医用高数精选习题(含答案)
大学医用高等数学习题

解的存在唯一性定理
在一定条件下,微分方程存在唯一解的定理。
一阶常微分方程
1 2
线性一阶微分方程
形如y'=f(x,y)的一阶微分方程,其中f是x和y的已 知函数。
一阶常系数线性微分方程
形如y'=f(x)的一阶微分方程,其中f是x的已知函 数。
3
一阶微分方程的通解和特解
满足给定初始条件和边界条件的微分方程的解。
生物信息学
基因组学、蛋白质组学等生物信息学领域,通过高等数学方法对大规 模数据进行处理和分析,挖掘疾病与基因、蛋白质之间的关系。
药物研发
药物动力学模型、药效学模型等高等数学模型在药物研发过程中用于 预测药物在体内的分布、代谢和排泄情况。
医学中常用的高等数学概念
微积分
微积分是医学中应用最广泛的高等数学概念,包括极限、连续 性、导数和积分等,用于描述生物体内物质分布、生理过程和
药物作用等的动态变化。
线性代数
线性代数在医学数据处理和统计分析中发挥重要作用,如矩阵 运算、特征值和特征向量等,用于表示和处理医学图像、基因
表达数据等。
概率论与数理统计
概率论与数理统计是医学研究中不可或缺的数学工具,用 于描述随机现象、进行假设检验和预测疾病发生风险等。
02
函数与极限
函数定义与性质
复合函数的导数
对于复合函数,需要先对内层函 数求导,再将结果与外层函数的 导数相乘,得到复合函数的导数。
隐函数的导数
对于由方程确定的隐函数,可以 通过对方程两边求导的方法来求 得其导数。
微分及其应用
微分的定义
微分是函数在某一点的变化率的线性近似,用符号“d”表示。
微分的几何意义
微分可以理解为函数图像在某一点处的切线的斜率。
07级医用高数题-A (附最后答案)

2007医用高数A (共2页) 第1页07级医用高数题 A注意:① 个别题目、专业与其他专业有所不同,请选做对应的题!② 每题均需写出详细的解题过程, 否则不给分.1.(8分) 求2tan )1(lim 1x x x π-→. 参考答案:( π2)2.(8分) 求xxn x x x n ee e 120lim ⎪⎪⎭⎫⎝⎛+++→Λ, 其中n 是给定的自然数. 参考答案:( 21+n e )3.(8分) 求x x d )1(1202⎰-. 参考答案:( 发散 )4.(8分) ⑴【一般班通用题】设二阶常系数线性微分方程x e y y y γβα=+'+''的一个特解为x x e x e y )1(2++=,求α,β,γ .参考答案:( ⎪⎩⎪⎨⎧-==-=123γβα )⑵【护理.康复班用题】试求⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(22x x x x f x 的微商.参考答案:( ⎪⎩⎪⎨⎧=≠+-+='0,20),1ln(114)(222x x x x x x f )5.(8分) 证明⎰1d 1x xq 当q <1时收敛,当q ≥1时发散. 参考答案:( 证明略 )6.(8分) 求函数t t t tx I xed 12ln )(2⎰+-=在区间 [ e , e 2 ]上的最大值. 参考答案:( eee +-+1)1ln( )2007医用高数A (共2页) 第2页7.(8分) ⑴【一般班通用题】求0365)4(=-''+y y y .参考答案:( x C x C e C e C y x x 3sin 3cos 432221+++=- )⑵【护理.康复班用题】设)(x f 是连续函数,且⎰+=10d )(2)(t t f x x f ,求)(x f . 参考答案:( 1)(-=x x f )8.(8分) 设对任意x >0,曲线)(x f y =上点))(,(x f x 处的切线在y 轴上的截距等于⎰xd )(1t t f x,求)(x f 的一般表达式.参考答案:( 21ln )(C x C x f += )9.(8分) 已知)(~λπX ,且1)]2()1[(=--X X E ,求λ .参考答案:( 1=λ )10.(8分) ⑴【一般班通用题】求由方程 0=-z y x e x 所确定的函数z 的偏导数.参考答案:( xe y y z x⋅-=∂∂21 )⑵【护理.康复班用题】求函数x y ln =在[ 1, e ]的平均值I .参考答案:(11-e ) 11.