(完整word版)卤化反应
第一章_卤化反应__1.3

H C
C H O A c
1). B r2/C C l4 2). M eO H
C H (O C H 3)2 HCl/H2O 95%
B r
CHO Br
9
CHO
Cl
Cl2
COCl Cl
140-150o
对于无-氢原子的芳香醛,可用卤素直接卤 化制备相应的酰卤
CHO
O
Br
O CH3
Br O CH3 O
Et2O/ r.t., 11h
O
N Cl
三氯氰尿酸 类似于NBS,但活性吡NBS强
氯代反应,且主要发生在 取代基较多的位 7
卤化铜也是一种有效的卤化剂:
C uC l2/Al2O 3
O O PhC l/reflux 25 h
PhBr/reflux 25 h
C uBr2/Al2O 3
H3C O
OH
I2/CaO THF/MeOH
O
AcOH2C O
COOH SOCl2
COOH
COCl Br2
COCl
Br
COCl COCl
Br
Br
EtOH r.t.
COOEt
COOEt 91-99%
Br
EtOOC COOEt Br2/CCl4 EtOOC COOEt
1h
75%
Br
Me CN Et
PCl5 1h
Me CN
Et Cl
95%
16
CHO
Br 86%
1 ). K H /T H F /r .t. 2 ). I2 /T H F / -7 8 o -r .t
C H O
I
8 8 %
10
1.3.2 烯醇和烯胺衍生物的卤化反应
第一章:卤化反应

~70%
O CH3 SO2Cl2/CCl4 r.t.,2h
O CH3 Cl
83~85%
N
。 1.Cl3CCOCCl3/THF/- 78 CH3 2. HCl/H2O 3. NaHCO3/H2O O O Me + CH3 Cl
Cl
90%*
9%*
碱催化机理
C C H O OH C C O X X OH 慢 (-H2O) C C O X2 快 ( -X ) C C X O
Br C R1 C O H
OAc NBS/DMSO AcOCH2 O OgluAc4 OAc Br O AcOCH2 O OgluAc4 r.t
(90%)
4、与卤化氢的加成
PhCH2 gas,HBr CH CH2 。 AcOH/ 0 , 12h PhCH2 CH CH3 Br KI/H3PO4 80。3h ,
R H
X2 高 / 温
h/过氧化物
R X
反应活性:叔C-H>仲C-H>伯C-H(C.稳定性)
Cl2/CH2Cl2
h
降冰片烷
Cl
外向型(exo) 70~95%
2、苄位、烯丙位的卤取代
X2 h 或 他 其 引 剂 发 X
(X=Cl, Br)
O h N X 或 由 自 基 引 剂 发 O
O N +X O
C C X O
酮的卤取代反应
CH3COCH2CH2CH3
Br2/KClO3/ h 。 H2O/ 40~45 6h
CH3CO CH CH2CH3 Br 53% + CH2 CO CH2CH2CH3 Br 32%
2、烯醇酯、烯胺醚的卤取代反应
CH2 C OAc H源自AcOCH2Br H NBS/diox 。 85 ,45min C O H
卤化反应

CH3 H Br Br H CH3
环卤鎓离子也可以形成在氯或碘的加成中
anti-addition product Ph Br2-CCl 4 Cl2-CCl 4 83% 32% syn-addition product 17% 68%
H
H
Ph
(4)应用特点 a.制备反式二卤代物 b.亲核性溶剂参与的反应
R1
Br R2 C C H H CH3 CH3 Br R2 C C H OH
O S
R1 H
Br R2 C C H O S
H2 O CH3 CH3 β -消除反应 Dalton反应
R1 H
(β- 溴醇)
R1 H
Br C C O
R2
(α-溴酮)
(在干燥的DMSO中)
注:应用?
