一元一次方程来解的,例如﹣解方程x2﹣2x=0,通过因式分解将方程化为x(x﹣1)=0,从而得到x=0或x﹣2两个一元一次方程,通过解这两个一元一次方程,求得原方程的解﹣(4分)(1).利用上述方法解一元二次不等式﹣2x(x﹣1)﹣3(x﹣1) < 0;(5分)(2).利用函数的观点解一元二次不等式x2+6x+5﹣0﹣(9分)22、某公司投资建了一商场,共有商铺30间,据预测,当每间租金定为10万元,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元﹣(4分)(1).当每间商铺的年租金为l3万元时,能租出多少间﹣(5分)(2).若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为275万元﹣(8分)23、如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系﹣(4分)(1).求抛物线的解析式;(4分)(2).已知从某时刻开始的40小时内,水面与河底ED的距离h(单位﹣米)随时间t(单位﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,时)的变化满足函数关系h=﹣1128需禁止船只通行,请通过计算说明﹣在这一时段内,需多少小时禁止船只通行﹣(12分)24、已知,如图抛物线y=ax2+3ax+c(a﹣0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧﹣点B的坐标为(1,0),OC=3OB﹣(4分)(1).求抛物线的解析式;(4分)(2).若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(4分)(3).若点E在x轴上,点P在抛物线上﹣是否存在以A,C,E,P为顶点且以AC为一边的平行四边形﹣若存在,写出点P的坐标;若不存在,请说明理由。

【5套打包】呼和浩特市初三九年级数学上期中考试检测试卷(含答案)

【5套打包】呼和浩特市初三九年级数学上期中考试检测试卷(含答案)

新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x 的一元二次方程是( )A .(x +1)2=2(x +1)B .C .ax 2+bx +c =0D .x 2+2x =x 2﹣12.若关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实根,则m 的取值范围是( )A .m <3B .m ≤3C .m <3且m ≠2D .m ≤3且m ≠23.方程x (x ﹣1)=x 的根是( )A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=04.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D .5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+16.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A.B.C.D.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0 12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是.14.方程x2﹣3x+1=0的解是.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).16.抛物线y=﹣x2+15有最点,其坐标是.17.水稻今年一季度增产a吨,以后每季度比上一季度增产的百分率为x,则第三季度化肥增产的吨数为.18.已知二次函数y=+5x﹣10,设自变量的值分别为x1,x2,x3,且﹣3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系为三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x 2﹣2x =0,∴x (x ﹣2)=0,∴x ﹣2=0或x =0,解得,x 1=2,x 2=0;故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D . 【分析】根据因式分解法解方程对A 进行判断;根据方程解的定义对B 进行判断;根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程,5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .【点评】考查了抛物线的平移以及抛物线解析式的性质.6.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)【分析】先把二次函数化为顶点式的形式,再得出其顶点坐标即可.解:∵原函数解析式可化为:y =﹣(x +2)2+7,∴函数图象的顶点坐标是(﹣2,7).故选:D .【点评】本题考查的是二次函数的性质,根据题意把二次函数的解析式化为顶点式的形式是解答此题的关键.7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解:因为y =(x +2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选:B .【点评】考查顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .要掌握顶点式的性质.8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =1【分析】二次函数的一般形式中的顶点式是:y =a (x ﹣h )2+k (a ≠0,且a ,h ,k 是常数),它的对称轴是x =h ,顶点坐标是(h ,k ).解:y =(x ﹣1)2+2的对称轴是直线x =1.故选:B .【点评】本题主要考查二次函数顶点式中对称轴的求法.9.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .【分析】可以直接利用两根之和得到所求的代数式的值.解:如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2=2.故选:B.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.【分析】根据二次函数的图象与系数的关系可知.解:∵a>0,∴抛物线开口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y轴右侧;∵c>0,∴与y轴的交点为在y轴的正半轴上.故选:A.【点评】本题考查二次函数的图象与系数的关系.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0【分析】根据二次函数的性质可知,只要抛物线开口向上,且与x轴无交点即可.解:欲保证x取一切实数时,函数值y恒为正,则必须保证抛物线开口向上,且与x轴无交点;则a>0且△<0.故选:B.【点评】当x取一切实数时,函数值y恒为正的条件:抛物线开口向上,且与x轴无交点;当x取一切实数时,函数值y恒为负的条件:抛物线开口向下,且与x轴无交点.12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是m≤.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:在有实数根下必须满足△=b2﹣4ac≥0.解:一元二次方程x2﹣3x+m=0有实数根,△=b2﹣4ac=9﹣4m≥0,解得m.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.方程x2﹣3x+1=0的解是x1=,x2=.【分析】观察原方程,可用公式法求解;首先确定a、b、c的值,在b2﹣4ac≥0的前提条件下,代入求根公式进行计算.解:a=1,b=﹣3,c=1,b2﹣4ac=9﹣4=5>0,x=;∴x1=,x2=.故答案为:x1=,x2=.【点评】在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,用直接开平方法简便.因此,在遇到一道题时,应选择适当的方法去解.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【点评】抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.抛物线y=﹣x2+15有最高点,其坐标是(0,15).【分析】根据抛物线的开口方向判断该抛物线的最值情况;根据顶点坐标公式求得顶点坐标.解:∵抛物线y=﹣x2+15的二次项系数a=﹣1<0,∴抛物线y=﹣x2+15的图象的开口方向是向下,∴该抛物线有最大值;当x=0时,y取最大值,即y最大值=15;∴顶点坐标是(0,15).故答案是:高、(0,15).【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 a (1+x )2 .【分析】第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.关键描述语是:以后每季度比上一季度增产的百分率为x .解:依题意可知:第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.故答案为a (1+x )2.【点评】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系,需注意第三季度是在第二季度的基础上增加的.18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 y 1<y 2<y 3【分析】先利用抛物线的对称轴方程得到抛物线的对称轴为直线x =﹣5,而﹣3<x 1<x 2<x 3,然后根据二次函数的性质得到y 1,y 2,y 3的大小关系.解:抛物线的对称轴为直线x =﹣=﹣5,抛物线开口向上,所以当x >﹣5时,y 随x 的增大而增大,而﹣3<x 1<x 2<x 3,所以y 1<y 2<y 3.故答案为y 1<y 2<y 3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;【分析】先移项得x 2﹣4x =﹣1,再把方程两边加上4得到x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,然后利用直接开平方法求解;先移项,然后分解因式得出两个一元一次方程,解一元一次方程即可.解:x 2﹣4x +1=0x 2﹣4x =﹣1,x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,∴x ﹣2=±, ∴x 1=2+,x 2=2﹣;x (x ﹣2)=4﹣2xx (x ﹣2)+2(x ﹣2)=0,(x ﹣2)(x +2)=0,∴x ﹣2=0或x +2=0,∴x 1=2,x 2=﹣2.【点评】本题考查了解一元二次方程﹣配方法:先把方程二次项系数化为1,再把常数项移到方程右边,然后把方程两边加上一次项系数的一半得平方,这样方程左边可写成完全平方式,再利用直接开平方法解方程.也考查了因式分解法解一元二次方程.20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.【分析】先设为顶点式,再把顶点坐标和经过的点(1,2)代入即可解决,解:由抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,可设抛物线为:y =a (x ﹣2)2+4,把(1,2)代入得:2=a +4,解得:a =﹣2,所以抛物线为:y =﹣2(x ﹣2)2+4,即y =﹣2x 2+8x ﹣4,【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【分析】(1)根据题意可得根的判别式△>0,再代入可得9﹣4m >0,再解即可;(2)根据根与系数的关系可得x 1+x 2=﹣,再代入可得答案.解:(1)由题意得:△=(﹣3)2﹣4×1×m =9﹣4m >0,解得:m <;(2)∵x1+x2=﹣=3,x1=1,∴x2=2.【点评】此题主要考查了根与系数的关系,以及根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.22.(8分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【分析】(1)把二次函数的一般式配成顶点式,然后根据二次函数的性质解决问题;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过判断方程﹣x2+x ﹣=0没有实数得到抛物线与x轴没有交点;(3)利用二次函数的性质确定x的范围.解:(1)y=﹣x2+x﹣=﹣(x﹣1)2﹣2,所以抛物线的开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2);(2)当x=0时,y=﹣x2+x﹣=﹣,则抛物线与y轴的交点坐标为(0,﹣);当y=0时,﹣x2+x﹣=0,△<0,方程没有实数解,则抛物线与x轴没有交点;即抛物线与坐标轴的交点坐标为(0,﹣);(3)当x<1时,y随x的增大而增大.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;解:设每件童装应降价x 元,根据题意列方程得,(40﹣x )(20+2x )=1200,解得x 1=20,x 2=10(因为尽快减少库存,不合题意,舍去),答:每件童装降价20元;【点评】本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?【分析】设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,列出面积与x 的二次函数关系式,求最值.解:设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,则其面积S =x •=x (6﹣x )=﹣x 2+6x . ∵0<2x <12,∴0<x <6.∵S =﹣x 2+6x =﹣(x ﹣3)2+9,∴a =﹣1<0,S 有最大值,当x =3时,S 最大值=9.∴设计费最多为9×1000=9000(元).【点评】本题主要考查二次函数的应用,由矩形面积等于长乘以宽列出函数关系式,利用函数关系式求最值,运用二次函数解决实际问题,比较简单.25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)【分析】(1)利用待定系数法求抛物线的解析式;(2)由对称性可直接得出B(5,0),当x=0时,代入抛物线的解析式可得与y轴交点C 的坐标;(3)根据90°所对的弦是直径可知:过O,B,C三点的圆的直径是线段BC,利用勾股定理求BC的长,代入圆的面积公式可以求得面积.解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2﹣4x﹣5;(2)∵对称轴为直线x=2,A(﹣1,0),∴B(5,0),当x=0时,y=﹣5,∴C(0,﹣5),(3)∵∠BOC=90°,∴BC是过O,B,C三点的圆的直径,由题意得:OB=5,OC=5,由勾股定理得;BC==5,S=π•=π,答:过O,B,C三点的圆的面积为π.【点评】本题考查了利用待定系数法求抛物线的解析式和抛物线与两坐标轴的交点,明确令x=0时,求抛物线与y轴的交点;令y=0时,求抛物线与x轴的交点;同时要想求过O,B,C三点的圆的面积就要先求圆的半径可直径,根据圆周角定理可以解决这个问题,从而使问题得以解决.26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.【点评】本题考查二次函数的应用、一次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会构建二次函数解决实际问题中的最值问题,属于中考常考题型.新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=04.下列方程中以1,﹣2为根的一元二次方程是()A.(x+1)(x﹣2)=0 B.(x﹣1)(x+2)=1C.(x+2)2=1 D.5.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A.y=3(x﹣2)2+1 B.y=3(x+2)2﹣1C.y=3(x﹣2)2﹣1 D.y=3(x+2)2+16.函数y=﹣x2﹣4x+3图象顶点坐标是()A.(2,﹣7)B.(2,7)C.(﹣2,﹣7)D.(﹣2,7)7.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)8.y=(x﹣1)2+2的对称轴是直线()A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A .B .C .D .11.不论x 为何值,函数y =ax 2+bx +c (a ≠0)的值恒大于0的条件是( )A .a >0,△>0B .a >0,△<0C .a <0,△<0D .a <0,△>012.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1035B .x (x ﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x +1)=1035二.填空题(每小题3分,总分18分)13.若关于x 的一元二次方程x 2﹣3x +m =0有实数根,则m 的取值范围是 .14.方程x 2﹣3x +1=0的解是 .15.如图所示,在同一坐标系中,作出①y =3x 2②y =x 2③y =x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .16.抛物线y =﹣x 2+15有最 点,其坐标是 .17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 .18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x 2﹣2x =0,∴x (x ﹣2)=0,∴x ﹣2=0或x =0,解得,x 1=2,x 2=0;故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D . 【分析】根据因式分解法解方程对A 进行判断;根据方程解的定义对B 进行判断;根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程,5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .。