(10分) 设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤-<≤=,,043,2230,)(其它x x x x k x f(1) 确定常数k ; (2) 求X 的分布函数; (3) 求{}271≤<X P .参考答案:( (1) 61=k (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=4,143,42330,120,0)(22x x x x x x x x F (3) 4841 )12.(10分) 设随机变量X 在 [ 2, 5 ] 上服从均匀分布,现在对X 进行三次独立观测,试求至少有两次观测值大于3的概率.参考答案:(2720)。
医用高数精选习题含答案

医用高数精选习题含答案医学生需要学习数学,尤其是高数。
然而,高数知识对于许多医学生来说是非常困难的。
因此,许多医学生需要精选的高数练习题目来加强他们的高数技能。
这里,我们提供一些医用高数精选习题和答案,这些习题涵盖了各种高数问题:导数、极值、曲率、微积分和微分方程。
1. 给出函数f(x) = 3x^2 + 2x的导函数答案:f’(x) = 6x + 2解析:对f(x)求导即可得到f’(x)。
2. 给出函数f(x) = x^3 - 3x^2 - 45的极值点答案:f(x)在x=-3和x=5处达到极小值和极大值解析:对f(x)求导,令f’(x)=0,解得x=-3和x=5,分别代入f(x)求得f(-3)和f(5),即得到极值。
3. 给出函数f(x) = sin(x),在x = 0处的曲率答案:f”(x) = -sin(x),因此,f”(0) = 0,所以曲率为0。
解析:对f(x)求两次导即可得到曲率公式f”(x) = -sin(x),将x=0代入公式即可得到曲率为0。
4. 求以下函数的不定积分:f(x) = 6x^2 - 8x + 9答案:∫f(x)dx = 2x^3 - 4x^2 + 9x + C(其中C为常数)解析:对f(x)进行积分,即可得到不定积分。
5. 给出微分方程dy/dx = 9x^2 - 12x,求其通解答案:y = 3x^3 - 6x^2 + C(其中C为常数)解析:对微分方程求解,得到y的一般解,再带入初始条件求得一个特定解。
练习以上高数习题能够帮助医学生们掌握高数知识并加强自己的技能。
如果你感到这些习题有些困难,可以不断的练习,直到完全理解并掌握。
只要你通过努力,这些数学技能就会变得相对容易了。
医用高等数学完整答案

医用高等数学完整答案第一部分:导数及其应用导数是高等数学中的一个重要概念,它描述了函数在某一点的变化率。
在医用高等数学中,导数的应用非常广泛,例如在药物动力学、生物力学等领域。
1. 导数的定义:导数可以理解为函数在某一点的变化率。
对于一个函数 f(x),它在点 x=a 处的导数定义为:f'(a) = lim (h→0) [f(a+h) f(a)] / h其中,h 表示自变量 x 的微小变化量。
2. 导数的几何意义:导数还可以理解为函数图像在某一点的切线斜率。
切线是函数图像在该点附近最接近的直线,斜率则表示切线与x 轴的夹角。
3. 导数的计算:导数的计算方法有很多种,包括求导法则、微分法则、链式法则等。
下面列举一些常用的求导法则:常数函数的导数为 0。
幂函数的导数为幂指数乘以幂函数的导数。
指数函数的导数为指数函数乘以底数的对数。
对数函数的导数为底数的对数除以对数函数。
三角函数的导数可以根据三角函数的和差公式进行计算。
4. 导数的应用:导数在医用高等数学中的应用非常广泛,例如:药物动力学:通过求导可以计算药物在体内的浓度变化率,从而预测药物的疗效和副作用。
生物力学:通过求导可以计算生物体的运动速度和加速度,从而分析生物体的运动状态。
生理学:通过求导可以计算生理参数的变化率,从而分析生理过程的变化规律。
导数是医用高等数学中的一个重要概念,它描述了函数在某一点的变化率,并在药物动力学、生物力学等领域有着广泛的应用。
第二部分:微积分的应用微积分是高等数学的另一个重要分支,它包括微分和积分两部分。
在医用高等数学中,微积分的应用同样非常重要,它可以帮助我们理解和分析医学问题。
1. 微分的应用:微分是微积分的基础,它描述了函数在某一点的变化情况。
在医学中,微分可以用来研究药物在体内的浓度变化、生物体的生长速度等。
例如,我们可以通过微分方程来描述药物在体内的代谢过程,从而预测药物的疗效和副作用。