例:
Ph C C H CH3 NBS / 干燥的DMSO H NBS / DMSO / H2O Ph H OH C C Br O Ph C C Br H CH3
C C CH
X
C C C
X2
C C C X
X
影响反应的因素 (1)取代基因素
a. 如:苄位二卤代物的制备比一卤代物困难的 多,原因正是如此。
CH3 CH3
2 mol Br2 hv, 123 ℃, 2 h
CH2Br CH2Br
H3C
CH3
4 mol Br2 hv, 140-160 ℃, 6 h
Br2HC
(4)溶剂
合成芳香族羧酸
Ar-CH3
合成芳醛
CH3
4Br2/光
3Br2
Ar-CBr3
水解
Ar-COOH
CHBr2 水解 CHBr2
CHO
第一章 卤化反应

Br H C C Br C O O C 2H 5 Br C 6H 5 H C C Br C O O C 2H 5 H
C 6H 5 H
主要产物
25
过渡态(2): 卤负离子进攻开放式的碳正离子,得到相当量的同 向加成产物。
H 2C CHCN C C l4 h v ,1 0 ℃ C lH 2 C C H C lC N
34
2.卤素对炔烃的加成反应
(1) 反应通式
X R R' C C X
R
C
C
R'
X2
炔烃和卤素加成,得到得反式二卤烯烃。 (2) 反应机理
炔烃和溴加成,为亲电加成机理。 炔烃和碘或氯加成,为自由基加成机理。
O CH3 C O OH C H 2I C O OH C H 2O C C H 3 C O OH
I2 / C a O C H 3 O H /C a C l 2
C H 3C O O K DMF O O
O
利用17α–羟基黄体酮制取醋酸氢化可的松中间体
3.引入卤素基团作为保护基、阻断基,用于提高反 应的选择性
B r 2 /N a O H Ar C CH Ar C C -B r
12
一、电子反应机理
2. 亲核反应:亲核取代
SN1
R L
快 慢
R
L
R
X
R
X
δδ-
SN2
X
R
L
X
R
L
R
X
L
13
二、自由基反应机理
第七章 卤化反应

3.由C2以下的有机物为原料合成CH3CH2C≡CCOOH
CH3CH2Cl + NaC CH
EtMgBr
CH3CH2 C CH
CH3CH2 C CMgBr CO2
H2O/H+ CH3CH2 C CCOOH
4.以苯为原料合成间二氯苯
+ HNO3 H2SO4
NO2 HNO3/ H2SO4
NH2
NaNO2/HCl
O
Br
Ph3PBr2
CHO
Ph3PC l2
O
O
Ph3PCl2可将苯甲醛的一CHO转化为一CHCl2。
CHCl 2
7.3 氯 化
氯化在工业上居重要地位,它与磺化、硝化一样均为将取代基 引入芳核的基本方法。烃(脂肪烃、芳烃)、醇、羟酸等均可发生氯 化反应,其中以苯、甲苯、醋酸为最重要。氯化剂有氯气和含氯化 合物(HCl、PCl3、PCl5、Na0Cl、SOCl2)等。在若干场合,尤 其芳核进行氯化时需有载氯体或在氯化催化剂的存在下进行。
卤化的方法甚多,大致可归纳为如下几类:
1.置换反应
ROH
NaX+H2SO4 or SOCl2-Py
PBr3
MeCN/HCl
RX
RBr NH HCl
MeC OR
O RCl + MeC
NH2
Ag C l
ArF NaI/丙酮 ArCOR PCl3 RCO2H PCl5 ArN2Cl CuCl
ArCl ArI ArCCl2R RCOCl ArCl (Sandmeyer反应)
即使卤素与芳核直接相连, 例如 氯苯,在适当条 件下仍可为一0H、—NH2、一0R基等所取代生成相 应的产物:
NaO H ,3400C OH
第二章卤化反应

X C
C
X C C C X
C X
X-X (X=Cl ,Br)
2.1 卤加成反应
烯烃的π键具有供电性,卤素分子受π键影响发生 极化.其正电部分作为亲电试剂,对烯烃的双键进 行亲电进攻,生成三圆环卤翁离子。然后,卤负离 子从环的背面向缺电子的碳正离子作亲核进攻,结 果生成反式加成产物。 究竟从三圆环背面进攻哪一个碳原于,这取决于形 成碳正离子的稳定性。烯键碳原于上连有烷基、烷 氧基、苯基等具有分散碳正离子正电荷作用的基团, 则该碳原于形成的碳正离子更趋于稳定,此处正是 x-优先进攻的位置。