呼和浩特市九年级上学期期中数学试卷

呼和浩特市九年级上学期期中数学试卷

呼和浩特市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分) (2016八下·青海期末) 期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A . 众数和平均数B . 平均数和中位数C . 众数和方差D . 众数和中位数2. (2分) (2016九上·萧山期中) 如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是()A . 4B . 6C . 8D . 103. (2分) (2016九上·萧山期中) 由二次函数y=2(x﹣3)2+1,可知()A . 其图像的开口向下B . 其图像的对称轴为直线x=﹣3C . 其最小值为1D . 当x<3时,y随x的增大而增大4. (2分)与y=2(x﹣1)2+3形状相同的抛物线解析式为()A . y=1+x2B . y=(2x+1)2C . y=(x﹣1)2D . y=2x25. (2分) (2016九上·萧山期中) 下列命题正确的是()A . 相等的圆周角对的弧相等B . 等弧所对的弦相等C . 三点确定一个圆D . 平分弦的直径垂直于弦6. (2分) (2016九上·萧山期中) 在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图像可能是()A .B .C .D .7. (2分) (2016九上·上城期中) 已知二次函数y=﹣ x2﹣3x﹣,设自变量的值分别为x1 , x2 ,x3 ,且﹣3<x1<x2<x3 ,则对应的函数值y1 , y2 , y3的大小关系是()A . y1>y2>y3B . y1<y2<y3C . y2>y3>y1D . y2<y3<y18. (2分) (2016九上·萧山期中) 若二次函数y=ax2﹣2ax+c的图像经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A . x1=﹣3,x2=﹣1B . x1=1,x2=3C . x1=﹣1,x2=3D . x1=﹣3,x2=19. (2分) (2016九上·萧山期中) 已知⊙O的半径为3,△ABC内接于⊙O,AB=3 ,AC=3 ,D是⊙O 上一点,且AD=3,则CD的长应是()A . 3B . 6C .D . 3或610. (2分) (2016九上·上城期中) 二次函数y=ax2+bx+c(a>0)的顶点为P,其图像与x轴有两个交点A (﹣m,0),B(1,0),交y轴于点C(0,﹣3am+6a),以下说法:①m=3;②当∠APB=120°时,a= ;③当∠APB=120°时,抛物线上存在点M(M与P不重合),使得△ABM是顶角为120°的等腰三角形;④抛物线上存在点N,当△ABN为直角三角形时,有a≥正确的是()A . ①②B . ③④C . ①②③D . ①②③④二、认真填一填 (共6题;共6分)11. (1分) (2017九上·临川月考) 写出一个具有性质“在每个象限内y随x的增大而减小”的反比例函数的表达式为________.12. (1分) (2016九上·萧山期中) 如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是________.13. (1分) (2016九上·萧山期中) 把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是________.14. (1分) (2016九上·萧山期中) 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________15. (1分) (2016九上·萧山期中) △ABC的一边长为5,另两边长分别是二次函数y=x2﹣6x+m与x轴的交点坐标的横坐标的值,则m的取值范围为________16. (1分) (2016九上·萧山期中) 如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A,O,分别与两坐标轴的正半轴交于点E,F.当EF⊥OA时,此时EF=________.三、全面答一答 (共7题;共76分)17. (10分)已知y﹣4与x成正比例,且 x=6 时,y=﹣4.(1)求y关于x的函数关系式;(2)设点P在y轴上,(1)中的函数图象与x轴、y轴分别交于A、B两点,以A、B、P为顶点的等腰三角形,求点P的坐标.18. (10分)(2016·成都) 在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19. (10分)(1)一个不透明的盒子中装有 2 枚黑色的棋子和 1 枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.(2)如图,已知,,,交于点O,连接,求证:AO平分.20. (10分) (2017九上·芜湖期末) 如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为;若存在,指出其中的一种平移方式;若不存在,请说明理由.21. (6分) (2017九下·盐城期中) 如图所示,在方格纸中,△ABC的三个顶点及D , E , F , G , H 五个点分别位于小正方形的顶点上.(1)现以D , E , F , G , H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是________(只需要填一个三角形);(2)先从D , E两个点中任意取一个点,再从F , G , H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.22. (15分) (2020九下·中卫月考) 在方格纸中,每个方格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图甲中,每个小正方形的边长为1,以线段AB为一边的格点三角形随着第三个顶点的位置不同而发生变化.(1)根据图甲,填写下表,并计算出格点三角形面积的平均值;格点三角形面积1234频数(2)在图乙中,所给的方格纸大小与图甲一样,如果以线段CD为一边,作格点三角形,试填写下表,并计算出格点三角形面积的平均值;格点三角形面积1234频数(3)如果将图乙中格点三角形面积记为s,频数记为x,根据你所填写的数据,猜测s与x之间存在哪种函数关系,并求出函数关系式.23. (15分) (2016九上·萧山期中) 如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM 的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2 ,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).参考答案一、仔细选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、全面答一答 (共7题;共76分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