2. 积分的应用:积分是微积分的另一个重要部分,它描述了函数在某个区间上的累积效果。
医用高等数学(第三版)习题解答

医用高等数学(第三版)习题解答习题一1( 求下列函数的定义域:(1)要使函数有意义,需且只需,即或,所以函数 (x,2)(x,1),0y,(x,2)(x,1)x,,2x,1的定义域为。
(,,,,2],[1,,,)(2)要使函数有意义,需且只需,即,所以函数 y,arccos(x,3),1,x,3,12,x,4。
的定义域为[2,4]x,1x,1,0(3)要使函数有意义,需且只需且,或,所以函数的定 x,2,0x,,2x,1y,lgx,2x,2义域为。
(,,,,2),(1,,,)ln(2,x),0,ln(2,x),y,2,x,0(4)要使函数有意义,需且只需,解之得函数的定义域为。
[,1,0),(0,4),(4,,,),x(x,4),x(x,4),0,2,2,x,01x,(5)要使函数有意义,需且只需,解之得函数的定义域为。
y,,arcsin(,1)[0,2),22,,1,x/2,1,12,x,xsinx,0y,(6)要使函数有意义,需且只需,即函数的定义域为。
D,{xx,R,x,k,,k为整数}sinx1111122f(),,f(0),f(lg),1,lg,1,(lg2)2(解,,。
222221,0,x,,1,1112,,3f(x,),f(x,)) 要使函数有意义,需且只需3(解(1 解之得函数的定义域为。
,,,,13333,,,0,x,,13,0,sinx,1(2)要使函数有意义,需且只需,即为整数,所以函数的定2k,,x,(2k,1),,kf(sinx)D,{xx,[2k,,(2k,1),],k为整数}义域为。
,1,1[e,1]e,x,1(3)要使函数有意义,需且只需,即,所以函数f(lnx,1)的定义域为。
0,lnx,1,1220,x,1[,1,1](4)要使函数有意义,需且只需,即,所以的定义域为。
f(x),1,x,1312sin332x2y,lgtan(x,1)4(解(1); (2) ; (3) ; (4) 。
医用高数精选习题(含答案)4~5

高等数学第4-5章作业一、计算下列各积分1. 计算⎰xdx x cos 22.)>1(112x dx x x⎰- 3、dx x b x a ⎰+2222cos sin 1, a,b 不全为零的非负常数4. 计算⎰π⋅20sin 2cos dx x x . 5. 计算 ⎰+edx x x 12)ln 1(1. 6. 计算dx xx x e ⎰+122ln 7. 计算 dx x x ⎰+π02cos 1sin 8. 计算 dx x x x ⎰-++1123211sin 9. 设⎪⎩⎪⎨⎧<+≥+=011011)(x e x xx f x,求⎰-20)d 1(x x f10. 计算 ⎰102d arctan x x x 11.⎰+1022d )1ln(x x x12. 计算⎰102d )(arcsin x x 13. 计算x e x x d 132⎰14. 计算dx x x ⎰++3011 15. 计算⎰-2ln 01dx e x二、应用1. 求由曲线e x e x x y ===,/1,ln 和x 轴所围成图形的面积。
2.过点)0,1(-作曲线x y =的切线,求此切线与曲线x x y ,=轴所围成的图形面积。
3. 求由曲线x e y =和该曲线的经过原点的切线以及y 轴所围成图形的面积,及该图形绕x 轴旋转所形成的旋转体的体积4. 设曲线xy 3=和直线4=+y x 围成一平面图形D, 求D 的面积及D 绕x 轴旋转所得旋转体的体积5. 抛物线方程为 24x x y -=1)问抛物线上哪一点处的切线平行x 轴,并写出切线方程。
2)求抛物线与切线及y 轴所围成平面图形的面积。
3)求该平面图形绕y 轴旋转所得旋转体的体积。
