医用高等数学(第三版)习题解答
高等数学c教材第三版答案

高等数学c教材第三版答案第一章:函数与极限1. 函数的概念及性质1.1 函数的定义1.2 函数的图像和函数的性质1.3 函数的分类2. 极限与连续2.1 数列的极限2.2 函数的极限2.3 函数的连续性3. 无穷级数3.1 无穷级数的概念3.2 收敛级数与发散级数3.3 常见级数的性质第二章:导数与微分1. 导数与导数的计算1.1 导数的定义1.2 导数的计算方法1.3 导数的几何意义2. 高阶导数与微分2.1 高阶导数的概念2.2 高阶导数的计算2.3 微分的定义与性质3. 函数的应用3.1 驻点、极值与拐点3.2 泰勒展开3.3 曲线的图形与绘制第三章:积分与不定积分1. 积分与不定积分的概念1.1 积分的定义1.2 不定积分的定义和性质1.3 常用初等函数的不定积分2. 定积分与反常积分2.1 定积分的定义和性质2.2 反常积分的概念和收敛性2.3 常见函数的定积分计算3. 微积分基本定理与应用3.1 微积分基本定理的两个部分3.2 平均值定理与洛必达法则3.3 曲线的长度与曲面的面积第四章:微分方程1. 微分方程与基本概念1.1 微分方程的基本概念1.2 微分方程的解与解的存在唯一性1.3 一阶线性微分方程2. 高阶线性常微分方程2.1 高阶线性常微分方程的基本理论 2.2 常系数齐次线性微分方程2.3 变系数线性常微分方程3. 常微分方程的应用3.1 物理问题中的微分方程3.2 生物问题中的微分方程3.3 工程问题中的微分方程总结:本文按照《高等数学C教材第三版》的章节划分,分别对每一章节的知识点进行了论述。
通过对函数与极限、导数与微分、积分与不定积分以及微分方程等内容的讲解,希望读者能够全面理解高等数学C 教材第三版所涉及的知识,并为学习提供参考答案。
高等数学是大学数学的一门重要课程,掌握好这门课的知识对于理工科等相关专业的学生来说至关重要。
希望本文所提供的答案能够帮助读者更好地理解和学习高等数学C教材第三版的内容。
医用高等数学知到章节答案智慧树2023年南方医科大学

医用高等数学知到章节测试答案智慧树2023年最新南方医科大学第一章测试1.的反函数是:()。
参考答案:2.关于函数的定义域,下面说法错误的是:()。
参考答案:如果含有三角函数,反三角函数时,其自然定义域为R3.关于三角函数,下面说法错误的是:()。
参考答案:反正切函数:4.复合函数可分解为:()。
参考答案:5.已知,则()。
参考答案:6.是什么函数?()参考答案:分段函数7.下面极限错误的是()。
参考答案:8.的极限是()。
参考答案:不存在9.()。
参考答案:110.关于函数,下面说法正确的是()。
参考答案:其他三项都对11.f和g是同一极限过程的两个无穷小下面说法正确的是()。
参考答案:A,B,C都对12.()。
参考答案:13.参考答案:14.()。
参考答案:115.处连续,则()。
参考答案:16.的连续性,下面说法正确的是()。
参考答案:是无穷间断点17.()。
参考答案:118.方程区间有几个根?()参考答案:至少有1个根19.()。
参考答案:20.()。
参考答案:第二章测试1.的导数是()。
参考答案:2.,在处()。
参考答案:连续3.,且()。
参考答案:4.()。
参考答案:5.()。
参考答案:6.=()。
参考答案:-207.()。
参考答案:88.()。
参考答案:0,-19.,若函数在=1处可导,a和b的值分别为()。
参考答案:2,-110.()。
参考答案:11.函数的单调递减区间为()。
参考答案:12.函数的所有极值点为()。
参考答案:(1,4)13.函数在[2, 5]上的最小值和最大值分别为()。
参考答案:5,2514.曲线的所有拐点为()。
参考答案:(0,1)、()15.()。
参考答案:16.()。
参考答案:17.()。
参考答案:118.()。
参考答案:e19.()。
参考答案:120.()。
参考答案:1第三章测试1.如果,则的一个原函数为().参考答案:;2.如果,则的一个原函数为().参考答案:;3.如果是在区间I上的一个原函数,则= ().参考答案:;4.如果,则().参考答案:;5.如果,则()参考答案:;6.不定积分().参考答案:.7.不定积分().参考答案:;8.下列凑微分正确的是().参考答案:.9.不定积分().参考答案:;10.不定积分().参考答案:;11.不定积分().参考答案:;12.不定积分().参考答案:;13.如果是的一个原函数,则().参考答案:;14.不定积分().参考答案:;15.不定积分().参考答案:16.不定积分().参考答案:;17.不定积分().参考答案:;18.不定积分().参考答案:;19.不定积分().参考答案:;20.不定积分().参考答案:;第四章测试1.设函数f (x)连续,,则()。
医用高等数学教材答案

医用高等数学教材答案[注意:以下为虚构内容,并非真实的医用高等数学教材答案]第一章:微积分基础1. 解答:a) 设医学函数f(x)表示患者血压变化情况。
根据观察数据,当时间t 以分钟为单位递增时,血压p以毫米汞柱为单位递减。
则可用函数f(x) = -0.1x + 180来描述患者血压的变化规律,其中x为时间,f(x)为血压值。
b) 患者血压在15分钟内的平均变化率为:平均变化率 = (p2 - p1) / (t2 - t1)假设15分钟内血压从 p1 = 180mmHg 下降到 p2 = 160mmHg,则平均变化率为:平均变化率 = (160 - 180) / (15 - 0) = -4mmHg/min因此,患者血压在15分钟内的平均变化率为-4mmHg/min。
2. 解答:a) 医学函数f(x)描述了人体内一种物质的浓度变化规律。
根据观察数据,当时间t以小时为单位递增时,物质浓度c以毫升为单位递增。
则可用函数f(x) = 0.2x + 3来描述物质浓度的变化规律,其中x为时间,f(x)为物质浓度。
b) 物质浓度在4小时内的平均变化率为:平均变化率 = (c2 - c1) / (t2 - t1)假设4小时内物质浓度从 c1 = 3ml 下降到 c2 = 5ml,则平均变化率为:平均变化率 = (5 - 3) / (4 - 0) = 0.5ml/h因此,物质浓度在4小时内的平均变化率为0.5ml/h。
第二章:概率与统计1. 解答:a) 使用二项分布模型可以描述医学试验中的二元结果。
设试验成功的概率为p,失败的概率为q = 1-p。
则试验重复n次,成功k次的概率可由二项分布公式计算:P(X=k) = C(n,k) * p^k * q^(n-k)其中C(n,k)表示从n次试验中选择k次成功的组合数。
b) 假设一种药物在治疗特定疾病时的成功率为80%(p=0.8),现在进行了100次治疗试验。
则治疗成功50次的概率为:P(X=50) = C(100,50) * 0.8^50 * 0.2^50 ≈ 0.079因此,治疗成功50次的概率约为0.079。
医用高等数学完整答案

医用高等数学完整答案第一部分:导数及其应用导数是高等数学中的一个重要概念,它描述了函数在某一点的变化率。
在医用高等数学中,导数的应用非常广泛,例如在药物动力学、生物力学等领域。
1. 导数的定义:导数可以理解为函数在某一点的变化率。
对于一个函数 f(x),它在点 x=a 处的导数定义为:f'(a) = lim (h→0) [f(a+h) f(a)] / h其中,h 表示自变量 x 的微小变化量。
2. 导数的几何意义:导数还可以理解为函数图像在某一点的切线斜率。
切线是函数图像在该点附近最接近的直线,斜率则表示切线与x 轴的夹角。
3. 导数的计算:导数的计算方法有很多种,包括求导法则、微分法则、链式法则等。
下面列举一些常用的求导法则:常数函数的导数为 0。
幂函数的导数为幂指数乘以幂函数的导数。
指数函数的导数为指数函数乘以底数的对数。
对数函数的导数为底数的对数除以对数函数。
三角函数的导数可以根据三角函数的和差公式进行计算。
4. 导数的应用:导数在医用高等数学中的应用非常广泛,例如:药物动力学:通过求导可以计算药物在体内的浓度变化率,从而预测药物的疗效和副作用。
生物力学:通过求导可以计算生物体的运动速度和加速度,从而分析生物体的运动状态。
生理学:通过求导可以计算生理参数的变化率,从而分析生理过程的变化规律。
导数是医用高等数学中的一个重要概念,它描述了函数在某一点的变化率,并在药物动力学、生物力学等领域有着广泛的应用。
第二部分:微积分的应用微积分是高等数学的另一个重要分支,它包括微分和积分两部分。
在医用高等数学中,微积分的应用同样非常重要,它可以帮助我们理解和分析医学问题。
1. 微分的应用:微分是微积分的基础,它描述了函数在某一点的变化情况。
在医学中,微分可以用来研究药物在体内的浓度变化、生物体的生长速度等。