特点:高度的立体选择性,产率高。纯度好,且反应温和。操作方便。
反应历程:离子型亲电加成。卤正离子是由质子化的N—卤代酰胺提 供、一OH等负离子来自反应溶剂。
2.2 卤取代反应
一、烷烃的卤取代反应
自由基取代历程 卤化试剂:氯、溴、硫酰氯、磺酰氯、次卤酸叔丁酯、N—卤 代仲胺、N—溴代丁二酰亚胺 卤素的选择性Br· >Cl·
C6H5 C H C H CO 2 C 2 H 5 Br CO 2 C 2 H 5 C6H5 Br 2 /CCl C C H
Br C6H5 C H Br C Br CO 2 C 2 H 5 H H C6H5 C C Br CO 2 C 2 H 5 H
主要产物
2.1 卤加成反应
(2)影响反应的主要因素
1.3卤化反应目的
(1)通过卤化反应制备的许多有机卤化物本身就
是重要的中间体,可以用来合成染料、农药、 香料、医药等精细化学品。如:农药2,6-二氯 苯腈的合成。
(2)通过卤化物的转化可制备含有其它取代基的衍生物, 如:利用引入卤素置换成羟基、氨基、烷氧基等。 (3)向某些精细化学品中引入一个或多个卤原子,可 以改进其性能。如:向某些有机化合物分子中引入多个 卤原子,可以增强有机物的阻燃性。
第一章 卤化反应

2. 苄位、烯丙位的卤取代 苄位、
烯丙位、苄位氢原子较活泼,在较高温度及存在自由基引 发剂条件下,可用卤素、N-卤代酰胺、次卤酸酯等卤化剂于非 极性惰性溶剂中进行。 其中以N-卤代酰胺,尤其是NBS(N-溴代丁二酰亚胺)效果最 好,反应主要为三步: ①
X2 hν 或或或 引引卤 hν 或或或或 引引卤 X
R1 R2 X
R3 X R4 OH H2O R1 R2 OH R3 X R4 OH R1 R2
OH R3 X R4
4. 与卤化氢的加成
I2/KI/NaHCO3 H2O/r.t.4h
H2C H O C O I H H I H O O
88%
反应两步完成:① I2从位阻小的双键方向进攻,生成过渡态; ② 羧酸氧负离子于β方向进攻三元环发生亲核进攻生成酯。
H
H C C Ph CO2H
Br2/CHCl3 。 0 r.t.20min
Br
H
H
Cl C 2H5 Cl2/CH3CO2H C C CH3CH CH C 2H5 。 25 H H Cl
H3C
OCOCH3 Cl + CH3CH CH C2H5 + CH3CH CH C2H5 Cl OCOCH3
H
I2/AcOAg/Et2O
OAc I H
80%
2. 与N-卤代酰胺的加成 卤代酰胺的加成
Me C16H30 Br2/AcOH AcONa/Et2O HO
Me HO H Br
20-25°
Br
HO H Br M e C 16H30 Br
(84~85%)
当卤加成发生在亲核性溶剂(如H2O、ROH、RCO2H) 中时,因亲核试剂中的亲核基团也可进攻碳正离子过渡 态,故反应可得除1,2-二卤化和物外的其它产物。
1-卤化反应

HO(CH 2)6OH
I(CH2)6I
物质,除去生成的HI,促使反应顺利进行.
eg. 醋酸可的松等甾体抗炎激素的半合成,其C17
位的β-甲基酮一般在碱CaO或NaOH存在下,于有 机溶剂中加I2液,产物碘代酮不分离,接着与 I KOAc反应,结果在C12位引入乙酰氧基.
CaO + H2O NaOH + HI
Ca(OH)2 NaI + H2O CH3 C=O
RCH=CH + Br 2
.
RCHCH Br 2
.
.
加成取向:碳自由基稳定性(反马氏规则的应用)
HBr (g) CH2=CH-(CH2)8-COOEt (PhCOO)2, 0℃ Br-(CH2)10-COOEt (70%)
CH2=CHCH2Cl
HBr, NaBr (PhCOO)2, -5℃
BrCH2CH2CH2Cl
CH3COCH2CH3
BrCH2COCHBrCH3
(55~58%)
(4)溴化氢 反应中生成的HBr有两个作用: a,加快烯醇化速度 b,具有还原作用,消除α-溴酮中的溴原 子,使α-溴化效率降低. 为此常在反应中条加适量NaAc或吡啶,中 和HBr.