四、选择题1.设函数)(x f 的一个原函数为2x ,则=')(x f ( )A .2B .x 2C .33xD .124x2.设)(x f 一个原函数为,2x 则⎰='dx x f )(( )A .x 2B .33x C .C x +2 D .C x +333.⎰=x xd cos cos ( ) A .C x +sin B .C x +2cos 21 C .C x +cos D .C x+2cos 214.='⎰dx x f d)(( )A .)(x fB .C x f +)( C .dx x f )('D .)(x f '5.不定积分=⎰x xxd ln 2( ) A .C x +2ln 2 B .C x +3ln 21 C .C x +3ln 3 D .C x +3ln 316.=+⎰)1(d x x x ( )A .C x +arctan2 B .C x +arctan C .C x +arctan 21D .C x arc +cot 27.若c x F dx x f +=⎰)()(,则dx e f e x x )(--⎰=( )A .c e F x+)( B .c e F x+--)( C .c e F x+-)( D .c xe F x +-)( 8.设)(x f 有原函数x x ln ,则⎰=x x xf d )(( )A .C x x ++)ln 4121(2B .C x x ++)ln 2141(2 C .C x x +-)ln 2141(2 D .C x x +-)ln 4121(2 9.⎰=+x exd 11( ) A .C e e x x ++-)1ln( B .C e x x ++-)1ln( C .C e x ++)1ln( D .以上答案都不正确10.若⎩⎨⎧<≥=0,0,)(x e x x x f x ,则⎰-=21d )(x x f ( )A .e +3B .e -3C .e13+ D .e 13-11.=⎰ba x x xd arctan d d ( ) A .x arctan B .211x+ C .a b arctan arctan - D .0 12.=-+⎰-22235]4)([sin dx x x ( )A .π2B .πC .π3D .π4 13.=-⎰x x d 231( )A .0B .1C .2D .π 14.=+-⎰202d 44x x x ( )A .0B .1C .2D .π 15.下列广义积分收敛的是( )A .⎰∞+1d 1x xB .⎰∞+1d 1x xC .⎰∞+12d 1x x D .⎰∞+1d x x16.广义积分=⎰+∞+011dx x ( ) A .不存在 B .1- C .1 D .0 17.下列( )是广义积分 A .⎰e xx x 1ln d B .⎰--113d )1(x x C .⎰212d 1x x D .⎰21d xe x1. A 2. C 3. B 4. C 5. D6. A 7. B 8. B 9. B 10.D 11.D 12.A 13.B 14. C 15. C 16. A 17. A。
医用高数精选习题(含答案)

高等数学第1-3章一、求下列各极限1、 求极限 1)1(3tan lim 21--→x x x 、2、 求极限)ln 11(lim 1x x x x --→。
3、 求极限22)2(sin ln limx x x -→ππ4、 求极限)1ln(102)(cos lim x x x +→ 5、 当0→x 时,)()1ln(2bx ax x +-+就是2x 得高阶无穷小,求a ,b 得值 6、 求极限3sin 1tan 1limx xx x +-+→7、 求极限xx xx )1cos 2(sin lim ++∞→ 8、 求极限 x e e x x x 20sin 2lim -+-→ 二、求下列各函数得导数或微分1、求函数x x y tan ln cos ⋅=得导数;2、设.42arcsin2x x x y -+= ,求1=x dxdy3、求)()(2(2tan u f f y x=可导)得导数;4、设 xe x y xarccos )1(ln-= , 求)0(y ' 5、 设 )ln(2222222a x x a a x x y -+--= ,求y '。
6、设方程0=+-yxe e xy 确定了y 就是x 得隐函数,求0=''x y 。
7、 设xx e y x sin )1ln(++=,求dy 。
8、设)0(,22)()2(lim20≠+=∆-∆+→∆x xx x x f x x f x ,求)2(x df 。
三、应用题1、讨论函数2332x x y -=得(1)单调性与极值(2)凹凸区间与拐点 2、 求函数x x x f cos sin )(+=在]2,0[π上得极值。