例如,我们可以通过微分方程来描述药物在体内的代谢过程,从而预测药物的疗效和副作用。
2. 积分的应用:积分是微积分的另一个重要部分,它描述了函数在某个区间上的累积效果。
医学高等数学习题解答(1,2,3,6)

第一章函数、极限与连续习题题解(P27)一、判断题题解1. 正确。
设h(x)=f(x)+f(x), 则h(x)= f(x)+f(x)= h(x)。
故为偶函数。
2. 错。
y=2ln x的定义域(0,+), y=ln x2的定义域(,0)∪(0,+)。
定义域不同。
3. 错。
故无界。
4. 错。
在x0点极限存在不一定连续。
5. 错。
逐渐增大。
6. 正确。
设,当x无限趋向于x0,并在x0的邻域内,有。
7. 正确。
反证法:设F(x)=f(x)+g(x)在x0处连续,则g(x) =F(x)f(x),在x0处F(x),f(x)均连续,从而g(x)在x=x0处也连续,与已知条件矛盾。
8. 正确。
是复合函数的连续性定理。
二、选择题题解1.2. y=x (C)3. (A)4. (B)5.(B)6. (D)7. 画出图形后知:最大值是3,最小值是10。
(A)8. 设,则,连续,由介质定理可知。
(D)三、填空题题解1.2. 是奇函数,关于原点对称。
3. ,。
4. ,可以写成。
5. 设,,6. 有界,,故极限为0。
7.8. ,而,得c=6, 从而b=6, a=7。
9.10.11. 设u=ex1,12. 由处连续定义,,得:a=1。
四、解答题题解1. 求定义域(1) , 定义域为和x=0(2) 定义域为(3) 设圆柱底半径为r,高为h,则v=r2h, ,则罐头筒的全面积,其定义域为(0,+)。
(4) 经过一天细菌数为,经过两天细菌数为,故经过x天的细菌数为,其定义域为[0,+)。
2. ,,。
3. ,。
4. 证明:。
5. 令x+1=t, 则x=t1。
,所以:。
6. 求函数的极限(1) 原式=。
(2) 原式==。
(3) 原式==。
(4) 原式=。
(5) 原式==。
(P289常见三角公式提示)(6) 原式=,令,则,令,则,,原式=。
(7) 原式=== e3。
(8) 原式=== e2。
(9) 原式==。
(10) 令,则,原式=(填空题11)。
高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

第八章 多元函数的定义1.求下列函数的定义域,并作图表示:(1)arcsin 3xz =+ (2)()2ln 48;z y x =-+(3)z x = (4)z =(5))0;z R r =>>(6)z =解答: 本题图略(1)30,03,0,0;x x y y -≤≤≤≤⎧⎧⎨⎨≤≥⎩⎩ (2)()242y x >-;(3),0x y <+∞≤<+∞;(4)x ≥且0y ≥;(5)2222r x y R <+≤; (6) 1.xy >所属章节:第八章第一节 难度:一级2.试用不等式表示由抛物线2y x =和2y x =所围成的区域(含边界)。
解答:201,x x y ≤≤≤≤ 所属章节:第八章第一节 难度:一级3.设(),,x f x y xy y=+求1,32f ⎛⎫⎪⎝⎭及()1,1.f - 解答:()15,3,1,1 2.23f f ⎛⎫=-=- ⎪⎝⎭所属章节:第八章第一节 难度:一级4.设()22,tan ,xf x y x y xy y=+-求(),.f tx ty解答:()()2,,.f tx ty t f x y = 所属章节:第八章第一节 难度:一级5.设22,,x f x y x y y ⎛⎫+=- ⎪⎝⎭求(),.f x y解答: 令11uv u x y x v xv u y y v ⎧=+⎧=⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩,代入原式得 222(1)(,)()()111uv u u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+注:如果题目是“设22,,y f x y x x y ⎛⎫=⎪⎭-+ ⎝求(),.f x y ”则答案为令11u u x y x v yuv v y x v ⎧=+=⎧⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩ ,代入原式得 222(1)(,)()()111u uv u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+。
医学高等数学习题解答(1,2,3,6)培训资料

医学高等数学习题解答(1,2,3,6)第一章 函数、极限与连续习题题解(P27)一、判断题题解1. 正确。
设h (x )=f (x )+f (-x ), 则h (-x )= f (-x )+f (x )= h (x )。
故为偶函数。
2. 错。
y =2ln x 的定义域(0,+∞), y =ln x 2的定义域(-∞,0)∪(0,+∞)。
定义域不同。
3. 错。
+∞=→201limxx 。
故无界。
4. 错。
在x 0点极限存在不一定连续。
5. 错。
01lim =-+∞→xx 逐渐增大。
6. 正确。
设A x f x x =→)(lim 0,当x 无限趋向于x 0,并在x 0的邻域内,有εε+<<-A x f A )(。
7. 正确。
反证法:设F (x )=f (x )+g (x )在x 0处连续,则g (x ) =F (x )-f (x ),在x 0处F (x ),f (x )均连续,从而g (x )在x =x 0处也连续,与已知条件矛盾。
8. 正确。
是复合函数的连续性定理。
二、选择题题解1. ())( 22)]([,2)(,)(222D x f x x x f x x x ====ϕϕ2. y =x (C )3. 01sinlim 0=→xx x (A )4. 0cos 1sinlim0=→xx x x (B ) 5. )1(2)(lim ,2)3(lim )(lim ,2)13(lim )(lim 11111f x f x x f x x f x x x x x ≠=∴=-==-=→→→→→++-- (B )6. 3092<⇒>-x x (D )7. 画出图形后知:最大值是3,最小值是-10。
(A )8. 设1)(4--=x x x f ,则13)2(,1)1(=-=f f ,)(x f 连续,由介质定理可知。
(D ) 三、填空题题解 1. 210≤-≤x ⇒31≤≤x2. )arctan(3x y =是奇函数,关于原点对称。
医用高等数学答案

12kπ(k=±1,±2,…)为第Ⅱ类间断点.1.4 习题解答本节给出了由张选群教授主编,人民卫生出版社出版的统编教材《医用高等数学》习题的解题思路及参考解题过程.1.求下列函数的定义域(1)y=(x+2)(x-1).解 由(x+2)(x-1)≥0定义域为(-∞,-2]∪[1,+∞).(2)y=arccos(x-3).解 由-1≤(x-3)≤1定义域为[2,4].(3)y=lg x-1 x+2.解 由x-1x+2>0定义域为(-∞,-2)∪(1,+∞).(4)y=ln(2+x) x(x-4).解 由ln(2+x)≥0(2+x)≥1x≥-1;又x≠0,x≠4从而定义域为[-1,0)∪(0,4)∪(4,+∞).(5)y=12-x2+arcsin12x-1.解 由(2-x2)>0-2<x<2; 又由-1≤12x-1≤10≤x≤2;故定义域为[0,2).(6)y=x sin x.解 由sin x≠0定义域为(kπ,(k+1)π)(k=0,±1,±2,…).2.设f(x)=1+x2,x<0,12,x=0,-x,x>0.求f(0),f12,f lg12.解 f(0)=12,f12=-12,f lg12=f(-lg2)=1+(-lg2)2=1+(lg2)2.3.设函数y=f(x)的定义域为[0,1],求下列函数的定义域(1)y=f x+13+f x-13.解 由0≤x+13≤10≤x-13≤1-13≤x≤2313≤x≤43定义域为13,23.(2)y=f(sin x).解 由0≤sin x≤1定义域为[2kπ,(2k+1)π](k=0,±1,±2,…).(3)y=f(ln x+1).解 由0≤ln x+1≤11e≤x≤1定义域为1e,1.(4)y=f(x2).解 由0≤x2≤1-1≤x≤1定义域为[-1,1].4.写出y关于x的复合函数(1)y=lg u, u=t an(x+1).解 y=lg[tan(x+1)].(2)y=u3, u=x2+1.解 y=(x2+1)32.(3)y=u+sin u, u=1-v, v=x3.解 y=1-x3+sin(1-x3).(4)y=e u, u=v2, v=sin w, w=1 x.解 y=exp sin21x.5.指出下列各函数是由哪些基本初等函数或简单函数复合而成(1)y=e arc tan(2x+1).