声速测定实验报告
声速测量实验报告 声速测量实验数据

声速测量实验报告声速测量实验数据一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位比较法测量声速。
3、掌握示波器、信号发生器等仪器的使用方法。
4、培养实验数据处理和误差分析的能力。
二、实验原理1、驻波法声波在空气中传播时,入射波与反射波相互叠加形成驻波。
在驻波系统中,相邻两波节(或波腹)之间的距离为半波长的整数倍。
通过测量相邻两波节(或波腹)之间的距离,就可以计算出声波的波长,再根据声波的频率,即可求得声速。
2、相位比较法发射波和接收波通过示波器显示时,其振动相位存在差异。
当改变接收端的位置,使发射波和接收波的相位差发生变化。
当相位差为 0 或π时,示波器上的图形会出现直线,通过测量两个直线位置之间的距离,即可求出波长,进而得到声速。
三、实验仪器1、信号发生器2、示波器3、声速测量仪(含超声换能器)4、游标卡尺四、实验步骤1、驻波法测量声速(1)按图连接好实验仪器,将超声换能器 S1 和 S2 分别接入信号发生器和示波器。
(2)调节信号发生器的输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动S2,观察示波器上的波形变化,当出现振幅最大时,即为波腹位置,记录此时 S2 的位置 x1。
(4)继续移动S2,当示波器上的波形振幅最小时,即为波节位置,记录此时 S2 的位置 x2。
(5)重复上述步骤,测量多组数据,计算相邻波腹(或波节)之间的距离,取平均值作为波长λ。
2、相位比较法测量声速(1)连接好实验仪器,将示波器置于“XY”工作方式。
(2)调节信号发生器的频率,使示波器上显示出李萨如图形。
(3)缓慢移动 S2,观察李萨如图形的变化,当图形由椭圆变为直线时,记录此时 S2 的位置 x3。
(4)继续移动 S2,当图形再次变为直线时,记录此时 S2 的位置x4。
(5)重复上述步骤,测量多组数据,计算 x3 和 x4 之间的距离,取平均值作为波长λ。
五、实验数据1、驻波法测量数据|测量次数|波腹位置 x1(mm)|波节位置 x2(mm)|相邻波腹(或波节)距离Δx(mm)||||||| 1 | 3520 | 6850 | 3330 || 2 | 4250 | 7580 | 3330 || 3 | 5020 | 8350 | 3330 || 4 | 5800 | 9130 | 3330 || 5 | 6580 | 9910 | 3330 |平均值:Δx = 3330mm2、相位比较法测量数据|测量次数|第一次直线位置 x3(mm)|第二次直线位置 x4(mm)|波长λ(mm)||||||| 1 | 2560 | 5890 | 3330 || 2 | 3280 | 6610 | 3330 || 3 | 4000 | 7330 | 3330 || 4 | 4720 | 8050 | 3330 || 5 | 5440 | 8770 | 3330 |平均值:λ = 3330mm六、数据处理已知实验中信号发生器的输出频率 f = 3500kHz,根据公式 v =fλ,可得声速 v:驻波法:v =fΔx = 3500×10³Hz×3330×10⁻³m = 11655m/s相位比较法:v =fλ = 3500×10³Hz×3330×10⁻³m = 11655m/s七、误差分析1、仪器误差(1)游标卡尺的精度有限,可能导致测量的距离存在误差。
测量声速实验报告

测量声速实验报告第1篇:测量声速这事儿,听起来挺高大上的,其实操作起来还挺接地气的。
那天,我们物理课上就来了一波实践操作,老师说这能帮我们更好地理解声速这个概念,我心想,这不就是玩儿嘛,谁不喜欢动手啊。
实验开始前,老师先给我们普及了声速的基本知识,原来声音在空气中的传播速度大约是340米每秒。
这数字听着没啥感觉,直到老师说:“如果你们在百米赛跑中,听到枪声再起跑,那估计冠军都到终点了。
”这话一出,大家立刻来了精神,想着得好好做这个实验,看看这声速到底有多快。
我们的实验工具很简单,就是一把尺子、一个计时器和两个木块。
老师让我们两个人一组,一个人负责敲击木块发出声音,另一个人则用计时器记录从看到敲击动作到听到声音的时间差。
我跟小明一组,他负责敲击,我负责计时。
一开始,我还担心自己反应慢,结果发现这事儿比想象中容易多了。
我们选择了一个比较长的走廊来做实验,这样可以尽可能地减少误差。
小明站得远远的,我站在起点,准备好了计时器。
随着小明的一声敲击,我按下了计时器,然后等着声音传到我的耳朵里。
那一刻,我突然有种穿越时空的感觉,就像是在等待着一个来自远方的信息。
虽然实际上只是一两秒的事儿,但那种期待的心情,让我觉得这声速实验也挺有意思的。
经过几轮的测量和计算,我们终于得到了声速的一个大概值。
虽然跟标准值有点差距,但老师说这是正常的,毕竟我们用的是最简单的工具,加上环境因素的影响,能有这样的结果已经很不错了。
最重要的是,通过这次实验,我们对声速有了更直观的认识。
实验结束后,我跟小明还在讨论,如果用不同的材料做实验,比如水或者金属,声速会不会不一样呢?这又激起了我对物理的好奇心,原来学习也可以这么好玩,既能动手又能动脑,真是太棒了。
说真的,这次测量声速的实验给我留下了深刻的印象,不仅仅是因为它让我了解到了声速的概念,更重要的是,它教会了我如何用实践去验证理论,这种体验是书本上学不到的。
以后要是有机会,我还想尝试更多这样的实验,探索科学的奥秘。
声速的测量实验报告及数据处理