【精品】2016-2017年内蒙古呼和浩特市实验教育集团九年级上学期期中物理试卷带答案

【精品】2016-2017年内蒙古呼和浩特市实验教育集团九年级上学期期中物理试卷带答案

2016-2017学年内蒙古呼和浩特市实验教育集团九年级(上)期中物理试卷一、选择题(本题包括10小题,共22分.前8个小题为单选题,每题选对得2分,选错得0分.后两个小题为多选题,全部选对得3分,选对不全得2分,有选错的得0分.)1.(2分)下列现象中不能用分子动理论解释的是()A.放入水中的糖使水变甜B.荷叶上的露珠是呈球形是由于分子间存在引力C.看到烟雾在空中弥漫D.水和酒精混合总体积变小2.(2分)下列现象中,通过热传递来改变内能的是()A.给冷水加热B.压缩空气温度升高C.下滑时臀部发热D.搓手取暖3.(2分)三个悬挂着的轻质带电小球,相互作用情况如图所示,那么甲、乙、丙的带电情况()A.甲、乙球带异种电荷B.乙、丙球带同种电荷C.如果甲球带正电荷,则丙球带负电荷D.如果甲球带正电荷,则丙球带正电荷4.(2分)下列描述中最符合实际的是()A.节能灯正常工作时的电流大约0.1AB.对人体来讲,安全电压为不大于3.6VC.冰箱正常工作时的电压为220VD.空调机正常工作时的电流大约0.5A5.(2分)如图,闭合开关,两灯并联,各电表都能正常工作。

下列判断正确的是()A.甲、乙、丙都是电流表B.甲、乙、丙都是电压表C.甲、乙是电压表,丙是电流表D.甲、丙是电流表,乙是电压表6.(2分)小明同学在物理实验活动中,设计了如图所示的四种用电流表和电压表示数反映弹簧所受压力大小的电路,其中R′是滑动变阻器,R是定值电阻,电源两极间电压恒定。

四个电路中有一个电路能实现压力增大,电表示数增大,这个电路是()A.B.C.D.7.(2分)由欧姆定律公式可知()A.同一导体两端的电压跟通过导体的电流成反比B.导体两端的电压为零时,因为没有电流通过,所以导体电阻为零C.导体中的电流越大,导体的电阻就越小D.导体电阻的大小,可以用它两端的电压与通过它的电流的比值来表示8.(2分)如图所示电路,闭合开关S1、S2,下列对电路的分析正确的是()A.L1与L2串联B.电流表A1测L1的电流C.当开关S2断开时,通过L1的电流变小D.当开关S2断开时,电流表A2的示数变小9.(3分)下列关于温度、热量和内能的说法中正确的是()A.温度高的物体内能一定大,温度低的物体内能一定小B.物体的内能与温度有关,只要温度不变,物体的内能就不变C.物体的温度升高,物体的内能增大D.内能小的物体也可能将热量传递给内能大的物体10.(3分)如图所示电路中,电源电压保持不变,闭合开关S后,将滑动变阻器R的滑片P向左移动,在此过程中()A.电压表V1示数变小,电压表V2示数变大B.电流表A示数变小,电压表V1示数不变C.电流表A示数不变,灯泡L亮度不变D.电压表V1示数变小,灯泡L亮度变暗二、实验题(本题包括4小题,选择2分,电路图3分,其余每空1分,共15分)11.(3分)甲为探究并联电路电流规律的实验电路图。