解 y=e u, u=arct an v, v=2x+1.(2)y=sin3(x+2).解 y=u32, u=sin v, v=x+2.(3)y=tan 1+x 1-x.解 y=tan u, u=v, v=1+x 1-x.(4)y=cosln3x2+1.解 y=cos u, u=v3, v=12ln w, w=x2+1.6.已知f(e x+1)=e2x+e x+1,求f(x)的表达式.解 f(e x+1)=e2x+e x+1=(e x+1)2-(e x+1)+1f(x)= x2-x+1.7.已知f tan x+1tan x=tan2x+1t an2x+3,x≠kπ2(k=0,±1,±2,…),求f(x)的表达式.解 f t an x+1tan x=tan2x+1tan2x+3=tan x+1tan x2+1f(x)=x2+1.8.求下列函数的极限(1)limn→∞(n+1-n)=limn→∞1n+1+n=0;(2)limn→∞n sin nn+1=limn→∞1n+1/nsin n;因为对于任意的自然数n,有0≤1n+1/nsin n≤1n+1/n,注意到lim n→∞0=limn→∞1n+1/n=0,由夹逼法则得lim n→∞1n+1/nsin n=0,即lim n→∞1n+1/nsin n=0,故lim n→∞n sin nn+1=0. (3)limn→∞1n2+2n2+…+n-1n2=limn→∞1n2·12(n-1)n=limn→∞121-1n=12. 9.求下列函数的极限(1)limx→-1x3-1x-1=limx→-1(x2+x+1)=1;(2)limx→1x2-12x2-x-1=limx→1(x+1)(x-1)(2x+1)(x-1)=limx→1x+12x+1=23;(3)limx→∞x2-13x2-x-1=limx→∞1-1x23-1x-1x2=13;(4)因为limx→1x2-5x+42x-1=0,所以limx→12x-1x2-5x+4=∞;(5)limx→3x+13-2x+1x2-9=limx→33(3-x)(x2-9)(x+13+2x+1)=limx→3-3(x+3)(x+13+2x+1)=-116;(6)limx→+∞x2+1-1x=limx→+∞xx2+1+1=limx→+∞11+1x2+1x=1;(7)limx→111-x-21-x2=limx→1x-11-x2=limx→1-11+x=-12;(8)limx→01-cos xx sin x=limx→02sin2x2x·2sinx2cosx2=limx→0sinx2x cosx2=limx→0sinx22·x2·cosx2=12;(9)limx→1(1-x)tanπ2x=limt→0t tanπ2(1-t)=limt→0t cotπ2t=limt→02π·π2tsinπ2tcosπ2t=2π;(10)limx→0tan x-sin xx3=limx→0sin xx·1cos x·1-cos xx2=limx→0sin xx·12cos x·sinx2x22=12;(11)limx→1x21-x=limt→0(1-t)2t=limt→0(1-t)1-t2=limt→0(1-t)1-t2=e2;(12)limx→0(1-3x)1x=limx→0(1-3x)1-3x-3=limx→0(1-3x)1-3x-3=e-3;(13)limx→∞x-11+xx-1=limx→∞1-21+xx-1=limx→∞1-21+xx+11-21+x-2=limx→∞1-21+xx+1-2-21-21+x-2=limx→∞1-21+xx+1-2-2limx→∞1-21+x-2=e-2;(14)limx→0x+ln(1+x)3x-ln(1+x)=limx→01+1xln(1+x)3-1xln(1+x)=limx→01+ln(1+x)1x3-ln(1+x)1x=1+13-1=1;(15)limx→-1ln(2+x)31+2x+1=limx→-1[(1+2x)23-(1+2x)13+1]ln(2+x)1+2x+1=32limx→-1ln(2+x)1+x=32limt→0ln(1+t)t=32limt→0ln(1+t)1t =32ln limt→0(1+t)1t=32;(16)limx→∞2x+32x+1x+1=limx→∞1+22x+1x+1=limx→∞1+1x+12x+1=limx→∞1+1x+12x+121+1x+1212=limx→∞1+1x+12x+12limx→∞1+1x+1212=e.10.已知limx→1x2+bx+61-x=5,试确定b的值.解 由于分母极限为0,故只有分子的极限也为0时整个分式才可能有极限0型极限,其结果是个非0有限数值时,说明分子分母为同阶无穷小量,即limx→1(x2+bx+6)=0b=-7. 11.已知limx→+∞(2x-ax2-x+1)存在,试确定a的值,并求出极限值.解 limx→+∞(2x-a x2-x+1)=limx→+∞4x2-a x2+x-12x+ax2-x+1=limx→+∞(4-a)x2+x-12x+ax2-x+1存在.所以分子分母为同次式(分母本质上是一次式),即4-a= 0a=4.lim x→+∞(2x-4x2-x+1)=limx→+∞x-12x+4x2-x+1=limx→+∞1-1x2+4-1x+1x2=14. 12.当x→0时,将下列函数与x进行比较,哪些是高阶无穷小?哪些是低阶无穷小?哪些是同阶无穷小?哪些是等价无穷小?(1)tan3x.解 limx→0t an3xx=limx→0sin xx·tan2xcos x=limx→0sin xx·limx→0tan2xcos x=0当x→0时,tan3x是x的高阶无穷小;(2)1+x2-1.解 limx→01+x2-1x=limx→0x1+x2+1=0当x→0时,1+x2-1是x的高阶无穷小;(3)csc x-cot x.解 limx→0csc x-cot xx=limx→01-cos xx sin x=limx→0sin2x2x sinx2cosx2=limx→012sinx2x2cosx2=12当x→0时,csc x-cot x是x的同阶无穷小;(4)x+x2sin 1 x.解 limx→0x+x2sin1xx=limx→01+x sin1x=1当x→0时,x+x3sin 1x是x的等价无穷小;(5)cos π2(1-x).解 limx→0cosπ2(1-x)x=limx→0sinπ2xx=π2limx→0sinπ2xπ2x=π2当x→0时,cos π2(1-x)是x的同阶无穷小;(6)1+tan x -1-sin x .解lim x →01+tan x -1-sin x x=lim x →0tan x +sin x x (1+tan x +1-sin x)=limx →0sin xx 1+1cos x(1+tan x +1-sin x)=1当x →0时,1+t an x -1-sin x 是x 的等价无穷小.13.已知当x →0时,(1+ax 2-1)与sin 2x 是等价无穷小,求a 的值.解 limx →01+ax 2-1sin 2x =lim x →0ax 2(1+ax 2+1)sin 2x=a2=1a =2.14.设 f (x)=e x ,x <0,a +ln (1+x),x ≥0. 在(-∞,+∞)内连续,求a 的值.解 lim x →0-f (x)=lim x →0-e x=1,lim x →0+f (x)=lim x →0+[a +ln (1+x)]=a a =1.15.讨论函数f (x)=e 1x,x <0,0,x =0,x sin1x,x >0. 在点x =0处的连续性.解 因为lim x →0-f (x)=lim x →0-e 1x=0,lim x →0+f (x)=lim x →0+x sin 1x =lim x →0f (x)=0=f (0),所以f (x)在点x =0处连续.16.讨论函数f (x)=1,x =0,x sin 1x,x ≠0. 在点x =0处的连续性.解 因为lim x →0f (x)=lim x →0x sin1x=0≠f (0)=1,所以f (x)在点x =0处不连续.17.设f (x)=2,x =0,ln (1+a x)x,x ≠0. 在点x =0处连续,求a 的值.解 因为lim x →0f (x)=lim x →0ln (1+a x)x=a lim x →0ln (1+ax)1a x=a =f (0)=2,所以a =2.18.确定下列函数的间断点与连续区间:(1)y =x ln x.解 间断点为x =1;连续区间为(0,1)∪(1,+∞).(2)y =x -2x 2-5x +6.解 y =x -2(x -2)(x -3),间断点为x =2,x =3;连续区间为(-∞,2)∪(2,3)∪(3,+∞).(3)f (x)=1-x 2,x ≥0,sin |x |x ,x <0.