2,碱催化下的 卤代 ,碱催化下的α-卤代
a. 反应机理
eg:
(CH3)3CCOCH3 NaOH (CH3)3CCONa H2O H
+
(CH3)3CCOH
CO—CH3
NaOCl, Cl2
H2O, H +
COOH
(CH3)2=CHCOCH3
Cl2, NaOH, H2O H + 49~53%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章卤化第一节概述一、卤化反应及其重要性向有机化合物分子中引入卤素(X)生成C-X键的反应称为卤化反应。
按卤原子的不同,可以分成氟化、氯化、溴化和碘化。
卤化有机物通常有卤代烃、卤代芳烃、酰卤等。
在这些卤化物中,由于氯的衍生物制备最经济,氯化剂来源广泛,所以氯化在工业上大量应用;溴化、碘化的应用较少;氟的自然资源较广,许多氟化物具有较突出的性能,近年来人们对含氟化合物的合成十分重视.卤化是精细化学品合成中重要反应之一.通过卤化反应,可实现如下主要目的:(1)增加有机物分子极性,从而可以通过卤素的转换制备含有其它取代基的衍生物,如卤素置换成羟基、氨基、烷氧基等.其中溴化物中的溴原子比较活泼,较易为其它基团置换,常被应用于精细有机合成中的官能团转换.(2)通过卤化反应制备的许多有机卤化物本身就是重要的中间体,可以用来合成染料、农药、香料、医药等精细化学品。
(3)向某些精细化学品中引入一个或多个卤原子,还可以改进其性能.例如,含有三氟甲基的染料有很好的日晒牢度;铜酞菁分子中引入不同氯、溴原子,可制备不同黄光绿色调的颜料;向某些有机化合物分子中引入多个卤原子,可以增进有机物的阻燃性。
二、卤化类型及卤化剂卤化反应主要包括三种类型:即卤原子与不饱和烃的卤加成反应、卤原子与有机物氢原子之间的卤取代反应和卤原子与氢以外的其他原子或基团的卤置换反应。
卤化时常用的卤化剂有:卤素单质、卤素的酸和氧化剂、次卤酸、金属和非金属的卤化物等,其中卤素应用最广,尤其是氯气。
但对于F2,由于活性太高,一般不能直接用作氟化剂,只能采用间接的方法获得氟衍生物.上述卤化剂中,用于取代和加成卤化的卤化剂有:卤素(Cl2、Br2、I2)、氢卤酸和氧化剂(HCl +NaClO、HCl+NaClO3、HBr+NaBrO、HBr+NaBrO3)及其他卤化剂(SO2Cl2、SOCl2、HOCl、COCl2、SCl2、ICl)等,用于置换卤化的卤化剂有HF、KF、NaF、SbF3、HCl、PCl3、HBr 等。
第二节取代卤化取代卤化是合成有机卤化物最重要的途径,主要包括芳环上的取代卤化、芳环侧链及脂肪烃的取代卤化。
取代卤化以取代氯化和取代溴化最为常见。
一、芳环上的取代卤化影响因素及反应条件的选择芳环上取代基的电子效应和卤化的定位规律与一般芳环上的亲电取代反应相同,其主要因素有:被卤化芳烃的结构,反应温度,卤化剂和反应溶剂等。
(1)被卤化芳烃的结构芳环上取代基可通过电子效应使芳环上的电子云密度的增大或减小,从而影响芳烃的卤化取代反应。
芳环上具有给电子基团时,有利于形成σ—络合物,卤化容易进行,主要形成邻对位异构体,但常出现多卤代现象;反之,芳环上有吸电子基团时,因其降低了芳环上电子云密度而使卤化反应较难进行,需要加入催化剂并在较高温度下反应.例如:苯酚与溴的反应,在无催化剂存在时便能迅速进行,并几乎定量地生成2,4,6—三溴苯,而硝基苯的溴化,需加铁粉并加热至135~140℃才发生反应.含多个π电子的杂环化合物(如噻吩、吡咯和呋喃等)的卤化反应容易发生;而缺π电子、芳香性较强的杂环化合物如吡啶等,其卤化反应较难发生。