内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷

内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列方程是一元二次方程的是()A. 2x2=0B. x2=x(x−1)C. ax2+bx+c=0D. 1x2+x=02.下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五角星D. 正六边形3.对于抛物线y=x2-2x-1,下列说法正确的是()A. 对称轴是直线x=−1B. 顶点(1,−2)C. 与x轴交于(0,−1)D. 当x=1时,y有最小值24.一元二次方程x2+ax+a-1=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 有实数根D. 没有实数根5.如图,将两个全等的直角三角形经过旋转、平移不可以拼成的图形是()A. B.C. D.6.一个长80cm,宽70cm的矩形铁皮,将四个角各剪去一个边长为xcm的小正方形后,剩余部分刚好围成一个底面积为3000cm2的无盖长方体盒子,求小正方形边长xcm 时,可根据下列方程()A. (80−x)(70−x)=3000B. (80−2x)(70−2x)=3000C. 80×70−4x2=3000D. 80×70−4x2−(80+70)x=30007.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应定价为()A. 15元或20元B. 10元或15元C. 10元D. 5元或10元8.四位同学研究函数y=x2+bx+c(b,c是常数),甲发现x=1时,函数有最小值,乙发现函数有最小值-4,丙发现1是方程x2+bx+c=0的一个根,丁发现x=2时,y=-3;已知这四位同学只有一位同学发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁9.如图,在四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=2BC,设CD=x,四边形ABCD的面积为y,则y与x之间的函数关系式为()A. y=25x2B. y=35x2C. y=425x2D. y=625x210.若对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),则符合条件的点P()A. 有且只有1个B. 有且只有2个C. 至少有3个D. 有无穷多个二、填空题(本大题共6小题,共18.0分)11.一元二次方程x2−mx−n=0的两实根是x1=2,x2=3,则m=__,n=__.12.点A(3,y+1)与点B(x-5,2)关于原点对称,则x=______,y=______.13.已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数y=-12x2的图象上,则y1,y2,y3的大小关系是______.14.某商品的销售利润与销售单价存在二次函数关系,且二次项系数a=-1,当商品单价为160元和200元时,能获得同样多的利润,要使销售商品利润最大,销售单价应定为______元.15.对于抛物线y=ax2+(a-1)x-3,当x=1时,y>0,则抛物线的顶点一定在第______象限.16.如图,△OAB中,∠ABO=90°,∠AOB=30°,OA=4,OB边在x轴的正半轴上,将△OAB绕原点O逆时针旋转60°得到△OA'B',则B'的坐标为______.三、计算题(本大题共1小题,共9.0分)17.解方程:(1)2x2=-x(2)(x-3)2=(5-2x)2(3)-12x2-3x+8=0四、解答题(本大题共8小题,共63.0分)18.已知关于x的一元二次方程x2-(2k-1)x+k2=0有两个不相等的实数根,求k的取值范围.19.如图,△ABC中,D是BC上一点,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:四边形AEDF是中心对称图形;(2)若AD平分∠BAC,求证:点E、F关于直线AD对称.20.已知二次函数y=x2-4x+3,图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C.(1)求图象的对称轴方程及顶点坐标;(2)画出图象;(3)若直线BC对应的函数为m=kx+b(k≠0),根据图象直接写出m>y时,x的取值范围.21.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.22.观察下面一组一元二次方程方程(1)x2-32x+12=0的两个实数根是x1=1,x2=12方程(2)x2-56x+16=0的两个实数根是x1=12,x2=13方程(3)x2-712x+112=0的两个实数根是x1=______,x2=______.………①请写出第n个一元二次方程及它的两实根方程(n)______;两个实数根是x1=______,x2=______;②求方程(n)的根的判别式△的算术平方根.23.如图,正方形ABCD内有一点P,若PA=1,PB=2,PC=3.(1)画出△ABP绕点B顺时针旋转90°得到的△CBE;(2)求∠APB度数;(3)求正方形ABCD的面积.24.已知关于x的一元二次方程x2-(m-1)x-m2=0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两实根分别为x1、x2,且|x1|=|x2|-2,求m的值及方程的根.25.如图,抛物线y=ax2+bx-4经过A(-3,0),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:2x2=0满足一元二次方程的条件,故A是一元二次方程;x2=x(x-1)整理后不含未知数的二次项,故B不是一元二次方程;ax2+bx+c=0缺少二次项系数不为0的条件,故C不一定是一元二次方程;+x=0不是整式方程,故D不是一元二次方程.故选:A.根据一元二次方程的定义,逐个判断得结论.本题考查了一元二次方程的定义,一元二次方程需满足:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)整式方程.注意二次项的系数不能为0.2.【答案】D【解析】解:A、等边三角形,是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形,不是轴对称图形,是中心对称图形,故此选项不合题意;C、正五角星,是轴对称图形,不是中心对称图形,故此选项不合题意;D、正六边形是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.【答案】B【解析】解:∵y=x2-2x-1=(x-1)2-2,对称轴是直线x=1,故选项A错误.当x=1时,y有最小值-2,故选项D错误.当x=0时,y=-1,则该抛物线与y轴交于点(0,-1),故选项C错误.故选:B.根据题目中的函数解析式可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.【答案】C【解析】解:∵△=a2-4×1×(a-1)=a2-4a+4=(a-2)2≥0,∴一元二次方程x2+ax+a-1=0有实数根.故选:C.根据方程的系数结合根的判别式,可得出△=(a-2)2≥0,进而可得出方程x2+ax+a-1=0有实数根,此题得解.本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.5.【答案】C【解析】解:将两个全等的直角三角形经过旋转、平移不可以拼成的图形是C,故选:C.根据旋转和平移的性质即可得到结论.本题考查了旋转和平移的性质,图形的剪拼,同时考查了学生的动手操作能力和想象观察能力,难度一般.6.【答案】B【解析】解:由题意可得,(80-2x)(70-2x)=3000,故选:B.根据题意可知裁剪后的底面的长为(80-2x)cm,宽为(70-2x)cm,从而可以列出相应的方程,本题得以解决.本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7.【答案】D【解析】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(10+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=10.答:每千克水果应涨价5元或10元.故选:D.设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.【答案】C【解析】解:①假设甲乙都是对的,则:x=1=-=-,则:b=2;②x=1时,y=1+2+c=-4,则:c=-7,函数为:y=x2+2x-7;③如果丙是对的,则:a+b+c=1+b+c=-4,故丙是错误的;④当x=2时,y=22+2-7=-3,正确;故选:C.假设甲乙都是对的,则:x=1=-=-,则可以求出函数表达式,再验证丙是错的即可.本题考查的二次函数综合知识,只能先假设甲乙丙丁中2个是正确的,然后验证其余的中有一个是错误的即可.9.【答案】B【解析】解:过D作DE⊥AC于E点,如图,设BC=a,则AC=2a,∵∠BAD=90°,∠AED=90°,∴∠1=∠3,而∠ACB=90°,AB=AD,∴△ABC≌△DAE(AAS),∴AE=BC=a,DE=AC=2a,∴EC=AC-AE=2a-a=a,在Rt△DEC中,DC=a,∴x=a,即a=x,又∵四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,∴y=×a×2a+×2a×2a=3a2=x2,即y与x之间的函数关系式是y=x2.故选:B.过D作DE⊥AC与E点,设BC=a,则AC=4a,根据等角的余角相等得到∠1=∠3,易证得△ABC≌△DAE,所以AE=BC=a,DE=AC=2a,得到EC=AC-AE=2a-a=a,在Rt△DEC中,根据勾股定理得到DC=a,所以有x=a,即a=x;根据四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,即可解决问题;本题考查了三角形全等的判定与性质.也考查了勾股定理以及三角形的面积公式.10.【答案】B【解析】解:∵对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),∴x02-16≠a(x0-3)2+a(x0-3)-2a∴(x0-4)(x0+4)≠a(x0-1)(x0-4)∴x0=-4或x0=1,∴点P的坐标为(-7,0)或(-2,-15)故选:B.根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),即可求得点P的坐标,从而可以解答本题.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.11.【答案】5 -6【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于-,两根之和等于”是解题的关键.根据根与系数的关系结合方程的两实根是x1=2,x2=3,可求出m,n的值,此题得解.