解 lim x →0-f (x)=limx →0-sin |x |x =-1,lim x →0+f (x)=lim x →0+(1-x 2)=1lim x →0-f (x)≠lim x →0+f (x).因此,间断点为x =0;连续区间为(-∞,0)∪(0,+∞).(4)f (x)=limn →+∞11+xn (x ≥0).解 f(x)=1,0≤x<1,12,x=1,0,x>1,间断点为x=1;连续区间为[0,1)∪(1,+∞).1.5 自测题1.选择题(以下各题均有4个答案,其中只有1个正确答案)(1)对1~6个月的婴儿,由月龄估计体重的经验公式为y= f(t)=3+0.6t(t表示月龄,y表示体重),则在这个实际问题中f(t)的定义域是.A.(-∞,+∞);B.(0,+∞);C.[1,6];D.以上都不是.(2)函数f(x)=3-x+arccos x-23+1的定义域是.A.(-1,3);B.[-1,3);C.(-1,3];D.[-1,3].(3)设f(x)=x+1x,则下式成立的是.A.f(x)=f 1x;B.f(x)=1f(x);C.f(x)=f1f(x);D.f(x)=1f1x.(4)函数y=a x8+8是由复合而成.A.y=a u,u=v12,v=x8+8;B.y=a u,u=x8+8;C.y=au12,u=x8+8;D.y=a12u,u=x8+8.列表讨论如下:t (0,t 1)t 1(t 1,t 2)t 2(t 2,+∞)C ′(t)+0--C ″(t)--0+C(t)↗凸极大值↘凸拐点↘凹 C(t)的最大值:C max=C(t 1)=A σ1σ2σ1σ2σ1-σ2;C(t)的拐点值:C(t 2)=A(σ1+σ2)σ21σ2σ12σ2σ1-σ2.请读者描绘出函数图像.2.4 习题解答本节给出了由张选群教授主编,人民卫生出版社出版的统编教材《医用高等数学》习题的解题思路及参考解题过程.1.若一质点作直线运动,已知路程s 与时间t 的关系是s =3t 2+2t +1.试计算从t =2到t =2+Δt 之间的平均速度,并计算当Δt =0.1,Δt =0.01时的平均速度,再计算t =2时的瞬时速度.解 平均速度 珔v =Δs Δt =s(2+Δt)-s(2)Δt=3Δt +14.当Δt =0.1时,珔v =14.3;当Δt =0.01时,珔v =14.03;因此,t =2时的瞬时速度v ′(2)=lim Δt →0珔v =lim Δt →0(3Δt +14)=14. 2.按导数定义计算下列函数在指定点的导数.(1)f (x)=sin2x,x =0.解 f ′(0)=lim Δx →0f (0+Δx)-f (0)Δx =lim Δx →0sin2ΔxΔx=2.(2)f (x)=11+x,在x(x ≠-1)点.解 f′(x)=limΔx→0f(x+Δx)-f(x)Δx=limΔx→011+(x+Δx)-11+xΔx=limΔx→0-1(1+x+Δx)(1+x)=-1(1+x)2.(3)f(x)=x+1,在x=0点.解 f′(0)=limΔx→0f(0+Δx)-f(0)Δx=limΔx→0Δx+1-1Δx=limΔx→0 1Δx+1+1=2.(4)f(x)=2x-x2,在x点.解 f′(x)=limΔx→0f(x+Δx)-f(x)Δx=limΔx→0(2-2x-Δx)=2-2x.3.设f(x)在x=x0点处可导,试计算下列极限(1)limx→x0f(x)-f(x0)x-x0.解 设x=x0+Δx,则原式=limx→x0f(x0+Δx)-f(x0)Δx=f′(x0).(2)limΔx→0f(x0+2Δx)-f(x0)Δx.解 原式=12limΔx→0f(x0+2Δx)-f(x0)2Δx=12f′(x0).(3)limΔx→0f(x0)-f(x0-Δx)Δx.解 原式=lim-Δx→0f(x0-Δx)-f(x0)-Δx=f′(x0).(4)limn→∞n f x0+1n-f(x0).解 原式=lim1 n →0f x0+1n-f(x0)1n=f′(x0).(5)limh→0f(x0+h)-f(x0-h)h.解 原式=limh→0f(x0+h)-f(x0)-[f(x0-h)-f(x0)]h=2f′(x0).(6)limt→0f(x0+αt)-f(x0+βt)t.解 原式=limt→0α·f(x0+αt)αt-β·f(x0+βt)βt=(α-β)f′(x0).4.讨论下列函数在x=0点是否可导.(1)f(x)=x32sin1x,x>0 0,x≤0.解 f′(0)=limΔx→0f(0+Δx)-f(0)Δx=limΔx→0f(Δx)Δx,而f′-(0)=limΔx→0-f(Δx)Δx=limx→0-0=0,f′+(0)=limΔx→0+f(Δx)Δx=limx→0+(Δx)32sin1ΔxΔx=0.所以,f(x)在x=0点可导且f′(0)=0.(2)f(x)=x1+e1x,x≠0, 0,x=0.解 f′(0)=limΔx→0f(0+Δx)-f(0)Δx=limΔx→0f(Δx)Δx=limΔx→011+e1Δx.而f′-(0)=limΔx→0-11+e1Δx=1, f′+(0)=limΔx→0+11+e1Δx=0.所以f(x)在x=0点不可导.5.确定a,b的值,使f(x)=x2,x≤1,ax+b,x>1在x=1点处可导.解 要使f(x)在x=1处连续,必须有limx→1+f(x)=limx→1-f(x)=f(1).而lim x→1-f(x)=limx→1-x2=1, lim x→1+f(x)=limx→1+(ax+b)=a+b,f(1)=1,从而a+b=1.f′(1)=limΔx→0f(1+Δx)-f(1)Δx=limΔx→0f(1+Δx)-1Δx,f′-(1)=limΔx→0-f(1+Δx)-1Δx=limΔx→0-(1+Δx)2-1Δx=2,f′+(1)=limΔx→0+f(1+Δx)-1Δx=limΔx→0+a(1+Δx)+b-1Δx=a.要使f(x)在x=1处可导,应有f′-(1)=f′+(1),即a=2,又a+b= 1,从而得b=-1.*6.若函数f(x)在x0点可导,且f(x0)≠0,试计算极限lim n→∞f x0+1nf(x0)n.解 limn→∞f x0+1nf(x0)n=limn→∞exp n lnf x0+1nf(x0)=limn→∞expln f x0+1n-ln f(x0)1n=exp limn→∞ln f x0+1n-ln f(x0)1n=expdln f(x)d x x=x0=exp1f(x)·f(x)′x=x=exp1f(x0)·f′(x0)7.设曲线y=2x-x3.(1)求(1,1)点处曲线的切线方程及法线方程;(2)在(x0,y0)点处,曲线的切线通过点(0,-2),求(x0,y0)点及该点处曲线的切线方程和法线方程.解 y′=2-3x2.(1)在(1,1)点处曲线的切线斜率为k切=y′(1)=-1,因此切线方程:y-1=-1·(x-1), 即y=-x+2.法线方程:y-1=1·(x-1), 即y=x.(2)在(x0,y0)点处曲线的切线斜率为k切=y′(x0)=2-3(x0)2,切线方程为y-y0=[2-3(x0)2](x-x0),由于曲线过点(0,-2),有x0=-1,y0=-1.在(-1,-1)点, k切=-1,因此切线方程:y+1=-1·(x+1), 即y=-x-2.法线方程:y+1=1·(x+1), 即y=x.8.求下列函数的导数.(1)y=2x2+x22.解 y′=(2x-2)′+12x2′=-4x-3+x.(2)y=3x+3x+1 x.解 y′=3·x12′+x13′+(x-1)′=32x-12+13x-23-x-2.(3)y=x(2x-1)(3x+2).解 y′=(x)′(2x-1)(3x+2)+x(2x-1)′(3x+2) +x(2x-1)(3x+2)′=(2x-1)(3x+2) +2x(3x+2)+3x(2x-1).(4)y=x sin x+cos x.解 y′=(x)′sin x+x(sin x)′=sin x+x cos x.(5)y=x3+1x2-x-2.解 y′=(x3+1)′(x2-x-2)-(x3+1)(x2-x-2)′(x2-x-2)2=3x2(x2-x-2)-(x3+1)(2x-1)(x2-x-2)2.(6)y=1-ln x 1+ln x.解 y′=(1-ln x)′(1+ln x)-(1-ln x)(1+ln x)′(1+ln x)2=-2x(1+ln x)2.(7)y=x arctan x+sin x x.解 y′=(x)′arctan x+x(arctan x)′+sin xx′=12xarctan x+x1+x2+x cos x-sin xx2.(8)y=x tan x+x4x+xcos x.解 y′=tan x+x sec2x+4x-x4x ln442x+cos x+x sin xcos2x.(9)y=(2x2+3)3.解 y′=3(2x2+3)2·(2x2+3)′=12x(2x2+3)2.