(2)卤化剂在芳烃的卤代反应中,必须注意选择合适的卤化剂,因为卤化剂往往会影响反应的速度、卤原子取代的位置、数目及异构体的比例等。
卤素是合成卤代芳烃最常用的卤化剂。
其反应活性顺序为:Cl2>BrCl>Br2>ICl>I2.对于芳烃环上的氟化反应,直接用氟与芳烃作用制取氟代芳烃,因反应十分激烈,需在氦气或氮气稀释下于—78℃进行,故无实用意义.取代氯化时,常用的氯化剂有:氯气、次氯酸钠、硫酰氯等.不同氯化剂在苯环上氯化时的活性顺序是:Cl2>ClOH>ClNH2>ClNR2>ClO-。
常用的溴化剂有溴、溴化物、溴酸盐和次溴酸的碱金属盐等。
溴化剂按照其活泼性的递减可排列成以下次序:Br+>BrCl>Br2>BrOH。
芳环上的溴化可用金属溴化物作催化剂,如溴化镁、溴化锌,也可用碘。
溴资源比氯少,价格也比较高.为回收副产物溴化氢,常在反应中加入氧化剂(如次氯酸钠、氯酸钠、氯气、双氧水等),使生成的溴化氢氧化成溴素而得到充分利用。
分子碘是芳烃取代反应中活泼性最低的反应试剂,而且碘化反应是可逆的。
为使反应进行完全,必须移除并回收反应中生成的碘化氢.碘化氢具有较强的还原性,可在反应中加入适当的氧化剂(如硝酸、过碘酸、过氧化氢等),使碘化氢氧化成碘继续反应;也可加入氨水、氢氧化钠和碳酸钠等碱性物质,以中和除去碘化氢;一些金属氧化物(如氧化汞、氧化镁等)能与碘化氢形成难溶于水的碘化物,也可以除去碘化氢。
氯化碘、羟酸的次碘酸酐(RCOOI)等碘化剂,可提高反应中碘正离子的浓度,增加碘的亲电性,有效地进行碘取代反应。
例如:(3)反应介质如果被卤化物在反应温度下呈液态,则不需要介质而直接进行卤化,如苯、甲苯、硝基苯的卤化.若被卤化物在反应温度下为固态,则可根据反应物的性质和反应的难易,选择适当的溶剂.常用的有水、醋酸、盐酸、硫酸、氯仿及其他卤代烃类。
对于性质活泼,容易卤化的芳烃及其衍生物,可以水为反应介质,将被卤化物分散悬浮在水中;在盐酸或硫酸存在下进行卤化,例如对硝基苯胺的氯化。
对于较难卤化的物料,可以浓硫酸、发烟硫酸等为反应溶剂,有时还需加入适量的催化剂碘。
如蒽醌在浓硫酸中氯化制取1,4,5,8-四氯蒽醌。
先将蒽醌溶于浓硫酸中,再加入0。
5%~4%的碘催化剂,在100℃下通氯气,直到含氯量为36.5%~37.5%为止。
当要求反应在较缓和的条件下进行,或是为了定位的需要,有时可选用适当的有机溶剂.如萘的氯化采用氯苯为溶剂,水杨酸的氯化采用乙酸作溶剂等。
选用溶剂时,还应考虑溶剂对反应速度、产物组成与结构、产率等的影响.表5-1列出了不同溶剂对产物组成的影响。
(4)反应温度一般反应温度越高,反应速度越快。
对于卤取代反应而言,反应温度还影响卤素取代的定位和数目。
通常是反应温度高,卤取代数多,有时甚至会发生异构化.如萘在室温、无催化剂下溴化,产物是α—溴萘;而在150~160℃和铁催化下溴化,则得到β-溴萘。
较高的温度有利于α—体向β-体异构化。
在苯的取代氯化中,随着反应温度的升高,二氯化反应速度比一氯化增加得还快;在160℃时,二氯苯还将发生异构化。
卤化温度的确定,要考虑到被卤化物的性质和卤化反应的难易程度,工业生产上还需考虑主产物的产率及装置的生产能力。
如氯苯的生产,由于温度的升高,使二氯化物产率增加,即一氯代选择性下降,故早期采用低温(35~40℃)生产.但由于氯化反应是强放热反应,每生成1mol 氯苯放出大约131.5kJ的热量,因此维持低温反应需较大的冷却系统,且反应速率低,限制了生产能力的提高。
为此在近代,普遍采用在氯化液的沸腾温度下(78~80℃),用塔式反应器进行反应。