【解答】解:∵一元二次方程x2-mx-n=0的两实根是x1=2,x2=3,∴m=x1+x2=5,n=-x1•x2=-6.故答案为5;-6.12.【答案】2 -3【解析】解:∵点A(3,y+1)与点B(x-5,2)关于原点对称,∴x-5=-3,y+1=-2,解得:x=2,y=-3.故答案为:2,-3.直接利用关于原点对称点的性质得出x,y的值进而得出答案.此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.13.【答案】y3<y2<y1解:∵二次函数y=-x2,∴当x<0时,y随x的增大而增大,当x<0时,y随x的增大而减小,顶点坐标为(0,0),∵点A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数y=-x2的图象上,0-(-1)=1,0-(-2)=2,3-0=3,∴y3<y2<y1,故答案为:y3<y2<y1.根据二次函数的性质,可以判断y1,y2,y3的大小关系,本题得以解决.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.14.【答案】180【解析】解:∵当商品单价为160元和200元时,能获得同样多的利润,∴此二次函数图象的对称轴为x==180,又∵二次项系数a=-1,∴当商品的单价为180元时,销售利润取得最大值,最大利润为180元,故答案为:180.根据当商品单价为160元和200元时,能获得同样多的利润,知此二次函数图象的对称轴为x==180,结合a=-1<0,利用二次函数的性质可得答案.本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的对称性及二次函数的最值问题的求解.15.【答案】三【解析】解:当x=1时,y=a+a-1-3=2a-4>0,解得:a>2,∴x=-<0,=<0,故抛物线的顶点一定在第三象限.故答案为:三.直接利用当x=1时,y>0,得出a的取值范围,进而利用二次函数的性质得出答案.此题考查抛物线与x轴的交点,关键是得出a的取值范围,利用二次函数的性质解答.16.【答案】(3,3)【解析】解:连接BB′.作B′H⊥x轴于H.∵OB=OB′,∠BOB′=60°,∴△OBB′是等边三角形,在Rt△AOB中,∵OA=4,∠AOB=30°,∠ABO=90°,∴OB=OA•cos30°=2,∵B′H⊥OB,∴OH=HB=,HB′=3,∴B′(,3),故答案为(,3).连接BB′.作B′H⊥x轴于H.只要证明△OBB′是等边三角形,即可解决问题;本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:(1)∵2x2=-x,∴2x2+x=0,则x(2x+1)=0,∴x=0或2x+1=0,解得:x1=0,x2=-12;(2)∵(x-3)2=(5-2x)2,∴(x-3)2-(5-2x)2=0,则(x-3+5-2x)(x-3-5+2x)=0,即(-x+2)(3x-8)=0,∴-x+2=0或3x-8=0,解得:x1=2,x2=83;(3)∵-12x2-3x+8=0,∴x2+6x-16=0,∴(x+8)(x-2)=0,则x+8=0或x-2=0,解得:x1=-8,x2=2.【解析】(1)整理成一般式后,利用因式分解法求解可得;(2)移项后,利用平方差公式分解,再进一步求解可得;(3)将二次项系数化为1,再利用十字相乘法因式分解,继而进一步求解可得.本题考查的是解一元二次方程,在解答此类问题的关键是根据方程的特点选择适当的方法.18.【答案】解:∵关于x的一元二次方程x2-(2k-1)x+k2=0有两个不相等的实数根,∴△=[-(2k-1)]2-4×1×k2>0即-4k+1>0,∴k<14.【解析】计算根的判别式△,由题意得到关于k的不等式,求解即可.本题考查了根的判别式,题目比较简单.根的判别式△=b2-4ac.19.【答案】解:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴四边形AEDF是中心对称图形;(2)∵AD平分∠BAC,∴∠BAD=∠CAD,又∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴AD垂直平分EF,∴点E、F关于直线AD对称.【解析】(1)判定四边形AEDF是平行四边形,即可得出四边形AEDF是中心对称图形;(2)先得出AE=DE,再根据四边形AEDF是平行四边形,可得四边形AEDF是菱形,即可得到结论.本题考查了中心对称,平行四边形是中心对称图形,对称中心是对角线的交点.20.【答案】解:(1)y=x2-4x+3=(x-2)2-1,所以图象的对称轴方程是直线x=2,顶点坐标是(2,-1);(2)图象为:;(3)当m>y时,x的取值范围是0<x<3.【解析】(1)先化成顶点式,再得出答案即可;(2)画出图形即可;(3)根据函数的图象和B、C的坐标得出答案即可.本题考查了二次函数与坐标轴的交点,二次函数的图象和性质等知识点,能正确画出图象是解此题的关键.21.【答案】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有0=c0=16a+4b+c2=4a+2b+c,解得:a=−12b=2c=0,∴抛物线L的解析式为y=-12x2+2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,-12m2+2m)(0<m<4),∴S△OAE+S OCE=12OA•y E+12OC•x E=-m2+4m+2m=-(m-3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.【解析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+S OCE关于m的函数解析式,根据二次函数的性质即可得出结论.本题考查了待定系数法求函数解析式、正方形的性质、三角形的面积公式以及二次函数的性质,解题的关键是:(1)建立直角坐标系.①根据正方形的性质找出点的坐标;②利用待定系数法求函数解析式;(2)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,建立直角坐标系,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.22.【答案】1314x2-2n+1n(n+1)x+1n(n+1)=0 1n1n+1【解析】解:方程(3)x2-x+=0的两个实数根是x1=,x2=,第n个一元二次方程及它的两实根方程是x2-x+=0,方程的两个根为x1=,x2=,∵x2-x+=0,∴△=[-]2-4×1×=[]2,∴方程(n)的根的判别式△的算术平方根是,故答案为:,,x2-x+=0,,,.根据已知算式得出规律,再得出答案即可.本题考查了解一元二次方程和根的判别式,能根据已知算式得出规律是解此题的关键.23.【答案】解:(1)作∠QBC=∠ABP,BP=BQ=2,连接QC即可得出△BCQ;(2)连接PQ,在Rt△PBQ中∵BP=BQ=2,∴PQ2=BP2+BQ2=22+22=8,在△PCQ中,∵PC=3,QC=AP=1,∴PC2=PQ2+QC2,∴△PCQ是直角三角形,∠PQC=90°;∵BP=BQ=2,∠PBQ=90°,∴△PBQ是等腰直角三角形,∴∠BQP=45°,∵∠PQC=90°,∴∠BQC=∠BQP+∠PQC=45°+90°=135°,∵△BQC由△BPA旋转而成,∴∠APB=∠BQC=135°.(3)如图,作CH⊥BQ交BQ的延长线于H.∵∠BQC=135°,∴∠CQH=∠QCH=45°,∴CH=QH,∵CQ=QP=1,∴CH=QH=22,∴BH=BQ+QH=2+22,在Rt△BCH中,BC=BH2+CH2=(22)2+((2+22)2=5+22,∴正方形ABCD的面积为5+22.【解析】(1)作∠QBC=∠ABP,BP=BQ=2,连接QC即可得出△BCQ;(2)先由△BPQ是等腰直角三角形求出∠BQP的度数,再证明∠PQC=90°,即可得出∠BQC的度数,进而得出结论.(3)如图,作CH⊥BQ交BQ的延长线于H.求出BH,CH,利用勾股定理即可解决问题;本题考查的是作图-旋转变换、勾股定理的逆定理及正方形的性质,熟知图形经过旋转后所得图形与原图形全等是解答此题的关键.24.【答案】(1)证明:△=[-(m-1)]2-4×1×(-m2)=5m2-2m+1=5(m-15)2+45.∵(m-15)2≥0,∴5(m-15)2+45>0,即△>0,∴方程总有两个不相等的实数根.(2)解:∵方程的两实根分别为x1、x2,∴x1+x2=m-1,x1•x2=-m2.当m=0时,原方程为x2+x=0,∴方程的两根为-1和0,不满足|x1|=|x2|-2;当m≠0时,x1•x2=-m2<0,∴方程的两根异号.若x1>0,x2<0,则有x1=-x2-2,∴x1+x2=m-1=-2,∴m=-1,∴原方程为x2+2x-1=0,解得:x=-1±2;若x1<0,x2>0,则有-x1=x2-2,∴x1+x2=m-1=2,∴m=3,∴原方程为x2-2x-9=0,解得:x=1±10.综上所述:m的值为-1或3,方程的根为-1±2或1±10.【解析】(1)根据方程的系数结合根的判别式,可得出△=5(m-)2+>0,进而可证出方程总有两个不相等的实数根;(2)根据根与系数的关系可得出x1+x2=m-1,x1•x2=-m2,当m=0时,通过解一元二次方程可得出方程的根,由它们不符合|x1|=|x2|-2可得出m=0不合适;当m≠0时,由x1•x2=-m2<0可得出方程的两根异号,分x1>0,x2<0或x1<0,x2>0两种情况求出m的值,将其代入原方程,通过解方程即可求出方程的解.本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)利用根与系数的关系结合|x1|=|x2|-2求出m的值.25.【答案】解:(1)将A(-3,0),B(5,-4)代入得:9a−3b−4=025a+5b−4=−4,解得:a=16,b=-56.∴抛物线的解析式为y=16x2-56x-4.(2)∵AO=3,OC=4,∴AC=5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD=(5−2)2+(−4−0)2=5.∵C(0,-4),B(5,-4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=52,则AE=112.∵A(-3,0),B(5,-4),∴tan∠EAB=12.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(52,11).同理:tan∠MBF=2.又∵BF=52,∴FM=5,∴M(52,-9).∴点M的坐标为(52,11)或(52,-9).【解析】(1)将A(-3,0),B(5,-4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E 的长,故此可得到点M′和点M的坐标.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM和M′E的长是解题的关键.。