(10)y=ln(cot x).解 y′=1cot x·(cot x)′=1cot x·(-csc2x)=-1sin x cos x.(11)y=e sin x+arccos1-x2.解 y′=(e sin x)′+(arccos1-x2)′=e sin x cos x-11-(1-x2)2·-2x21-x2=e sin x cos x+x|x|1-x2.(12)y=x a2-x2+a2arcsin x a.解 y′=(x a2-x2)′+a2arcsin x a=a2-x2+x-2x2a2-x2+a211-xa2·1a=2a2-x2.(13)y= x+x+x.解 y′=12x+x+x(x+x+x)′=12x+x+x 1+12x+x(x+x)′=12x+x+x 1+12x+x1+12x.(14)y=sin(ln x)+ln(cos x).解 y′=cos(ln x)·1x+1cos x(-sin x)=1xcos(ln x)-tan x.(15)y=log2(x2-sin x).解 y′=1(x2-sin x)ln2(x2-sin x)′=2x-cos x(x2-sin x)ln2.(16)y=14ln1+x1-x+12arctan x+sinπ5.解 y′=14ln1+x1-x′+12(arctan x)′+sinπ5′=14·1-x1+x·1+x1-x′+12·11+x2=14·1-x1+x·2(1-x)2+12·11+x2=11-x4.(17)y=x ln x.解 利用对数求导法,有ln y=ln x·ln x1 y ·y′=2ln x·1x,故 y′=2x l n x-1ln x.(18)y=x sin x.解 利用对数求导法,有ln y=sin x·ln x,1 y ·y′=cos x·ln x+sin x·1x,故 y′=x sin x cos x ln x+sin xx.(19)y=(sin x)co s x.解 利用对数求导法,有ln y=cos x·lnsin x,1 y ·y′=-sin x·lnsin x+cos x·cos xsin x,y′=(sin x)co s x(cos x cot x-sin x lnsin x). (20)y=(2x)x.解 利用对数求导法,有ln y=x·ln2x,1 y ·y′=12xln x+x·22x,故y′=(2x)x ln(2x)+22x.(21)y=x2x+(2x)x.解 y=e2x l n x+e x ln(2x).利用对数求导法,有ln y=ln x·ln x,y′=e2x ln x·(2x ln x)′+e x ln(2x)(x ln2x)′=2x2x(ln x+1)+(2x)x(ln2x+1). (22)y=3x(x3+1)(x-1)2.解 利用对数求导法,有ln y=13[ln x+ln(x3+1)-2ln(x-1)],1 y ·y′=131x+3x2x3+1-2x-1,y′=133x(x3+1)(x-1)21x+3x2x3+1-2x-1. (23)y=(x-2)3x-55x+1.解 利用对数求导法,有ln y=3ln(x-2)+12ln(x-5)-15ln(x+1),1 y ·y′=31x-2+121x-5-151x+1,y′=(x-2)3x-53x+13x-2+12(x-5)-13(x+1). (24)y= (x sin x)1-e x.解 利用对数求导法,有ln y=12ln x+lnsin x+12ln(1-e x),1 y ·y′=121x+cos xsin x+12·-e x1-e x,y′=14(x sin x)1-e x2x+2cot x-ex1-e x. 9.求由下列方程确定的隐函数y=f(x)的导数(1)y=1+x e y.解 等式两边关于x求导,有y′=e y+x e y y′y′=e y1-x e y. (2)y=tan(x+y).解 等式两边关于x求导,有y′=sec2(x+y)·(1+y′),y′=sec2(x+y)1-sec2(x+y)=sec2(x+y)-tan2x=-csc2(x+y). (3)x y=y x.解 等式两边取对数,有y ln x=x ln y 等式两边关于x求导,有y′ln x+y·1x =ln y+x·1y·y′,y′=y(x ln y-y) x(y ln x-x). (4)x y=e x+y.解 等式两边关于x求导,有y+xy′=e x+y(1+y′),y′=e x+y-yx-e x+y=xy-yx-x y=y(x-1)x(1-y). 10.试证明曲线x+y=a上任一点处的切线,截两个坐标的截距之和为a.解 对曲线方程两边关于x求导,得1 2x +12y·y′=0, y′=-yx. 曲线上任一点(x0,y0)处的切线方程为y-y0=- y0x0·(x-x0).令x=0,得曲线在y轴上的截距:y0+x0y0;令y=0,得曲线在x轴上的截距:x0+x0y0;曲线在两坐标轴上的截距之和为:y0+x0+2x0y0=(x0+y0)2=a. 11.求下列函数的二阶导数(1)y=x x.解 等式两边取对数,有ln y=x ln x,等式两边关于x求导,有1yy′=ln x+1, y′=x x(1+ln x),对此式关于x再求导,有y″=(x x)′(1+ln x)+x x(1+ln x)′=x x(1+ln x)2+x x-1. (2)ln x2+y2=arctan y x.解 等式两边关于x求导,有1x2+y2·12x2+y2(2x+2yy′)=11+(y/x)2y′x-yx2, x+yy′=x y′-y, y′=x+yx-y,对此式关于x再求导,得y″=(x+y)′(x-y)-(x+y)(x-y)′(x-y)2=(1+y′)(x-y)-(x+y)(1-y′)(x-y)2. 代入y′=x+yx-y, 有y″=2x2+y2(x-y)3.12.设f″(x)存在,求下列函数的二阶导数(1)y=f(x2).解 y′=f′(x2)·2x,y″=[f′(x2)]′·2x+f′(x2)·2=4x2f″(x2)+2f′(x2).(2)y=ln[f(x)].解 y′=1f(x)·f′(x),y″=1f(x)′·f′(x)+1f(x)·f″(x) =-[f′(x)]2f2(x)+f″(x)f(x).13.求下列函数的n阶导数(1)y=sin x.解 y′=cos x=sin π2+x,y″=cos π2+x=sinπ2+π2+x=sin2·π2+x,y=cos2·π2+x=sinπ2+2·π2+x=sin3·π2+x, ⁝y(n)=sin n·π2+x.(2)y=sin2x.解 y′=2sin x cos x=sin2x,y″=2cos2x=2sin π2+2x,y=22cos π2+2x=22sinπ2+π2+2x=22sin2·π2+2x, ⁝y(n)=2n-1sin(n-1)·π2+2x.14.一质点作直线运动,其运动规律为s=t,其中路程s的单位为米,时间t的单位为秒,求质点在第4秒末的速度与加速度?解 质点在时刻t的速度 v(t)=d sd t=12t,加速度a(t)=d v(t)d t=-14t3.在第4秒末的速度v(4)=12t t=4=14,在第4秒末的加速度a(4)=-14t3t=4=-132. 15.许多肿瘤的生长规律为v=v0e A a(1-e-a t).其中,v表示t时刻的肿瘤的大小(体积或重量),v0为开始(t=0)或观察时肿瘤的大小,a和A为正常数,问肿瘤t时刻的增长速度是多少?解 肿瘤的t时刻的增长速度d vd t=v0e A a(1-e-at)′=v0A e A a(1-e-a t)-a t.16.病人服药后,药物通过肾脏排泄的血药浓度c和时间t的关系为c(t)=c0(1-e-k t),c0为血药初始浓度,k为常数,求药物的排泄速率.解 药物排泄速率 v(t)=d(c(t))d t=c0k e-k t.17.设某种细菌繁殖的数量为N=1000+52t+t2,其中时间t 以小时(h)计,求t=2h,t=5h时细菌的繁殖速度.解 在t时刻细菌的繁殖速度:v(t)=d Nd t=52+2t,在t=2h的繁殖速度:v(2)=(52+2t)t=2=56个/h,在t=5h的繁殖速度:v(5)=(52+2t)t=5=62个/h.18.求下列函数的微分(1)y=x2+1-31+x2.解 d y=(x2+1-31+x)′d x=2x-2x33(1+x2)2d x.(2)y=x(1+sin2x).解 d y=[x(1+sin2x)]′d x=1+sin2x2x+x·2sin2x d x(3)y=arctane x+arctan 1 x.解 d y=arctane x+arctan 1x′d x=e x1+e2x+11+1/x2·-1x2d x=e x1+e x-11+x2d x.(4)y=sin(x e x).解 d y=[sin(x e x)]′d x=(1+x)e x cos(x e x)d x.(5)y=x2-x,在x=1处.