汽轮机差胀过大的原因分析及改进措施

合集下载

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。

当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。

一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。

由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。

同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。

汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。

同样转子也因受热发生热膨胀。

转子膨胀大于汽缸,其相对膨胀差被称为正胀差。

汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。

二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。

汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。

因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。

当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。

不同容量的汽轮机组胀差允许极限值不同。

汽轮机胀差大的原因

汽轮机胀差大的原因

汽轮机胀差大的原因汽轮机是一种利用燃烧热能转化为机械能的设备,在工业生产和发电领域广泛应用。

而汽轮机的胀差是指在运行过程中,由于不同部件受热膨胀程度不同而引起的尺寸变化差异。

胀差的存在会对汽轮机的正常运行和性能产生一定的影响,下面将从几个方面探讨造成汽轮机胀差大的原因。

温度变化是导致汽轮机胀差的主要原因之一。

在汽轮机运行过程中,各个部件会受到高温蒸汽的冲击和热辐射,从而导致局部温度升高。

由于不同部件的材料性质和结构特点不同,其热膨胀系数也会有所差异。

因此,在温度变化过程中,不同部件的尺寸会发生不同程度的变化,从而产生胀差现象。

材料的热膨胀性能是影响汽轮机胀差的关键因素。

不同材料具有不同的热膨胀特性,有些材料的热膨胀系数较大,而有些材料的热膨胀系数较小。

在汽轮机中,各个部件多采用不同的材料,如铁、钢、铜、铝等。

由于材料的热膨胀系数不同,当汽轮机在运行过程中受到热膨胀影响时,不同材料的部件会产生不同程度的胀差。

汽轮机的结构设计也会影响到胀差的大小。

在汽轮机的设计中,需要考虑到部件的热膨胀特性以及运行时受到的温度变化,合理安排各个部件的间距和连接方式,以减小胀差的影响。

如果结构设计不合理,部件之间的连接方式不牢固,容易受到温度变化的影响,从而导致胀差增大。

汽轮机运行过程中的热应力也是导致胀差的重要因素。

由于汽轮机在运行过程中会受到高温蒸汽的冲击,各个部件会承受不同程度的热应力。

当热应力超过材料的承受范围时,就会导致部件的变形和破坏,进而增大胀差。

总结起来,汽轮机胀差大的原因主要包括温度变化、材料的热膨胀性能、结构设计和热应力等因素。

为了减小汽轮机胀差的影响,可以采取以下措施:合理选择材料,尽量使用热膨胀系数较小的材料;优化结构设计,合理安排部件间的间距和连接方式;加强温度控制,减小温度变化范围;加强材料性能测试和质量控制,确保部件的承受能力符合要求。

通过这些措施的实施,可以有效减小汽轮机胀差,提高其运行效率和可靠性。

汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。

汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。

下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。

1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。

解决方法是更换高性能的衬套材料,如高温合金。

2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。

解决方法是优化冷却系统,确保低压缸温度在可控范围内。

3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。

解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。

4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。

解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。

5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。

解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。

综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。

针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。

通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。

国产330MW机组汽轮机胀差产生原因及控制措施

国产330MW机组汽轮机胀差产生原因及控制措施

国产330MW机组汽轮机胀差产生原因及控制措施本文结合北京重型电机厂生产的330MW一次中间再热、三缸两排汽式汽轮机,叙述汽轮机胀差产生的原因,并结合现场实际运行情况分析各种工况下胀差的变化趋势,提出机组变工况时胀差的控制措施,及在运行中总结出的注意事项,保证机组安全可靠运行。

标签:330MW汽轮机胀差产生原因控制措施0引言在汽轮机运行过程中,使转子与汽缸保持大致相同的轴向热胀速率是十分重要的,而在机组启、停机以及运行过程中,由于汽轮机转子与汽缸的质量、热膨胀系数以及热耗散系数不同,就使得转子的温度比轴承的温度上升快,如果两者之间的热增长差超过汽轮机规定的公差,就会发生动静部分的摩擦,造成机组的损坏。