内蒙古呼和浩特市九年级上学期期中数学试卷

内蒙古呼和浩特市九年级上学期期中数学试卷

内蒙古呼和浩特市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·亳州期中) 下列语句中,不是命题的是()A . 作线段ABB . 对顶角相等C . 互补的两个角不相等D . 直角都等于90°2. (2分)如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A . 逐渐变短B . 先变短后变长C . 逐渐变长D . 先变长后变短3. (2分)在一个不透明的不带中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是()A . 3个B . 4个C . 10个D . 16个4. (2分)(2017·潍坊) 如图所示的几何体,其俯视图是()A .B .C .D .5. (2分)已知线段m、n、p、q的长度满足等式mn=pq,将它改写成比例式的形式,错误的是()A .B .C .D .6. (2分) (2016九上·乐昌期中) 我市某校九(1)班学生准备在元旦节那天用送贺卡方式表示祝贺,班长说:每位同学都要送给其他同学一张贺卡,结果九(3)班学生共送出贺卡2970张.问:该班共有多少个学生?如设该班共有x个学生,则可列方程为()A . x(x﹣1)=2970B . x(x﹣1)=2970C . x(x+1)=2970D . x(x+1)=29707. (2分)如图,在菱形中,是边上的一点,分别是的中点,则线段的长为()A . 8B .C . 4D .8. (2分) (2019九上·龙湖期末) 如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是()A .B . 且C .D . 且9. (2分)爱美之心人皆有之,特别是很多女士,穿上高跟鞋后往往会有很好的效果,事实上,当人体的下半身长度与身高的比值接近0.618时,会给人以美感,某女士身高165cm,下半身长与身高的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A . 4cmB . 6cmC . 8cmD . 10cm10. (2分)正方形具备而菱形不具备的性质是()A . 对角线互相平分B . 对角线互相垂直C . 对角线相等D . 每条对角线平分一组对角二、填空题 (共6题;共6分)11. (1分)若m是方程x2+x﹣1=0的一个根,则代数式m2+m+2014=________12. (1分) (2019九上·宁波月考) 如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是________.13. (1分) (2020九下·深圳月考) 如图,(点,分别与点,对应),,.固定不动,运动,并满足点在边从向移动(点不与,重合),始终经过点,与边交于点,当是等腰三角形时,________.14. (1分)如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E,交BC于点F,则DE=________.15. (1分)如图,D、E、F分别是△ABC的AB、AC、BC上的中点,若AB=7,BC=6,AC=5,则△DEF的周长是________16. (1分) (2019八下·宁都期中) 已知:矩形ABCD,AB=5,BC=4,P是边CD上一点,当△PAB是等腰三角形时,求PC的长可以是________.三、解下列方程 (共8题;共61分)17. (10分) (2019九上·宿州月考) 先阅读,再解题若某个一元二次方程的两根都是整数,且其中一根是另一根的整数倍,则称该方程是“倍根方程”.例如的两根为,,因为是的-3倍,所以是“倍根方程”.(1)说明是“倍根方程”;(2)已知关于x的一元二次方程是“倍根方程”,其中m是整数,试探索m的取值条件.18. (10分)(2019·仁寿模拟) 如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2(2)连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)19. (5分)(2014·淮安) 班级准备召开主题班会,现从由3名男生和2名女生所组成的班委中,随机选取两人担任主持人,求两名主持人恰为一男一女的概率.(请用“画树状图”或“列表”等方法写出过程)20. (5分) (2017八下·通州期末) 已知:如图,,,,在同一直线上,且,, .求证:四边形是平行四边形.21. (5分)(2017·邹城模拟) 如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22. (5分)从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽m,竖着比城门高m,一个聪明人告诉他沿着城门的两对角斜着拿杆,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程,并把它化为一般形式.23. (10分) (2019八上·扬州月考) 如图,在长方形ABCD中,AB>BC,把长方形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE求证:(1)△AED≌△CDE(2)△EFD是等腰三角形.24. (11分) (2020八下·太原月考) 综合与实践材料一:“转化思想”是几何变换中常用的思想,例如将图形进行旋转变换,实现图形位置的“转化”,把一般情形转化为特殊情形,使问题化难为易,它是一种以变化的、运动的观点来处理孤立的、离散问题的思想。

内蒙古呼和浩特市九年级上学期数学期中考试试卷

内蒙古呼和浩特市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2018九上·东台期中) 下列关于x的方程中,一定是一元二次方程的为()A . x2﹣2=(x+3)2B . ax2+bx+c=0C . x2+ ﹣5=0D . x2﹣1=02. (2分)若∠A是锐角,且sinA=,则∠A等于()A . 60°B . 45°C . 30°D . 75°3. (2分) (2017八下·长泰期中) 若把分式中的x和y都扩大3倍,那么分式的值()A . 为原来的3倍B . 不变C . 为原来的D . 为原来的4. (2分)(2017·贵港) 如图所示,在△ABC中,∠C=90°,AD是BC边上的中线,BD=4,AD=2 ,则tan∠CAD 的值是()A . 2B .C .D .5. (2分)一组数据1,1,4,3,6的平均数和众数分别是()A . 1,3B . 3,1C . 3,3D . 3,46. (2分)兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为()A . (10+2)mB . (20+2)mC . (5+2)mD . (15+2)m7. (2分) (2018九上·富顺期中) 若方程x2﹣3x﹣1=0的两根分别是x1 , x2 ,则x12+x22的值为()A . 3B . ﹣3C . 11D . ﹣118. (2分)如图,在△ABC中,DE//BC,AD=2,AB=6,AE=3,则CE的长为()A . 9B . 6C . 3D . 49. (2分)(2017·温州) 我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A . x1=1,x2=3B . x1=1,x2=﹣3C . x1=﹣1,x2=3D . x1=﹣1,x2=﹣310. (2分) (2012八下·建平竞赛) 在△ABC中,∠A、∠B、∠C的对边分别是、、,则下列说法中错误的是()A . 如果∠C-∠B=∠A,那么△ABC是直角三角形,∠C=90°B . 如果,则∠B=60°,∠A=30°C . 如果,那么△ABC是直角三角=D . 如果,那么△ABC是直角三角形11. (2分)如图,平行四边形ABCD中,E为DC的中点,△DEF的面积为2,则△ABF的面积为()A . 2B . 4C . 6D . 812. (2分) (2017九上·恩阳期中) “学在恩阳、生态教育”恩阳区自成区以来一直把教育放在优先发展的地位,教育教学质量得到了空前的提升,特别是近两年高考更是捷报频频,得到了社会各界和老百姓的好评。

内蒙古呼和浩特市九年级上学期数学期中考试试卷

内蒙古呼和浩特市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·深圳模拟) 下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A .B .C .D .2. (2分) (2018九上·开封期中) 对于抛物线y=﹣,下列说法正确的是()A . 开口向上,顶点坐标(-5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(-5,3)D . 开口向下,顶点坐标(5,3)3. (2分)(2011·嘉兴) 如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A . 6B . 8C . 10D . 124. (2分)(2019·梅列模拟) 如图,AB是⊙O的直径,C是⊙O上一点(A、E除外),∠AOD=132°,则∠C 的度数是()A . 68°B . 48°C . 34°D . 24°5. (2分) (2015八下·龙岗期中) 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A . 25°B . 30°C . 50°D . 55°6. (2分) (2017八下·福建期中) 如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开.再一次折叠纸片,使点A落在EF上,得到折痕BM,同时,得到线段BN,若 ,则BM的长为()A .B . 2C . 3D .7. (2分) (2019九上·博白期中) 已知,抛物线与x轴的公共点是(-6,0),(2,0),则这条抛物线的对称轴是直线()A .B .C .D .8. (2分)(2017·蒙阴模拟) 如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y= +bx+c的顶点,则抛物线y= +bx+c与直线y=1交点的个数是()A . 0个或1个B . 0个或2个C . 1个或2个D . 0个、1个或2个二、填空题 (共8题;共9分)9. (1分) (2019七下·北京期中) 点A(-1,-3)关于x轴对称点的坐标是________ ;关于原点对称的点坐标是________.10. (1分) (2017九上·黄冈期中) 已知的半径,到直线的距离,点在直线上,如果线段,则点在 ________.11. (1分) (2019八上·西安月考) 如图,在四边形 ABCD 中,∠BAD=90°,AB=AD.连接 AC,若 AC= 5 ,则 CD+CB的最小值为 ________ .12. (1分) (2018九上·福州期中) 抛物线y=-(x-2)2+3的顶点坐标是________.13. (1分) (2018九上·大石桥期末) 正六边形的边长为1,则它的面积是________14. (1分) (2019九上·武汉月考) 抛物线y=﹣x2+4x﹣1的顶点坐标为________.15. (1分)(2019·沙雅模拟) 用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,则这个圆锥的底面半径是________。

【初三数学】呼和浩特市九年级数学上期中考试检测试卷(含答案)