解 d y=(x2-x)′d x=(2x-1)d x.在x=1处,d y=(2x-1)x=1d x=d x.(6)y=x+1,在x=0,Δx=0.01时.解 d y=(x+1)′d x=12x+1d x.在x=0,Δx=0.01处,d y=12x+1Δxx=0Δx=0.01=0.005.19.在下列各划线处,填入适当的函数(1)d(x)=12xd x; (2)d-1x=1x2d x;(3)d(ax+b)=a d x;(4)d 1ae a x=e a x d x;(5)d 12arctanx2=14+x2d x;(6)d(lnφ(x))=φ′(x)φ(x)d x.20.若函数f(x)可导,且f(0)=0,|f′(x)|<1,试证明x≠0时,|f(x)|<|x|.证明 由拉格朗日中值定理,有f(x)-f(0)=f′(ξ)(x-0),ξ介于x,0之间,从而f(x)=f′(ξ)x,|f(x)|=|f′(ξ)||x|<1·|x|=|x|. *21.试证明,若对于任意x∈R,有f′(x)=a,则f(x)=ax+b.证明 设F(x)=f (x)-ax,则有F ′(x)=f ′(x)-(ax)′=0,F(x)=b (常数),故 f (x)=a x +b .22.利用洛必达法则求下列函数极限(1)lim x →0e x-e -x-2x x -sin x =lim x →0e x+e -x-21-cos x =limx →0e x-e-xsin x=lim x →0e x +e -x cos x=2.(2)lim x →π2lnsin x (π-2x)2=lim x →π2cot x -4(π-2x)=lim x →π2-csc 2x8=limx →π2-18sin 2x =-18.(3)lim x →+∞x e x 2x +e x =lim x →+∞e x 2+12x e x 21+e x =lim x →+∞e x 2+14x ex 2ex=lim x →+∞4+x 4e x 2=lim x →+∞=12ex 2=0.(4)lim x →π2tan x tan3x =lim x →π2sec 2x 3sec 23x =13lim x →π2cos 23x cos 2x =lim x →π2sin6xsin2x =3.(5)lim x →0x 2ln x =limx →0ln x 1x 2=lim x →01x-2·1x3=-2lim x →0x 2=0.(6)lim x →01x -1e x -1=lim x →0e x -x -1x(e x -1)=lim x →0e x -1e x -1+x ex=lim x →0e x 2e x +x e x=12.(7)lim x →π2(tan x)2cos x=lim x →π2e2co s x lnt an x=el im x →π22co s x lnt an x .因为lim x →π22cos x lntan x =lim x →π22lntan x sec x =lim x →π22·1tan x·sec 2xsec x tan x=lim x →π22cos x sin 2x =0,所以原式=e 0=1. (8)lim x →0(e x+x)1x=lim x →0eln (e x +x)x=e lim x →0ln (e x+x)x.因为 lim x →0ln (e x +x)x=lim x →0e x +1e x+x =2,所以 原式=e 2.*(9)设函数f (x)存在二阶导数,f (0)=0,f ′(0)=1,f ″(0)=2,试求lim x →0f (x)-xx2.解 lim x →0f (x)-x x2=lim x →0f ′(x)-12x =12lim x →0f ′(x)-f ′(0)x -0=12f ″(0)=1.*(10)设函数f (x)具有二阶连续导数,且lim x →0f(x)x=0,f ″(0)=4,求lim x →01+f (x)x1x.解 lim x →01+f (x)x1x=lim x →0exp ln 1+f (x)x x =exp limx →0ln 1+f (x)xx, limx →0ln 1+f (x)xx=lim x →01+f (x)x-1·f (x)x′1=lim x →0f ′(x)x -f (x)x 2=lim x →012f ″(x)=12×4=2,所以 limx→01+f(x)x1x=e2.23.试确定下列函数的单调区间(1)f(x)=x e-x.解 定义域为(-∞,+∞): f′(x)=e-x(1-x).令f′(x)=0,得驻点x=1.x∈(-∞,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)的单调递增区间为(-∞,1);单调递减区间为(1,+∞).(2)f(x)=x1+x.解 定义域为[0,+∞); f′(x)=1-x2x(1+x)2.令f′(x)=0,得驻点x=1.x∈(0,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)的单调递增区间为(0,1);单调递减区间为(1,+∞).24.求下列函数极值(1)f(x)=3x-x3.解 定义域为(-∞,+∞);f′(x)=3-3x2=3(1-x)(1+ x).令f′(x)=0,得驻点x=-1,x=1.x∈(-∞,-1)时,f′(x)<0,f(x)单调递减;x∈(-1,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=-1为f(x)的极小值,极小值f(-1)=-2;x=1为f(x)的极大值,极大值f(1)=2. (2)f(x)=xln x.解 定义域为x>0,x≠1; f′(x)=ln x-1ln2x.令f′(x)=0,得驻点x=e.x∈(1,e)时,f′(x)<0,f(x)单调递减;x∈(e,+∞)时,f′(x)>0,f(x)单调递增. 所以,x=e为f(x)的极小值,极小值f(e)=e.(3)f(x)=6xx2+1.解 定义域为(-∞,+∞);f′(x)=6-6x2(x2+1)2=6(1-x)(1+x)(x2+1)2.令f′(x)=0,得驻点x=-1,x=1.x∈(-∞,-1)时,f′(x)<0,f(x)单调递减;x∈(-1,1)时,f′(x)>0,f(x)单调递增;x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=-1为f(x)的极小值,极小值f(-1)=-3;x=1为f(x)的极大值,极大值f(1)=3. (4)f(x)=(2x-1)3(x-3)2.解 定义域为(-∞,+∞);f′(x)=23(x-3)2+(2x-1)·23·(x-3)-13=10(x-2)3(x-3)13. 令f′(x)=0,得驻点x=2,不可导点x=3.x<2时,f′(x)>0, x>2时,f′(x)<0;2<x<3时,f′(x)>0, 3<x时,f′(x)>0.所以,x=2为f(x)的极大值,极大值f(2)=3.25.试问a为何值时,函数f(x)=a sin x+13sin3x,在x=π3处具有极值?它是极大值,还是极小值?并求此极值.解 f′(x)=a cos x+cos3x.因为x=π3为极值点,所以有f′π3=a cosπ3+cos3·π3=a2-1=0,即a=2,f(x)=2sin x+13sin3x, f′(x)=2cos x+cos3x,f″(x)=-2sin x-3sin3x,而f″π3=-3<0,所以x=π3为f(x)的极大值,极大值为f π3=3.26.测量某个量,由于仪器的精度和测量的技术等原因,对量A进行n次测量,其测量的数据分别为x1,x2,x3,…,x n,取数x 为量A的近似值.问x取何值时,才能使其与x i(i=1,2,…,n)之差的平方和最小?解 设x与x i(i=1,2,…,n)之差的平方和为y,则y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x n)2, y′=2[nx-(x1+x2+x3+…+x n)]. 令y′=0,得x=x1+x2+x3+…+x nn (惟一驻点).因此,当x=x1+x2+x3+…+x nn时,才能使其与x i(i=1,2,…,n)之差的平方和最小.27.1~9个月婴儿体重W(g)的增长与月龄t的关系有经验公式ln W-ln(341.5-W)=k(t-1.66).问t为何值时,婴儿的体重增长率v最快?解 对经验公式两边关于t求导,得1 W ·d Wd t+1341.5-W·d Wd t=k,婴儿的体重增长率v=d Wd t=k345.1W(345.1-W).而v′=d vd t=k345.1(345.1-2W), 令v′=0,则有W=345.12,从而t=1.66时,婴儿的体重增长率v最快.28.口服一定剂量的某种药物后,其血药浓度c与时间t的关系可表示为c=40(e-0.2t-e-2.3t),问t为何值时,血药浓度最高,并求其最高浓度.