为此在实际运行中,为了保证机组的正常运行,就需要我们必须严格控制好胀差。

1胀差种类产生的原因和危害在实际运行中,不论产生正胀差还是负胀差都會对机组产生一定的影响,为此需要我们进行严格的控制。

所以胀差可以分为正胀差和负胀差两种,当转子膨胀大于汽缸膨胀的时候为正胀差,反之成为负胀差。

正负胀差的产生与机组在不同的运行情况有关,当启机、升负荷过程中产生的胀差为正胀差,减负荷、停机过程中所产生的胀差就为负胀差。

而胀差数值是十分重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。

当转子的相对胀差过大,就会使动、静轴向的间隙消失而产生摩擦,以此造成转子弯曲,引起机组振动,甚至会造成较大事故出现。

转子与汽缸的重量、表面积以及结构等都各不相同,因此他们的质面也就相对不同。

所谓的质面比就是转子或者汽缸质量与热交换面积之比。

而转子与汽缸相比较,当转子的质量较小的时候,就会使质面较小;反之,如果汽缸的质量大,就会使质面比增大。

而在加热和冷却的过程中,由于转子温度升高或者传递的时候速度要比汽缸快,就会造成转子的膨胀值大于汽缸,造成冷却时转子的收缩值也会大于汽缸的现象。

2胀差保护的重要意义监视胀差是机组启动以及停过程中一项十分重要的任务。

汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对膨胀值大的原因进行了分析, 并介绍了所采取的相应控制措施或注意事项, 以及在实际生产中起到的作用作出了举例证明。

关键词: 相对膨胀; 滑销; 温升率1前言我公司1 号汽轮机型号是C C50-8.83/4。

22/1。

57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。

低压抽汽量为50吨,最大抽汽量为50吨。

该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。

投运初期, 开机时间在10h以上, 开机时间明显偏长。

2控制相对膨胀的重要性金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。

因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受热明显增大。

汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。

为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。

汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。

当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。

当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。

因此, 汽轮机的相对膨胀值的控制相当重要。

汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差汽轮机轴向位移与胀差 (1)一、汽轮机轴向位移增大的原因 (1)二、汽轮机轴向位移增大的处理 (1)三、汽机轴向位移测量失灵的运行对策 (1)汽轮机的热膨胀和胀差 (2)相關提問: (2)1、轴向位移和胀差的概念 (3)2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3)使胀差向正值增大的主要因素简述如下: (3)使胀差向负值增大的主要原因: (4)正胀差 - 影响因素主要有: (4)3、轴向位移和胀差的危害 (6)4、机组启动时胀差变化的分析与控制 (6)1、汽封供汽抽真空阶段。

(7)2、暖机升速阶段。

(7)3、定速和并列带负荷阶段。

(7)5、汽轮机推力瓦温度的防控热转贴 (9)1 润滑油系统异常 (9)2 轴向位移增大 (9)3 汽轮机单缸进汽 (10)4 推力轴承损坏 (10)5 任意调速汽门门头脱落 (10)6 旁路系统误动作 (10)7 结束语 (10)汽轮机轴向位移与胀差轴向位移增大原因及处理一、汽轮机轴向位移增大的原因1)负荷或蒸汽流量突变;2)叶片严重结垢;3)叶片断裂;4)主、再热蒸汽温度和压力急剧下降;5)轴封磨损严重,漏汽量增加;6)发电机转子串动;7)系统周波变化幅度大;8)凝汽器真空下降;9)汽轮机发生水冲击;10)推力轴承磨损或断油。

二、汽轮机轴向位移增大的处理1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3)若主、再热蒸汽参数异常,应恢复正常;4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。

否则手动打闸紧急停机;6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机;7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。

汽轮机胀差形成的原因、危害及控制措施

汽轮机胀差形成的原因、危害及控制措施

汽轮机胀差形成的原因、危害及控制措施
浅议汽轮机胀差形成的原因、危害及控制措施
【摘要】对汽轮机在启动很正常运行中常见的胀差产生原因、控制要点及危害,进行了分析,同时给出了解决方法,对保证汽轮机的安全运行具有一定的作用。

【关键词】汽轮机;胀差;温度;汽缸;转子;摩擦
一、前言
在汽轮机运行过程中,使转子与汽缸保持大致相同的轴向热胀速率是极其重要的。

在机组启、停机及运行过程中,由于汽轮机转子与汽缸的质量、热膨胀系数和热耗散系数不同,转子的温度比轴承的温度上升得快,如果两者间的热增长差超过汽轮机所允许的间隙公差,就会发生动静部分磨擦,造成机组的损坏。

为此在实际运行中,为了保证机组的正常运行,必须严格控制好胀差。

二、胀差种类及产生的原因、危害
胀差的产生主要是由于汽轮机汽缸和转子在受热或受冷时他们的传热系数不一样使得在受热或受冷时汽缸受热或受冷膨胀相对于转子不同造成的。

胀差分为正胀差和负胀差,当转子膨胀大于汽缸膨胀的为正胀差,反之为负胀差。

在实际运行中不论产生正胀差还是负胀差都对机组产生影响,为此必须严格控制。

所以胀差是汽轮机的一项重要参数,而胀差在机组正常运行中一般不会出现大的偏差,只有在启机、停机和负荷突然大幅变动的过程中由于对参数的人为控制不当而产生和形成,一旦发生胀差超限会造成汽轮机级间动静摩擦使振动增大损坏设备,严重时可能打断叶片使设备严重。