3、 求函数 )0(ln 1)(2>-+=x xx x f 得极值4、 在某化学反应中,反应速度)(x v 与反应物得浓度x 得关系为)()(0x x kx x v -=,其中0x 就是反应开始时反应物得浓度,k 就是反应速率常数,问反应物得浓度x 为何值时,反应速度)(x v 达到最大值?四、选择题1.设,)(x x f =则=-∆+)2()2(f x f ( )A .x ∆2B . 2C .0D .x ∆ 2.设)(x f y =得定义域为]1,1[-,则)()(a x f a x f y -++=(10≤≤a )得定义域就是( )A .]1,1[+-a aB .]1,1[+---a aC .]1,1[--a aD .]1,1[a a --3.若函数)(x f 在某点0x 极限存在,则( ) A .)(x f 在0x 得函数值必存在且等于极限值 B .)(x f 在0x 得函数值必存在,但不一定等于极限值 C .)(x f 在0x 得函数值可以不存在 D .如果)(0x f 存在得话必等于极限值 4.若0)(lim 0=→x f x x ,则( )A .当)(x g 为任意函数时,有0)()(lim 0=→x g x f x xB .仅当0)(lim 0=→x g x x 时,才有0)()(lim 0=→x g x f x xC .当)(x g 为有界函数时,有0)()(lim 0=→x g x f x xD .仅当)(x g 为常数时,才能使0)()(lim 0=→x g x f x x 成立5. 设)(x f y =且,0)0(=f 则=')0(f ( B ) A .0 B .xx f x )(lim→ C .常数C D . 不存在 6.设函数11)(--=x x x f ,则=→)(lim 1x f x ( )A 、 0B 、 1-C 、 1D 、 不存在7.无穷小量就是( )A .比零稍大一点得一个数B .一个很小很小得数C .以零为极限得一个变量D .数零 8.当0→x 时,与无穷小量12-xe等价得无穷小量就是( )A 、 xB 、 x 2C 、 x 4D 、 2x 9. 若函数)(x f y =满足21)(0='x f ,则当0→∆x 时,0d x x y =就是( ) A .与x ∆等价得无穷小 B .与x ∆同阶得无穷小 C .比x ∆低阶得无穷小 D .比x ∆高价得无穷小10.=→x xx sin 3sin lim 0( )A .1B .3C .0D .不存在11.如果322sin 3lim0=→x mx x ,则m 等于( )A .1B .2C .94 D .4912.若函数⎪⎩⎪⎨⎧=≠-=00)21()(1x k x x x f x 在0=x 处连续,则=k ( )A .2e B . 2-e C .21-eD .21e13.设 212lim2=-+∞→x xax x ,则a =( ) A .1 B .2 C .0 D .314.设⎪⎩⎪⎨⎧=≠=003sin1)(x ax x x x f ,若使)(x f 在),(∞+-∞上就是连续函数,则=a ( )A .0B .1C .31D .3 15.若函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f 在1=x 处( ) A .极限存在 B .右连续但不连续 C .左连续但不连续 D .连续16. 设⎪⎩⎪⎨⎧=≠-+=00011)(x x xx x f ,则0=x 就是)(x f 得( )A .连续点B .跳跃间断点C .可去间断点D .无穷间断点 17.设)(x f 在0x 处可导,则=--→hx f h x f h )()(lim000( )A .)(0x f '-B .)(0x f -'C .)(0x f 'D .)(20x f ' 18.设x e f x2)(=则=')(x f ( )A .2B .x2C .x eD .x e 2 19.设)(u f y =,xe u =则=22d d xy( )A .)(2u f ex'' B .)()(2u f u u f u '+'' C .)(u f e x '' D .)()(u uf u f u +''20.设)1ln()(2x x f +=,则=-'')1(f ( )A .1-B .1C .0D .2 21.已知22ln arctan y x xy +=,则=x yd d ( )A .y x y x +- B .y x y x -+ C .y x +1D .yx -1 22.