解 c=40(e-0.2t-e-2.3t), c′=d cd t=40(-0.2e-0.2t+2.3e-2.3t).令c′=0,则有t=ln2322.1=1.1630(惟一驻点),所以t=1.1630时,血药浓度最高,此最高血药浓度c(1.1630)=28.9423.29.已知半径为R的圆内接矩形,问它的长和宽为多少时矩形的面积最大?解 设圆内接矩形的面积为s,其长为x,宽为y= (2R)2-x2,则有s=xy=x4R2-x2,s′=d sd x=4R2-x2-x24R2-x2=4R2-2x24R2-x2,令s′=0,则有x=2R(惟一驻点),此时y=(2R)2-x2=2R.故,长x=2R,宽y=2R时矩形面积最大.30.已知某细胞繁殖的生长率为r=36t-t2,问时间t为何值时,细胞的生长率最大?最大生长率为多少?解 r=36t-t2,r′=d rd t=36-2t.令r′=0,则有t=18(惟一驻点),所以t=18时,细胞的生长率最大,此最大生长率为r(18)=324.31.在研究阈值水平时电容放电对神经的刺激关系中,Hoor-weg发现引起最小的反应(肌肉的收缩)时,电压U与电容器的电容量c有关,其经验公式为U=aR-bc,其中R是电阻(假设为定值),a,b为正常数.若电容的单位为微法(μF),电容器的电压为伏特(V),由物理知识可知,与负荷相对应的电能为E=5cU2(erg),从而有E=5c aR+bc2.试问,当电容为多少微法时,电能最小,其最小电能为多少?解 E=5c aR+bc2=5a2R2c+10aRb+5b2c,E′=d Ed c=5a2R2-5b2c2.令E′=0,则有c=ba R(惟一驻点),所以c=baR(μF)时,电能最小,此最小电能为EbaR=20abR(erg).32.判别下列曲线的凹凸性(1)y=x arctan x.解 函数定义域为(-∞,+∞).y′=arctan x+x1+x2, y″=2(1+x2)2>0,所以函数在(-∞,+∞)上为凹的.(2)y=4x-x2.解 函数定义域为(-∞,+∞),y′=4-2x, y″=-2<0.所以函数在(-∞,+∞)上为凸的.33.求下列曲线的凹凸区间与拐点(1)y=3x4-4x3+1.解 函数定义域为(-∞,+∞),y′=12x3-12x2, y″=36x2-24x=12x(3x-2).令f″(x)=0,得x=0,x=2/3.当x∈(-∞,0)时,f″(x)>0,函数为凹的;当x∈0,23时,f″(x)<0,函数为凸的;当x∈23,+∞时,f″(x)>0,函数为凹的.所以函数在(-∞,0),23,+∞上为凹的,在0,23上为凸的,拐点为(0,f(0))=(0,1),23,f23=23,1127.(2)y=ln(1+x2).解 函数定义域为(-∞,+∞),y′=2x1+x2, y″=2(1-x)(1+x)(1+x2)2. 令f″(x)=0,得x=-1,x=1.当x∈(-∞,-1)时,f″(x)<0,函数为凸的;当x∈(-1,1)时,f″(x)>0,函数为凹的;当x∈(1,+∞)时,f″(x)<0,函数为凸的.所以函数在(-∞,-1),(1,+∞)上为凸的,在(-1,1)上为凹的,拐点为(-1,f(-1))=(-1,ln2),(1,f(1))=(1,ln2).(3)y=2x ln x.解 函数定义域为(0,+∞),y′=2ln x-2ln2x, y″=4-2ln xx ln3x.令f″(x)=0,得x=e2,f″(x)的不可导点为x=1.当x∈(0,1)时,f″(x)<0,函数为凸的;当x∈(1,e2)时,f″(x)>0,函数为凹的;当x∈(e2,+∞)时,f″(x)<0,函数为凸的.所以函数在(0,1),(e2,+∞)上为凸的,在(1,e2)上为凹的,拐点为(e2,f(e2))=(e2,e2).(4)y=(x-5)53+2.解 函数定义域为(-∞,+∞).y′=53(x-5)23, y″=109·13x-5,f″(x)的不可导点为x=5.当x∈(-∞,5)时,f″(x)<0,函数为凸的;当x∈(5,+∞)时,f″(x)>0,函数为凹的.所以函数在(-∞,5)上为凸的,在(5,+∞)上为凹的,拐点为(5, f(5))=(5,2).34.已知曲线y=ax3+bx2+c x+d在(1,2)点处有水平切线,且原点为该曲线上的拐点,求a,b,c,d之值,并写出此曲线的方程.解 y′=3ax2+2bx+c,y″=6a x+2b,根据题意有y(1)=a+b+c+d=2,y(0)=d=0,y′(1)=3a+2b+c=0,y″(0)=2b=0,从而解得 a=-1,b=0,c=3,d=0.35.求下列曲线渐近线(1)y=x2x2-1.解 因为limx→±1x2x2-1=∞,所以曲线有垂直渐近线x=±1;又因为 limx→∞x2x2-1=1,所以曲线有水平渐近线y=1.(2)y=x e 1x2.解 因为limx→0x e1x2=limx→0e1x21x=limx→02e1x2x=∞,所以曲线有垂直渐近线x=0;又因为 limx→∞x e1x2x=1,且limx→∞(x e1x2-x)=0,所以曲线有斜渐近线y=x.2.5 自测题1.选择题(以下各题均有4个答案,其中只有1个正确答案)(1)设f(x)=|x-8|,则f(x)在x=8处的导数是.A.8;B.不存在;C.0;D.-8.(2)设f(x-1)=x2-1,则f′(x)=.A.2x+2;B.2x+1;C.2x-1;D.2x.(3)设f(x)是可导函数,且limt→0f(x0+2t)-f(x0)t=1,则f′(x0)为.A.1;B.2;C.0;D.0.5.(4)设f(x)=x,当x0>0时,limt→0tf(x0-2t)-f(x0)=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医用高等数学(第三版)习题解答习题一1( 求下列函数的定义域:(1)要使函数有意义,需且只需,即或,所以函数 (x,2)(x,1),0y,(x,2)(x,1)x,,2x,1的定义域为。
(,,,,2],[1,,,)(2)要使函数有意义,需且只需,即,所以函数 y,arccos(x,3),1,x,3,12,x,4。
的定义域为[2,4]x,1x,1,0(3)要使函数有意义,需且只需且,或,所以函数的定 x,2,0x,,2x,1y,lgx,2x,2义域为。
(,,,,2),(1,,,)ln(2,x),0,ln(2,x),y,2,x,0(4)要使函数有意义,需且只需,解之得函数的定义域为。
[,1,0),(0,4),(4,,,),x(x,4),x(x,4),0,2,2,x,01x,(5)要使函数有意义,需且只需,解之得函数的定义域为。
y,,arcsin(,1)[0,2),22,,1,x/2,1,12,x,xsinx,0y,(6)要使函数有意义,需且只需,即函数的定义域为。
D,{xx,R,x,k,,k为整数}sinx1111122f(),,f(0),f(lg),1,lg,1,(lg2)2(解,,。
222221,0,x,,1,1112,,3f(x,),f(x,)) 要使函数有意义,需且只需3(解(1 解之得函数的定义域为。
,,,,13333,,,0,x,,13,0,sinx,1(2)要使函数有意义,需且只需,即为整数,所以函数的定2k,,x,(2k,1),,kf(sinx)D,{xx,[2k,,(2k,1),],k为整数}义域为。
,1,1[e,1]e,x,1(3)要使函数有意义,需且只需,即,所以函数f(lnx,1)的定义域为。
0,lnx,1,1220,x,1[,1,1](4)要使函数有意义,需且只需,即,所以的定义域为。
f(x),1,x,1312sin332x2y,lgtan(x,1)4(解(1); (2) ; (3) ; (4) 。
y,1,x,sin(1,x)y,(x,1)y,e3u25(解(1)y,e,u,arctanv,v,2x,1; (2); y,u,u,sinv,v,x,211,x1322y,tanu,u,v,v,y,cosu,u,v,v,lnw,w,x,1(3) ; (4)。
1,x2x2xxx2x2f(x)f(e,1),e,e,1,(e,1),(e,1),1f(x),x,x,16(解因为,所以函数的表达式为。
2111,,2f(tanx,),tanx,,3,tanx,,1f(x)7(解因为,所以函数的表达式为,,2tanxtanxtanx,,12。
f(x),x,11n,sin1nnsinnnn8(解(1) 。