其原因有:①采用填料塔式反应器,可有效消除物料的返混现象,使温度的提高对k2/k1(二氯化速率常数与一氯化速率常数之比)增加不显著;②过量苯的气化可带走大量反应热,便于反应温度的控制和有利于连续化生产.(5)原料纯度与杂质原料纯度对芳环取代卤化反应有很大影响.例如,在苯的氯化反应中,原料苯中不能含有含硫杂质(如噻吩等)。
因为它易与催化剂FeCl3作用生成不溶于苯的黑色沉淀并包在铁催化剂表面,使催化剂失效;另外,噻吩在反应中的生成的氯化物在氯化液的精馏过程中分解出氯化氢,对设备造成腐蚀。
其次,在有机原料中也不能含有水,因为水能吸收反应生成的HCl成为盐酸,对设备造成腐蚀,还能萃取苯中的催化剂FeCl3,导致催化剂离开反应区,使氯化速度变慢,当苯中含水量达0.02%(质量百分数)时,反应便停止.此外,还不希望Cl2中含H2,当H2>4%(体积分数)时,会引起火灾甚至爆炸。
(6)反应深度以氯化为例,反应深度即为氯化深度,它表示原料烃被氯化程度的大小。
通常用烃的实际氯化增重与理论单氯化增重之比来表示;也可以用氯化烃的含氯量或反应转化率来表示。
由于芳烃环上氯化是一个连串反应,因此要想在一氯化阶段少生成多氯化物,就必须严格控制氯化深度.工业上采用苯过量,控制苯氯比为4:1(mol比),低转化率反应。
对于苯氯化反应,由于二氯苯、一氯苯,苯的比重依次递减,因此,反应液相对密度越低,说明苯的含量越高,反应转化率越低,氯化深度就越低,生产上采用控制反应器出口液的相对密度来控制氯化深度。
表5—2是采用沸腾法的苯氯化生产数据.(7)混合作用在苯的氯化中,如果搅拌不好或反应器选择不当,会造成传质不匀和物料的严重返混,从而对反应不利,并会使一氯代选择性下降.在连续化生产中,减少返混现象是所有连串反应,特别是当连串反应的两个反应速度常数k1和k2相差不大,而又希望得到较多的一取代衍生物时常遇到的问题。
为了减轻和消除返混现象,可以采用塔式连续氯化器,苯和氯气都以足够的流速由塔的底部进入,物料便可保持柱塞流通过反应塔,生成的氯苯,即使相对密度较大也不会下降到反应区下部,从而可以有效克服返混现象,保证在塔的下部氯气和纯苯接触。
二、脂肪烃及芳烃侧链的取代卤化脂肪烃和芳烃侧链的取代卤化是在光照、加热或引发剂存在下卤原子取代烷基上氢原子的过程。
它是合成有机卤化物的重要途径,也是精细有机合成中的重要反应之一。
1.脂肪烃及芳烃侧链取代卤化的反应特点(1)反应是典型的自由基反应其历程包括链引发、链增长和链终止三个阶段。
例如甲烷的氯化:(2)反应具有连串反应特征与芳烃环上的取代卤化一样,脂肪烃及芳烃侧链取代卤化反应也是一个连串反应.如烷烃氯化时,在生成一氯代烷的同时,氯自由基可与一氯代烷继续反应,生成二氯代烷,进而生成在地三氯、四氯及至多氯代烷.2. 影响因素及反应条件的选择(1)被卤化物的性质若无立体因素的影响,各种被卤化物氢原子的活性次序为:ArCH2-H>CH2=CH-CH2-H>>叔C-H>仲CH>伯C-H>CH2=CH-H这与反应中形成的碳游离基的稳定性规律相同.苄位和烯丙位氢原子比较活泼,容易进行游离基取代卤化反应。
如果在苄位或其邻、对位带有吸电子基团,苄位的卤化更容易进行;若带有给电子基团,则卤化相对困难.烯丙位卤化反应的难易与其结构有关,如果分子中存在不同的烯丙基C -H 键,它们的反应活性取决于相对应的碳游离基的稳定性,其活性顺序为:叔C -H >仲C -H >伯C -H 。
(2)卤化剂 在烃类的取代卤化中,卤素是常用的卤化剂,它们在光照、加热或引发剂存在下产生卤游离基。
其反应活性顺序为:F 2>Cl 2>Br 2>I 2,但其选择性与此相反。
碘的活性差,通常很难直接与烷烃反应;而氟的反应性极强,用其直接进行氟化反应过于剧烈,常常使有机物裂解成为碳和氟化氢。