若x x y ln =,则=y d ( )A .x dB .x x d lnC .x x d ]1)[(ln +D .x x x d ln 23.已知x x y ln =,则()=10y ( )A .91x -B .9-x C .x 8!8 D .9!8x 24.设函数n n n n a x a x a x a x f ++⋅⋅⋅++=--1110)(,则:='])0([f ( )A .n aB .!0n aC .0aD .0 25.)(x f 在0x 处可导,则)(x f 在0x 处( )A .必可导B .连续但不一定可导C .一点不可导D .不连续26.设)(x f 在],[b a 上连续,在),(b a 上可导,则至少有一点),(b a ∈ξ,满足( ) A .))(()()(a b f a f b f -ξ'=- B .))(()()(b a f a f b f -ξ'=- C .0)(=ξ'f D .0)(=ξ''f27.已知曲线5+=xe y 上点M 处得切线斜率为2e ,则点M 得坐标为( )A .)52(2+,eB .)2(2,e C .)52(2+--,e D .)2(2,e -28.函数5224+-=x x y 在区间[-2,2]上得最大值与最小值分别为( ) A .4,5 B .5,13 C .4,13 D .1,13- 29.下列命题正确得就是( )A .函数)(x f 在),(b a 内连续,则)(x f 在),(b a 内一定存在最值B .函数)(x f 在),(b a 内得极大值必大于极小值C .函数)(x f 在[]b a ,上连续,且)()(b f a f =则一定有),(b a ∈ε,使0)(='εfD .函数得极值点未必就是驻点30.点)1,0(就是曲线c bx ax y ++=23得拐点,则有:( )A .1=a ,3-=b ,1=cB .a 为非零任意值,0=b ,1=cC .1=a ,0=b ,c 就是任意值D .a ,b 就是任意值,1=c31.函数)(x f 在点0x x =得某领域有定义,已知0)(0='x f ,且0)(0=''x f ,则在点0x x =处,)(x f ( )A .必有极值B .必有拐点C .可能有极值,也可能没有极值D .可能有拐点,但必有极值 32.若函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值,则=a ( )A .0B .1C .2D .4 33.曲线1123+-=x x y 在区间)2,0(内( )A .单调增加且为凹函数B .单调增加且为凸函数C .单调减少且为凹函数D .单调减少且为凸函数1. D 2.D 3. C 4. C 5、 B6. D 7.C 8. B 9. B 10. C 11.C 12.B 13.C 14. C 15. B 16.C 17.A 18.B 19. B 20. C 21.B 22.C 23.D 24. D 25. B 26.A 27.A 28. C 29. D 30. B 31.C 32. C 33. C。
医学生高等数学试卷及答案

医学生高等数学试卷及答案一. ___填空题(每题4分,共40分)1. xxx 25sin lim0→ = ____________。
2. 当3→x 时,3)(-=x xx f 是无穷大?还是无穷小?_______。
3. 函数xx x f ⎪⎭⎫⎝⎛+=11)(在0=x 点极限是否存在?___________。
4.()='-21x ______________________。
5. =⋅)2arctan (x x d ______________________。
6.=+⎰1x dx_________________________。
7. =⎰-112x dx_____________________8.⎰-=+1121x dx ______________________。
9. 物体运动的路程:3t t S -=,当10≤≤t 时,物体的平均速度为:________。
10. 方程t x x x =+'+''22的特解为2121-=t x ,其通解是_________________________。
二. 计算题(每题6分,共42分)11. 研究函数⎪⎩⎪⎨⎧≤<-=<≤=;21,2 1; ,2;10,x x x x x y 当当当的连续性,并画出简图。
12. 10ln 1010-+=xx y ,求y '。