新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);。

内蒙古呼和浩特市2017届九年级上期中数学试卷含答案解析


5.已知抛物线 y=﹣x2+2x+3 的顶点为 P,与 x 轴的两个交点为 A,B,那么△ABP 的面积等
于( ) A.16 B.8
C.6
D.4
6.如果抛物线 y=﹣x2+bx+c 经过 A(0,﹣2),B(﹣1,1)一、二、三象限 C.第一、二、四象限 D.第二、三、四象限 7.2008 年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危 机.受金融危机的影响,某商品原价为 200 元,连续两次降价 a%后售价为 148 元,下面所 列方程正确的是( )
通过解这两个一元一次方程,求得原方程的解.
(1)利用上述方法解一元二次不等式:2x(x﹣1)﹣3(x﹣1)<0;
(2)利用函数的观点解一元二次不等式 x2+6x+5>0. 22.某公司投资建了一商场,共有商铺 30 间,据预测,当每间租金定为 10 万元,可全部 租出,每间的年租金每增加 5000 元,少租出商铺 1 间,该公司要为租出的商铺每间每年交 各种费用 1 万元,未租出的商铺每间每年交各种费用 5000 元. (1)当每间商铺的年租金为 l3 万元时,能租出多少间? (2)若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为 275 万元? 23.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分 ACB 和矩形的 三边 AE,ED,DB 组成,已知河底 ED 是水平的,ED=16 米,AE=8 米,抛物线的顶点 C 到 ED 的距离是 11 米,以 ED 所在的直线为 x 轴,抛物线的对称轴为 y 轴建立平面直角坐 标系. (1)求抛物线的解析式;
2.关于 x 的一元二次方程(a﹣1)x2+x+a2﹣1=0 的一个根为 0,则 a 的值为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷一、填空题(每题3分,共30分)1.(3分)下列方程中,关于x的一元二次方程有()①x2=0;②ax2+bx+c=0;③x2﹣3=x;④a2+a﹣x=0;⑤(m﹣1)x2+4x+=0;⑥+=;⑦=2;⑧(x+1)2=x2﹣9.A.2个 B.3个 C.4个 D.5个2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a的值为()A.1或﹣1 B.﹣1 C.1 D.03.(3分)下列方程中,有两个不相等的实数根的是()A.x2+x+1=0 B.x2﹣x﹣1=0 C.x2﹣6x+9=0 D.x2﹣2x+3=04.(3分)已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1) C.(2,﹣1)D.(﹣2,1)5.(3分)已知抛物线y=﹣x2+2x+3的顶点为P,与x轴的两个交点为A,B,那么△ABP的面积等于()A.16 B.8 C.6 D.46.(3分)如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过()A.第一、二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第二、三、四象限7.(3分)2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1488.(3分)已知抛物线y=x2+2x上三点A(﹣5,y1),B(1,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.(3分)抛物线y=ax2+bx+c与抛物线y=2x2+x﹣3关于x轴对称,则此抛物线的解析式为()A.y=﹣2x2﹣x+3 B.y=﹣2x2+x+3 C.y=2x2﹣x+3 D.y=﹣2x2+x﹣310.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b <a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正确的是()A.②④⑤B.①②④C.①③④D.①③④⑤二、填空题(每题3分,共18分)11.(3分)关于x的方程mx2﹣2x+1=0有实数解,则m需满足.12.(3分)若x1,x2是方程x2﹣4x+2=0的两根,则+的值为.13.(3分)根据下列表中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的取值范围为.14.(3分)将二次函数y=x2﹣2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为.15.(3分)如图所示,已知二次函数y=ax2+bx+c的图象经过两点(﹣1,0)和(0,﹣1),则化简代数式+=.16.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正确结论有.(填序号)三、解答题(共72分)17.(15分)解下列方程(1)x2﹣4x﹣3=0;(2)3x(x﹣1)=2(x﹣1);(3)y4﹣3y2﹣4=0.18.(6分)已知关于x的一元二次方程x2+(4m+1)x+2m﹣1=0;(1)求证:不论m 任何实数,方程总有两个不相等的实数根;(2)若方程的两根为x1、x2且满足,求m的值.19.(6分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?20.(7分)已知抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m.(1)请说明此抛物线与x轴的交点情况;(2)若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值.21.(9分)阅读理解题:我们知道一元二次方程是转化为一元一次方程来解的,例如:解方程x2﹣2x=0,通过因式分解将方程化为x(x﹣1)=0,从而得到x=0或x﹣2两个一元一次方程,通过解这两个一元一次方程,求得原方程的解.(1)利用上述方法解一元二次不等式:2x(x﹣1)﹣3(x﹣1)<0;(2)利用函数的观点解一元二次不等式x2+6x+5>0.22.(9分)某公司投资建了一商场,共有商铺30间,据预测,当每间租金定为10万元,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金为l3万元时,能租出多少间?(2)若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为275万元?23.(8分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.(12分)已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.2016-2017学年内蒙古呼和浩特市实验教育集团九年级(上)期中数学试卷参考答案与试题解析一、填空题(每题3分,共30分)1.(3分)下列方程中,关于x的一元二次方程有()①x2=0;②ax2+bx+c=0;③x2﹣3=x;④a2+a﹣x=0;⑤(m﹣1)x2+4x+=0;⑥+=;⑦=2;⑧(x+1)2=x2﹣9.A.2个 B.3个 C.4个 D.5个【解答】解:①x2=0;③x2﹣3=x是关于x的一元二次方程,共2个,故选:A.2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a的值为()A.1或﹣1 B.﹣1 C.1 D.0【解答】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+ax+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1,故选:B.3.(3分)下列方程中,有两个不相等的实数根的是()A.x2+x+1=0 B.x2﹣x﹣1=0 C.x2﹣6x+9=0 D.x2﹣2x+3=0【解答】解:A、△=12﹣4×1×1=﹣3<0,则方程没有实数根,故本选项错误;B、△=(﹣1)2﹣4×1×(﹣1)=5>0,则方程有两个不相等的实数根,故本选项正确;C、△=(﹣6)2﹣4×1×9=0,则方程有两个相等的实数根,故本选项错误;D、△=(﹣2)2﹣4×1×3=﹣8<0,则方程没有实数根,故本选项错误.故选:B.4.(3分)已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1) C.(2,﹣1)D.(﹣2,1)【解答】解:y=x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1,所以,顶点坐标为(2,1).故选:B.5.(3分)已知抛物线y=﹣x2+2x+3的顶点为P,与x轴的两个交点为A,B,那么△ABP的面积等于()A.16 B.8 C.6 D.4【解答】解:∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,顶点坐标为(1,4)0=﹣(x﹣1)2+4,∴x1=﹣1,x2=3,与x轴的两个交点为A,B(3,0),(﹣1,0),∴AB=4,P到AB的距离为:4,=×4×4=8,∴S△ABP故选:B.6.(3分)如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过()A.第一、二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第二、三、四象限【解答】解:∵抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,∴,解得,;∴该抛物线的解析式是:y=﹣x2﹣4x﹣2=﹣(x+2)2﹣2,∴该抛物线的开口向下,顶点坐标是(﹣2,2),与y轴的交点是(0,﹣2),∴该抛物线经过第二、三、四象限.故选:D.7.(3分)2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148【解答】解:当商品第一次降价a%时,其售价为200﹣200a%=200(1﹣a%).