(2) lim(,1,),lim,0lim,lim,0n,,n,,1n,,n,,n,1nn,1,1,n12n1n(n1)/2n11,,,,,limlimlim,,?,,,,(3) ,,2222n,,n,,n,,2n2nnnn,, 32x,1x1x12,,2limlim9(解(1);(2),,; lim,lim(x,x,1),12x,1x,1x,,x,,2x1311,x,12xx1,,2222x1x111/x1,,,x,5x,4limlim(3);(4)因为,所以; ,,lim,0lim,,222x,,x,,x,1x,132x,1xxxxx313/1/,,,,x5x4,,x3(3)xx1321,,31,,,,(5);limlimlim,,,22x,3x,3x,316x9,xxxxxx(9)(1321)(3)(1321),,,,,,,,2,,12x111,,x,,,1,111,,limlimlim,,,,,,,(6);(7);lim,lim1,,,1222,,x,1x,1x,1x,,,x,,,1x1x2,,xx1x1x,,,,x,, xx22sinsin1cos11x,22(8)limlimlim; ,,,,x,0x,0xxx,0xxxsinx22xsincos2co s2222,,,,(1)cos(1)xx,,222(9),,,,,,,;lim(1)tanlim(1)cot(1)limxxxxx,1x,1x,1,,,22,sin(1)x2222sin(x/2)tanxsinxsinx1cosx1sinx121,,limlimlim(10); ,,,,,,,,322x,x,x ,000xcosxxcosx42xx4(x/2)2111,(,2),(,3),2,3xxxx1,,1,3limx,lim[1,(x,1)],elim(1,3x),lim(1,3x),e(11); (12); xxxx,1,1,0,0x,1x,1,(,2),2,2x,1,2,2,,,,,,,2,2,2lim,lim1,1,,e,1,e(13) ,,,,,,x,,x,,1,xx,1x,1,,,,,,1xxxx,ln(1,)1,ln(1,)e1,ln(14)lim,lim,,11xx,,00xxe3,ln(1,)3,lnxx3,ln(1,)2233331ln(1,1,x)((1,2x),1,2x,1),x,,x,(12)121)ln(2,x),,,,x,limln1(1),,limlim(15)x,1 3x,,111x,,x,,22(x,1),,12x1 33lne,,= 2221x,1x,1/222x,311,,,,,,(16) lim,lim1,,1,,e,,,,,,x,,x,,2x,1x,1/2x,1/2,,,,,,222,,xbxxbx,(,5),1,,6x,bx,6,,10(解因为,所以lim,5lim,5,lim,0,,1x,x,x,111,xxx1,1,,,2lim[x,(b,5)x,1],1,(b,5),1,b,7,0因为,所以,故。
lim(1,x),0b,,7x,1x,1211(已知lim(2x,ax,x,1)存在,试确定的值,并求出极限值。
ax,,,224x,ax,x,12解: lim(2x,ax,x,1),lim,a,4x,,,x,,,22x,ax,x,111,xx112,xxx。
lim(241)limlim,,,,,,2x,,,x,,,x,,,411xxx241,,,24,,,2xxx,012(当时,将下列函数与进行比较,哪些是高阶无穷小,哪些是低阶无穷小,哪些是同阶无x穷小,哪些是等价无穷小,322xxxxxtansintansintan3tanxlim,lim,,lim,lim,0,(1) 解:高价;x,x,x,x,0000xxxxxcoscos2xx1,,12(2) 解:高阶; 1,x,1lim,lim,0,x,0x,02xx1,,11xx2sinsincscxcotx1cosx1,,222limlimlimlim(3) 解:,,,,,同阶;cscx,cotxxxxxx,0x,0x,0x,0xxsinx2xsincoscos222212xx,sin11x2xlim,lim(1,sin),1,xxsin,(4) 解:等价; x,0x,0xxx,,,xxxcos(1)sinsin,,,,222cos(1,x)limlimlim,,,,(5) 解:同阶;x,0x,0x,0,2xx22x21,tanx,1,sinxtanx,sinx1,tanx,1,sinxlim,lim(6) 解: x,0x,0xx(1,tanx,1,sinx)1(1,)xsinxcos等价。
,lim,1,x,0xxx(1,tan,1,sin)22x,0a13(已知当时,是等价无穷小,求值。
(1,ax,1)与sinx3221,ax,1axa解:。
lim,lim,,1,a,22x,0x,0222sinxsinx(1,ax,1)x,e,x,0,14(设在内连续,求值。
f(x),(,,,,,)a,,a,ln(1,x),x,0,xlimf(x),lime,1,limf(x),lim[a,ln(1,x)],a,a,1解:。
,,,,x,0x,0x,0x,01,x,e,x,0,x,015(讨论函数在点处的连续性。
解:因为(),0,,0fxx,,1xxsin,,0,x,11xlimf(x),lime,0,limf(x),limxsin,0,limf(x),0,f(0)x,0,所以在点处连续。
,,,,x,0x,0x,0x,0x,0x1,x,0,,x,01f(x),16(讨论函数在点处的连续性。
,xsin,x,0,x,1limf(x),limxsin,0,f(0),1解:因为,所以在点处不连续。
x,0x,0x,0x 2,x,0,,ln(1,ax)f(x),17(设在点处连续,求值。
ax,0,,x,0,x,1ln(1,ax)axlimf(x),lim,alimln(1,ax),a,f(0),2解:因为,所以。
a,2,,,xxx000x18(确定下列函数的间断点与连续区间: xx,1y,(1) 解:间断点;连续区间。
(0,1),(1,,,)lnxx,2x,2x,2,x,3y,y,(2) 解:,间断点;连续区间(,,,2),(2,3),(3,,,)。
2(x,2)(x,3)x,5x,62,1,,,0xxsinx,2limf(x),lim,,1,limf(x),lim(1,x),1(3) 解:(),fxsinx,,,,,x,x,x,x,0000x,x,0,x,,limf(x),limf(x)(,,,0),(0,,,),间断点;连续区间。
x,0,,x,0x,01,0,x,1,,11,f,,x,,x,1[0,1),(1,,,)(4) 解:,间断点;连续区间。
f(x),lim(x,0)x,1,n,,,n21,x,0,x,1,,习题二2s2,,t,s232,,t,22,,t,1,3,4,2,2,1,,,,,,,,,,V,,1( 平均速度 ,3,t,14,t,t4, V,s,6t,2,14V,3,0.1,14,14.3V,3,0.01,14,14.03t,2t,2t,2,t,0.1,t,0.012(按导数定义计算下列函数在指定点的导数 (1) 解:f'(0),2cos2x,2f(x),sin2x,在x,0点x,011f(x),在x(x,,1)点(2) 解: f'(x),,当x,,1时21,x(1,x)11f'(0),,(3) 解: f(x),x,1,在x,0点x,0221x,2(4) 解: f'(x),2,2xf(x),2x,x,在x点3(设在点处可导,试计算下列极限: x,xf(x)0f(x),f(x)f(x,2,x),f(x)f(x,2,x),f(x)00000lim,f'(x)(1) (2)lim,lim,2,2f'(x)00x,xx,x,x,,x,0200,x2,x0f(x),f(x,,x)f(x,,x),f(x)0000(3) lim,lim,f'(x)0,x,,x,00,x,,x1f(x,),f(x)001,,n (4) limnf(x,),f(x),lim,f'(x)000,,n,,1nn,,,,nfxhfxhfxhfxfxfxh(,),(,)(,),(),(),(,)000000 (5) lim,limh,h,00hh f(x,h),f(x)00,f'(x),lim,f'(x),f'(x),2f'(x) 0000h,0,h(6),,,,fxtfxtfxtfxfxtfx,,(,),(,)(,),(),(,),()000000,,lim,lim,limttt,,t,t,t,000,(,,,)f'(x) 0x,04(讨论下列函数在点是否可导:313,21xsin,0121,xxsin,0'x2fx(),fx(0),lim,limsin,0(1) 解: ,,x,,x,x,xx00,0,x0,0,fxf(),(0)0,0'f可导(0),lim,lim,0?f'(0),0 ,,,x,0x,0xx,05x,0x,1x,0,1xfxf(),(0)1,'e1,(2) 解: ff(x),(0),lim,lim,lim,0,,x,,,11,ex,x,x,000xx,0,xe1,,0x,0,1' f(0),lim,1,?f(x)在x,0不可导.,,1x,0x1,e2,x,1x,x,15(试确定a、b的值,使在点处可导。