电站汽轮机胀差详解及控制措施

电站汽轮机胀差详解及控制措施

汽轮机组相对膨胀产生的原因及控制措施相对膨胀又称胀差,即汽轮机转子与汽缸的相对膨胀量之差,是电站汽轮发电机组在运行过程中要严格控制的指标:尤其在汽轮机启动时,随着温度的上升,转子与汽缸分别以各自的死点为基准膨胀。

汽缸质量大,单面接触蒸汽膨胀慢;转子质量小,并旋转在蒸汽中,膨胀快;由于汽轮发电机组汽缸和转子的动静部件之间的间隙很小,如不严格控制胀差,很可能造成机组动静部件碰摩,造成机组振动和部件的损伤事故。

通常转子膨胀大于汽缸膨胀称为正胀差,反之称为负胀差。

根据汽缸分类可分为高差、中差、低I差、低II差。

而对于小功率的汽轮发电机组,一般只有单缸单轴,所以也就只有一个相对膨胀。

正胀差过大的原因:1)启动时暖及时间短,升速太快或升负荷太快。

2)汽缸夹层、法兰加热装置的加热汽温太低或流量低,加热作用弱。

3)滑销系统或轴承台板的滑动性差、卡涩。

4)轴封温度过高或轴封供气量大,引起轴颈过分伸长。

5)机组启动时,进汽压力、温度、流量参数过高。

6)推力轴承磨损,轴向位移大。

7)汽缸保温效果差,保温层脱落,机房汽温低。

8)双层缸的夹层中流入冷汽。

9)胀差指示器零点不准或触点磨损,引起数字偏差。

10)多转子机组,相邻转子胀差变化带来互相影响。

11)真空及转速变化的影响。

12)各级抽气量的影响。

例如一级抽汽停用,则对高差影响较大。

13)轴承油温太高。

14)机组停机惰走过程中由于“泊桑效应”的影响。

正胀差过大时应采取措施:1)检查主蒸汽温度是否过高,适当降低主蒸汽温度;2)使机组在稳定转速和稳定负荷下暖机;3)适当提高凝汽器真空,减小蒸汽流量;4)增加汽缸加热进汽量,使汽缸迅速胀出。

负胀差过大的原因:1)负荷迅速下降或机组甩负荷。

2)主汽温剧降或启动时的进汽温度低于金属温度。

3)水冲击4)汽缸夹层、法兰加热装置的加热过度。

5)轴封汽温度太低。

6)轴向位移变化。

7)轴承油温太低。

8)启动时转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机差胀过大的原因分析及改进措施摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对膨胀值大的原因进行了分析, 并介绍了所采取的相应控制措施或注意事项, 以及在实际生产中起到的作用作出了举例证明。

关键词: 相对膨胀; 滑销; 温升率1前言我公司1 号汽轮机型号是C C50-8.83/4。

22/1。

57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。

低压抽汽量为50吨,最大抽汽量为50吨。

该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。

投运初期, 开机时间在10h以上, 开机时间明显偏长。

2控制相对膨胀的重要性金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。

因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受热明显增大。

汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。

为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。

汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。

当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。

当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。

因此, 汽轮机的相对膨胀值的控制相当重要。

1号汽轮机的相对膨胀测量装置安装在2 号瓦附近, 即汽缸死点处。

3 1 号汽轮机的相对膨胀大的原因3. 1理论分析金属受热膨胀值有如下关系:ΔL=Lσ(t i-t0) (1)式中ΔL 为金属的绝对膨胀值;L 为金属的长度;σ为该金属的线膨胀系数;t i为金属材料的平均温度;t o为冷态温度, 通常取20℃。

由式1 可以看出汽缸与转子热膨胀的差值相对膨胀取决于:a. 由于转子与汽缸金属材料的不同, 其线胀系数σ的不同, 其在设计制造已确定, 这里不予讨论。

. b.由于热力过程的影响, 转子与汽缸的平均温度的不同。

此外, 机组热膨胀值还受非热力过程的影响。

如转子转动时受泊松效应影响膨胀值会变小, 但3000 r min 后影响较小, 而汽缸受到滑销系统和抽汽管道能否自由膨胀的影响是比较大的。

3. 2运行中相对膨胀值大原因分析及控制措施机组在稳定工况运行时, 各区段的温度分布是有规律的, 且转子和汽缸的金属温度接近同级的蒸汽温度, 理论上相对膨胀值应接近于0。