13. 求方程y x y ln +=所确定的隐函数的导数。
14. 求不定积分⎰++522x x xdx。
15. 求广义积分⎰+∞-02dx xe x 。
16. 求方程()y y y x ='+的通解。
17. 求方程32x y x dx dy =-满足21)1(=y 的特解三. 应用题:(共18分)18. 求由曲线32-=x y 和直线x y 2=所围图形的面积。
(8分)19. 分析函数21x xy +=的性态,并画出其图形。
(10分)分值函数导数不定积分定积分微分方程分数填空题4128412440计算题6612661242应用题901008018分数191830102616100答案A1.25;2. 无穷大;3. 存在;4. 21x x --;5. dx x x x ⎪⎭⎫⎝⎛++24122arctan ;6. C x ++12;7. 不存在或发散;8. )21ln(2+;9. 0;10. ()2121sin cos 21-++=-t t C t C e x t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学第1-3章
、求下列各函数的导数或微分
2
a ——ln (x 2
2
,(x
0),求 df (2x)。
x
、应用题
3
2
y 2x 3x 的(1)单调性与极值(2)凹凸区间与拐点
2. 求函数f(x) si nx cosx 在[0, 2 ]上的极值。
2
、求下列各极限 ..ta n3(x 1) lim
2 x 1 x 1 1.求极限 3.求极限 lim ln si nx 2x)2 4. 2.求极限lim (—^
x 1 x 1
1 ln(1 x 2)
求极限 lim (cos x)
5.当x 0时,ln(1 x) (ax 2 bx)是x 2的高阶无穷小,
6.求极限
lim 丄旦
x 0
7.求极限 lim (sin -
x
x
cos^)x
x
8. 求极限lim
x 0
求a , b 的值
e x 2 _~2 sin x
1、求函数 y cosx In tan x 的导数;
2、
xarcs in°
4
2 3、求y
f(2
ta ^x
)(f (u)可导)的导数;
l
n (1 x)e x
,求 y (o )
arccosx
6、设方程
x
xy e
e y
0确定了 y 是x 的隐函数,求y
7、 设y
ln(1 e )
x ) si :x ,求dy 。
5、 设y
f(x 2 x) f(x) 1•讨论函数
3. 求函数f(x) x 1 ln x (x 0)的极值
4. 在某化学反应中,反应速度v(x)与反应物的浓度x的关系为v(x) kx(x° x),其中x°
是反应开始时反应物的浓度,k是反应速率常数,问反应物的浓度x为何值时,反应速度v(x)达到最大值?
3•若函数f(x)在某点x o 极限存在,则( )
A • f(x)在x o 的函数值必存在且等于极限值
B • f(x)在x o 的函数值必存在,但不一定等于极限值 C. f (x)在x o 的函数值可以不存在 D •如果f (x o )存在的话必等于极限值 4.若 lim f (x) o ,则(
x x o
当g(x)为任意函数时,有lim f (x)g(x)
x x o
仅当 lim g(x) o 时,才有 lim f (x) g(x)
X x o
x x o
当g(x)为有界函数时,有lim f (x)g(x)
x x o
A. 2 x
B.
2
C
.0
D . x
2 . 设y f (x)的定义域为[ 1,1] ,则y
f(x a)
f(x a) (0
a 1)的定义域是
(
)
A. [a 1, a 1] B . [ a
1, a 1] C. [1 a, a 1] D . [a 1,1 a]
)
仅当g(x)为常数时,才能使lim x x o
f (x)g(x) o 成立
5. f (x)且 f (o) o,则 f
(o )
B. lim3
x 0
x
C.常数
不存在
6.设函数
f(x)
,则 lim x
f(x)
A. o 7.无穷小量是(
B.
C. 1
D. 不存在
A .比零稍大一点的一个数
B .一个很小很小的数 C.以零为极限的一个变量 D .数零
&当x
o 时,与无穷小量 e 2x 1等价的无穷小量是(
四、选择题
1 设 f(x) x,则 f(
2 x) f(2)( C .