当商品第二次降价a%后,其售价为200(1﹣a%)﹣200(1﹣a%)a%=200(1﹣a%)2.∴200(1﹣a%)2=148.故选:B.8.(3分)已知抛物线y=x2+2x上三点A(﹣5,y1),B(1,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵抛物线y=x2+2x,∴x=﹣1,而A(﹣5,y1),B(1,y2),C(12,y3),∴B离对称轴最近,A次之,C最远,∴y2<y1<y3.9.(3分)抛物线y=ax2+bx+c与抛物线y=2x2+x﹣3关于x轴对称,则此抛物线的解析式为()A.y=﹣2x2﹣x+3 B.y=﹣2x2+x+3 C.y=2x2﹣x+3 D.y=﹣2x2+x﹣3【解答】解:∵抛物线y=2x2+x﹣3=2(x+)2﹣的顶点坐标为(﹣,),∴它关于x轴对称的顶点坐标是(,),∴此抛物线的解析式为y=2(x﹣)2﹣=﹣2x2﹣x+3.故选:A.10.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b <a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正确的是()A.②④⑤B.①②④C.①③④D.①③④⑤【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣b,代入得9(﹣b)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.二、填空题(每题3分,共18分)11.(3分)关于x的方程mx2﹣2x+1=0有实数解,则m需满足m≤1.【解答】解:∵方程mx2﹣2x+1=0有实数解,∴△=(﹣2)2﹣4m=4﹣4m≥0,解得:m≤1.故答案为:m≤1.12.(3分)若x1,x2是方程x2﹣4x+2=0的两根,则+的值为6.【解答】解:∵x1,x2是方程x2﹣4x+2=0的两根,∴x1+x2=4,x1•x2=2,∴+====6.故答案为:6.13.(3分)根据下列表中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的取值范围为 2.3<x <2.4.【解答】解:函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.11与y=0.56之间,对应的x的值在2.3与2.4之间,即2.3<x<2.4.故答案为2.3<x<2.4.14.(3分)将二次函数y=x2﹣2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为y=x2+4x+3.【解答】解:由“左加右减”的原则可知,二次函数y=x2﹣2的图象向左平移2个单位得到y=(x+2)2﹣2,由“上加下减”的原则可知,将二次函数y=(x+2)2﹣2的图象向上平移1个单位可得到函数y=(x+2)2﹣2+1,即y=x2+4x+3.故答案为:y=x2+4x+3.15.(3分)如图所示,已知二次函数y=ax2+bx+c的图象经过两点(﹣1,0)和(0,﹣1),则化简代数式+=.【解答】解:∵y=ax2+bx+c的图象经过两点(﹣1,0)和(0,﹣1),∴,整理可得a=b+1,∵对称轴在y轴的右侧,抛物线开口向上,∴﹣>0,且a>0,∴b<0,∴0<a<1,∴a<,∴+=+=﹣a+a+=,故答案为:.16.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正确结论有①②③.(填序号)【解答】解:①由二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),4a﹣2b+c=0,故①正确;②因为图象与x轴两交点为(﹣2,0),(x 1,0),且1<x1<2,对称轴x==﹣,则对称轴﹣<﹣<0,且a<0,∴a<b<0,由抛物线与y轴的正半轴的交点在(0,2)的下方,得c>0,即a<b<c,故②正确;③设x2=﹣2,则x1x2=,而1<x1<2,∴﹣4<x1x2<﹣2,∴﹣4<<﹣2,∴2a+c>0,4a+c<0,故③正确;④c<2,4a﹣2b+c=0,4a﹣2b+2>0,2a﹣b+1>0,故④错误;故答案为:①②③.三、解答题(共72分)17.(15分)解下列方程(1)x2﹣4x﹣3=0;(2)3x(x﹣1)=2(x﹣1);(3)y4﹣3y2﹣4=0.【解答】解:(1)x2﹣4x=3,x2﹣4x+4=7,(x﹣2)2=7,x﹣2=±,x=±+2,x1=+2,x2=﹣+2;(2)3x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(3x﹣2)=0;x﹣1=0或3x﹣2=0,x1=1,x2=;(3)(y2﹣4)(y2+1)=0,y2﹣4=0,y2+1=0,y2=4或y2=﹣1(舍去),∴y1=2,y2=﹣2.18.(6分)已知关于x的一元二次方程x2+(4m+1)x+2m﹣1=0;(1)求证:不论m 任何实数,方程总有两个不相等的实数根;(2)若方程的两根为x1、x2且满足,求m的值.【解答】解:(1)证明:△=(4m+1)2﹣4(2m﹣1)=16m2+8m+1﹣8m+4=16m2+5>0,∴不论m为任何实数,方程总有两个不相等的实数根.(2)∵,即=﹣,∴由根与系数的关系可得=﹣,解得m=﹣,经检验得出m=﹣是原方程的根,即m的值为﹣.19.(6分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解答】解:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.20.(7分)已知抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m.(1)请说明此抛物线与x轴的交点情况;(2)若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值.【解答】解:(1)△=[﹣(2m﹣1)]2﹣4×(m2﹣m)=4m2﹣4m+1﹣4m2+4m=1>0,所以抛物线与x轴有两个不相同的交点;(2)当x=0时,可得m2﹣m=﹣3m+4,整理得,m2+2m﹣4=0,解得,m1=﹣1,m2=﹣1﹣.21.(9分)阅读理解题:我们知道一元二次方程是转化为一元一次方程来解的,例如:解方程x2﹣2x=0,通过因式分解将方程化为x(x﹣1)=0,从而得到x=0或x﹣2两个一元一次方程,通过解这两个一元一次方程,求得原方程的解.(1)利用上述方法解一元二次不等式:2x(x﹣1)﹣3(x﹣1)<0;(2)利用函数的观点解一元二次不等式x2+6x+5>0.【解答】解:(1)2x(x﹣1)﹣3(x﹣1)<0可化为(x﹣1)(2x﹣3)<0,∴①或②,解①得1<x<,解②得<1且x>(此不等式组无解),∴原不等式的解集为1<x<;(2)设y=x2+6x+5,当y=0即x2+6x+5=0时,可求得x=﹣5或x=﹣1,即y=x2+6x+5与x轴的交点坐标为(﹣5,0)和(﹣1,0),且开口向上,∴原不等式的解集为x<﹣5或x>﹣1.22.(9分)某公司投资建了一商场,共有商铺30间,据预测,当每间租金定为10万元,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金为l3万元时,能租出多少间?(2)若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为275万元?【解答】解:(1)∵(130000﹣100000)÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺年租金增加x万元所以(30﹣)(10+x)﹣(30﹣)×1﹣×0.5=275,解得x1=5,x2=0.5,∴每间商铺的年租金为10.5万元或15万元∴若从减少空铺的角度来看,当每间商铺的年租金为10.5万元时,该公司的年收益为275万元.23.(8分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【解答】解:(1)∵点C到ED的距离是11米,∴OC=11,设抛物线的解析式为y=ax2+11,由题意得B(8,8),∴64a+11=8,解得a=﹣,∴y=﹣x2+11;(2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至少为11﹣5=6(米),∴6=﹣(t﹣19)2+8,∴(t﹣19)2=256,∴t﹣19=±16,解得t1=35,t2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.24.(12分)已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵B的坐标为(1,0),∴OB=1.∵OC=3OB=3,点C在x轴下方,∴C(0,﹣3).∵将B(1,0),C(0,﹣3)代入抛物线的解析式得:,解得:a=,C=﹣3,∴抛物线的解析式为y=x2+x﹣3.(2)如图1所示:过点D作DE∥y,交AC于点E.∵x=﹣==﹣,B(1,0),∴A(﹣4,0).∴AB=5.∴S=AB•OC=×5×3=7.5.△ABC设AC的解析式为y=kx+b.∵将A(﹣4,0)、C(0,﹣3)代入得:,解得:k=﹣,b=﹣3,∴直线AC的解析式为y=﹣x﹣3.设D(a,a2+a﹣3),则E(a,﹣a﹣3).∵DE=﹣a﹣3﹣(a2+a﹣3)=﹣(a+2)2+3,∴当a=﹣2时,DE有最大值,最大值为3.∴△ADC的最大面积=DE•AO=×3×4=6.∴四边形ABCD的面积的最大值为13.5.(3)存在.①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,﹣3),令x2+x﹣3=﹣3,∴x1=0,x2=﹣3.∴P1(﹣3,﹣3).②平移直线AC交x轴于点E2,E3,交x轴上方的抛物线于点P2,P3,当AC=P2E2时,四边形ACE2P2为平行四边形,当AC=P3E3时,四边形ACE3P3为平行四边形.∵C(0,﹣3),∴P2,P3的纵坐标均为3.令y=3得:x2+x﹣3=3,解得;x1=,x2=.∴P2(,3),P3(,3).综上所述,存在3个点符合题意,坐标分别是:P1(﹣3,﹣3),P2(,3),P3(,3).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档