而1 号汽轮机在30 MW , 抽汽90, t h 真空93 kPa的稳定工况长期运行时, 相对膨胀值仍为2.15 mm其原因分析如下:3. 2. 1汽缸的平均温度低于转子的平均温度, 其影响主要有2 方面:1 保温不良。

2 环境影响: 由于空气对流等引起汽轮机外缸产生温差, 从而降低了汽缸的平均温度。

3. 2. 2由于转子与汽缸的金属材料的不同, 转子的线胀系数大于汽缸的线胀系数, 线胀系数在汽轮机的设计、制造过程中已确定, 故不予讨论。

3. 2. 3滑销系统的影响。

当机组的滑销系统受阻时, 汽缸的热膨胀值变化有跳跃式变化或汽缸的膨胀值存在变小的现象。

在大修时对滑销系统进行了检查清理, 热膨胀值变小的现象有所好转, 但仍须在开机过程中对汽缸的热膨胀进行监视, 监测有无跳跃式的变化, 以便停机检修时进行处理。

3. 2. 4汽轮机启动过程中, 各抽汽管道能否自由膨胀, 其抽汽管道膨胀的热应力会影响汽缸热自身膨胀的变化。

以上对汽缸膨胀有影响的因素, 有待于大修时予以确证和排除, 以降低运行中相对膨胀值。

3. 3启动阶段相对膨胀值偏大的原因分析及控制1 号机汽缸和转子可以看成是由很多段组成的, 每段的膨胀差值可由其长度和该段平均温差求出, 而该段末端的相对膨胀值为固定点推力轴承处至该处中间各段膨胀差值的代数和。

因此, 汽轮机各段的胀差对机组整个相对膨胀各有其影响。

3. 3. 1主汽参数及金属温升率的影响汽轮机启停过程中, 由于汽缸和转子材料、结构尺寸以及受热条件的不同, 即使是在相同的蒸汽参数下, 两者之间也明显存在温差。

从传热的角度分析:在金属温度已上升到该段蒸汽相应压力的饱和温度后, 即蒸汽不会发生凝结放热后, 蒸汽对金属的单位时间的放热量Q1为: Q1= (t蒸汽-t金属) αA金属(2 )式中t蒸汽为该段蒸汽的平均温度;t金属为金属的平均温度;α为放热系数;A金属为金属的受热面积。

金属的单位时间的吸热量Q2为:Q2 = m金属cb金属(3)式中m金属为金属的质量; c 为金属的比热; b金属为金属的温升速度。

如果不计散热损失, 由Q1 = Q2 , 整理公式(2 ),(3)得:b金属=( t蒸汽- t金属)αA金属/(m金属c ) (4)A金属/m金属称为质面比。

当机组启动升速或加负荷暖机前, 转子和汽缸与蒸汽的温差(t蒸汽- t金属)可以视为相等, 但在升速或加负荷暖机过程中, 由于放热系数α和质面比A金属m金属的不同, 转子与汽缸就会产生温差。

汽缸的质量大, 接触蒸汽面积小; 转子质量小, 接触蒸汽的面积大, 另外, 转子转动时蒸汽对转子的放热系数比汽缸的要大, 所以转子温度变化快, 转子更接近于蒸汽温度, 因此, 在汽轮机启停和工况变化时, 转子随蒸汽温度的变化膨胀或收缩更为迅速。