B. 2X 若函数y f (X )满足
与X 等价的无穷小 比X 低阶的无穷小 lim sin 3
sin x X 0
f (X o )
C. 4X
1,则当
2
如果 D. x 2
0 时,dy
X X 0
X 同阶的无穷小 X 高价的无穷小
不存在
li m X
若函数 li m X
3sin mx
0 2X 2
-,则m 等于
3
f(x)
2
ax
f(x)
(
1 2X
1 . X sin X
若函数f (X ) 极限存在 设 f(x)
连续占 八、、 1
2X )X
k
,则
B. 1
X 2 1
0处连续,则k
1
D . e -2
D. 3
0 ,若使
f(x)在(
)上是连续函数,
B.右连续但不连续
X 1 1 X
0,则
B .跳跃间断点
设f (X)在X 。
处可导,贝y
x0
/V
-T
m o
H f (X o )
B. f ( X o )
1处(
C.左连续但不连续
X 0是f(X)的
C.可去间断点
x0
C. f (X o )
D. \
17
D.连续
无穷间断点
D . 2f (X o )
A. 9.
A. C. 10. A. 11. 12.
A. 13.
A. 14.
A.
15. A. 16. A. 17.
A.
18.
A. e 2x f (u) 20•设 f (x) ln(1 A.
1
C . e x f (u) )
D
.
D . uf (u) uf (u)
21 .已知 arctaIn x 2 y 2,则 dy (
x
dx
C . [(In x) 1]dx
D . xl nxdx
)
8!
8!
C . TX
D .
-9
8 X
a n 1X a n ,则:[f (0)]
( )
C . a °
25 . f (x)在X 。
处可导,则f (x)在x 0处(
)
D. 2e
19.设 y
f(u), u
e x 则业 dx
A . x y
B .
x y
x y
x y
22 . 若y xln x , 则dy
(
)
A . dx
B .
Inxdx
23 . 已知y
xln x ,则y 10
(
1
9
A .
~9 B .x
x
24 . 设函数 f (x)
n
a °x
a 1x n 1
A . a n
2
B . u f (u) uf (u)
2
x ),则 f ( 1)(
B . 1
C . B .
a 0n!
A .必可导
B .连续但不一定可导
C . 一点不可导
26 .设f (x)在[a, b ]上连续,在(a,b)上可导,则至少有一点
A.函数f (x)在(a,b)内连续,则f (x)在(a,b)内一定存在最值
f(b) f(a) )(b a) B . f(b) f (a) )(a b)
27 . 已知曲线y
5上点M 处的切线斜率为e 2,则点M 的坐标为
2
(2,e
5)
B. (2,e 2)
2
C . ( 2,e 5)
(2,e 2)
28 . 4
函数y x
2x 2 5在区间[-2,2]上的最大值和最小值分别为(
5,4 B . 13,5
C . 13,4
13, 1
29 . F 列命题正确的是( D .不连续
(a,b),满足(
B .函数f (x)在(a,b)内的极大值必大于极小值
C.函数f (x)在a,b上连续,且f(a) f (b)则一定有(a,b),使f ( ) 0
D. 函数的极值点未必是驻点
30. 3 2
点(0,1)是曲线y ax bx
c的拐点,则有:( )
A. a 1 , b 3, c 1 B . a为非零任意值,b 0 , c 1
C. a 1 , b 0 , c是任意值
D. a , b是任意值,c 1
31. 函数f (x)在点x X0的某领域有定义,已知f(X0)0 ,且f(X0) 0 ,则在点x X0 处, f(x)( )
A. 必有极值 B . 必有拐点
C. 可能有极值,也可能没有极值 D . 可能有拐点,但必有极值
1 . D 2. D 3.
6. D
7. C
8.
11. C 12. B 13.
16. C 17. A 18.
21. B 22. C 23.
26. A 27. A 28.
31. C 32. C 33. C 4. C 5. B
B 9. B 10. C
C 14. C 15. B B 19. B 20. C
D 24. D 25. B C 29. D 30. B C
B •单调增加且为凸函数
D •单调减少且为凸函数
32. 若函数 f (x)a sin x ’si n 3x 在x
3—处取得极值,则a
3( )
A. 0B. 1C. 2D. 4
33. 曲线y 3 x12x 1在区间(0,2)内( )
A •单调增加且为凹函数
C.单调减少且为凹函数。