在每个暖机阶段, 转子温度逐渐升到比较接近周围蒸汽的温度之后, 温升率明显下降, 而汽缸则仍以接近于原来的温升率升高温度。

因此经过一段时间后,汽缸与转子的温差缩小, 这样就可以升速或升负荷到下一暖机阶段。

在滑参数启动过程中, 对主汽参数的控制和金属的温升率的控制是防止汽轮机的正胀差值过大的主要手段。

要防止蒸汽参数过高, 蒸汽参数过高会引起进汽量少, 暖机不均匀, 使转子加热过快, 汽缸加热相对过慢, 汽缸和转子的温差加大, 使得相对膨胀正值增加过快。

如在2007年1号机开机, 主汽温度320℃, 压力2.7 MPa 时冲转。

主汽温度365℃, 压力3.2 MPa 时并网, 相对膨胀增大至3.0 mm。

锅炉蒸汽温度降至350℃时, 相对膨胀回落0.2 mm。

3. 3. 2控制轴封供汽对胀差的影响高压汽轮机从调节汽室沿前轴封漏出的蒸汽,故前轴封段的转子温度较高, 且在汽轮机轴封处由于蒸汽流速高蒸汽的放热系数也大。

再者, 高温高压汽轮机汽封段转子长度较大, 如果有效地降低轴封供汽温度, 对轴封段的正胀差减小是有利的。

轴封供汽有2 种来源: 厂用汽压力0.89 MPa温度约280℃和高除汽平衡汽压力约为0.5 MPa温度约158℃。

运行中7 号机一般采用厂用汽作为轴封供汽的热源。

在启动过程中, 转子轴封段温升率较快, 膨胀大, 应尽可能采用高除汽平衡汽源, 以低温蒸汽降低转子温升率。

在1 号机开机中, 尽快将高除压力升至正常, 将轴封汽源由厂用汽280℃倒为汽平衡158℃汽源, 对胀差的控制起到了较好的效果。

3. 3. 3汽缸、法兰螺栓加热装置投运对相对膨胀的影响汽轮机在启动过程中, 使用汽缸法兰和螺栓加热装置可以提高汽缸、法兰和螺栓的温度, 有效地减少汽缸内外壁、法兰内外、汽缸与法兰、法兰与螺栓的温差, 提高汽缸的平均温度, 加速汽缸的膨胀。

法兰加热装置的正确使用, 对高压汽轮机启动控制相对膨胀值有较明显的作用。

值得注意的是, 如果启动时加热过度, 汽轮机中间几级的轴向间隙小于允许的范围, 而相对膨胀表的指示仍然可能在正常范围内, 对机组的安全构成威胁, 所以法兰螺栓加热装置的投入时间和温度的控制是相当重要的。

只有在时间合适和温度恰当的情况下, 法兰螺栓加热装置才能起到控制相对膨胀的作用。

在1 号机开机中,7 号机冲转后, 胀差在0 mm 以上, 立即投法兰加热装置, 汽源温度260℃,此时新蒸汽温度320℃。

并网后倒为新蒸汽, 温度350℃, 法兰温度为170℃, 调节级温度为225℃, 相对膨胀值下降至0.19 mm , 汽缸法兰平均温升由原来的0.41 ℃/ min升至0.744 ℃/ min。

3. 3. 4凝汽器真空对控制相对膨胀的影响在汽轮机启动过程中, 当机组维持一定转速或负荷时, 改变凝汽器真空可以在一定范围内调整胀差。

当真空降低时欲保持机组转速或负荷不变, 必须增加进汽量, 使高压转子温升率加快, 其高压缸正胀差随之增大。

由于进汽量的增加, 中、低压部分摩擦鼓风的热量被蒸汽带走, 因而转子被加热的程度减少, 正胀差减小。

另外, 真空降低, 排汽缸温度的上升, 也会使中低压缸加快膨胀, 减少胀差.在开机中, 真空控制在80~85 kPa, 排汽温度为100℃以内, 相对膨胀值有明显的回落。

3. 3. 5加热器和抽汽投入的影响由于转子、汽缸与蒸汽的热交换以对流换热的形式进行, 当机组启动达到一定负荷后, 转子的温度已接近该段蒸汽温度, 转子的温升较慢, 而汽缸受质面比的影响, 尚未达到工作温度, 膨胀不完全,此时投入高加和抽汽, 增加高、中压缸的蒸汽流量,由于流量、流速的变化, 对汽缸的放热系数增大,α在同样的蒸汽与汽缸金属温度差下, 汽缸的加热程度增加, 温升率上升, 汽缸的温升率比转子快, 从而汽缸热膨胀加快, 相对膨胀值减小。

3. 3. 6疏放水对暖机的影响充分的疏放水可以提高下汽缸的温度, 降低上下缸的温差, 也就提高了汽缸整体的平均温度。

各抽汽管道的充分疏放水, 提高了各抽汽口的温度, 相应提高了汽缸的整体平均温度。

再者, 能使各抽汽管道充分膨胀, 减少了抽汽管道阻碍汽缸热膨胀现象的发生。

4结论4. 1 1 号机在运行中相对膨胀值偏大, 应在停机检修时确证并排除;4. 2开机启动过程中应采取多个措施的配合使用。

历次开机证明了能够控制好相对膨胀值不超过+4 mm , 且开机时间大大缩短, 采取以上措施后,开机时间由原来的10h 缩短到现在的5h~6h , 其效益是可观的。

2008-04-29。

相关文档
最新文档