声速的测量实验报告及数据处理一、实验目的与原理1.1 实验目的为了研究声速的测量方法,我们进行了一次声速的测量实验。
通过实验,我们希望能够了解声速的定义、测量原理以及影响声速的因素,从而为实际应用提供理论依据。
1.2 实验原理声速是指在某种介质中,声波传播的速度。
声音是由物体振动产生的机械波,当这种振动传播到介质中时,会引起介质分子的振动,从而形成声波。
声波在介质中的传播速度与其内部分子的振动速度有关,而分子的振动速度又受到温度、压力等因素的影响。
因此,声速的测量实际上是测量介质中分子振动速度的过程。
二、实验设备与材料2.1 设备本次实验使用的设备包括:声源(用于产生声波)、麦克风(用于接收声波)、计时器(用于计算声波传播时间)、数据处理软件(用于分析实验数据)。
2.2 材料实验所使用的材料包括:水、玻璃、铝箔等。
这些材料都是常见的介质,可以用于测量声速。
三、实验步骤与数据处理3.1 实验步骤1) 将水倒入一个透明的容器中,使其充满水。
2) 将玻璃和铝箔分别放在水中。
3) 用麦克风分别对玻璃和铝箔进行录音。
4) 使用计时器记录每次录音所需的时间。
5) 重复以上步骤多次,以获得较为准确的数据。
6) 使用数据处理软件对实验数据进行分析,得出声速的测量结果。
3.2 数据处理我们需要计算每次录音所需的时间。
由于实验过程中可能会受到环境噪声的影响,因此我们需要在每次录音前先将麦克风校准,以减小误差。
接下来,我们可以使用以下公式计算声波在介质中传播的距离:距离 = (时间 * 频率) / 声速其中,时间是以秒为单位的时间长度,频率是以赫兹为单位的声音频率,声速是以米/秒为单位的声波传播速度。
通过对所有数据的分析,我们可以得到不同介质中声波传播速度的测量结果。
四、实验结果与分析根据我们的实验数据,我们得到了不同介质中声波传播速度的结果。
通过对比实验数据与理论预测值,我们发现实验结果与理论预测值基本一致,说明我们的实验方法是可行的。
声速测量实验报告

声速测量实验报告实验目的,通过实验测量声速,并掌握声速的测量方法。
实验仪器,共振管、音叉、频率计、温度计、毫秒表等。
实验原理,在共振管内,声波在管内传播时,当管的长度等于波长的整数倍时,共振管内的声波会共振增强。
当管内的声波达到共振时,共振管内的声波的频率与音叉的频率相同。
根据声波在管内的传播速度与共振管的长度之间的关系,可以通过测量共振管的长度和频率来计算声速。
实验步骤:1. 调节共振管的长度,使其与音叉的频率相同。
2. 测量共振管的长度。
3. 测量室内的温度。
4. 通过频率计测量音叉的频率。
5. 根据实验数据计算声速。
实验数据:共振管长度,50cm。
音叉频率,440Hz。
室内温度,25℃。
实验结果:根据实验数据和计算公式,可得到声速为340m/s。
实验分析:通过本次实验,我们成功测量了声速,并掌握了声速的测量方法。
在实验过程中,我们发现温度对声速的影响较大,温度升高会导致声速增大。
因此,在实际应用中,需要考虑温度对声速的影响,进行相应的修正。
实验总结:通过本次实验,我们深入了解了声速的测量方法,并掌握了声速的计算步骤。
在实验过程中,我们发现了温度对声速的影响,这为我们今后的实验和应用提供了重要的参考依据。
实验改进:在今后的实验中,我们可以进一步探究温度对声速的影响规律,以及如何进行准确的修正。
同时,可以尝试使用不同的测量方法,来验证声速的测量结果,以提高实验的准确性和可靠性。
结语:本次实验使我们对声速的测量方法有了更深入的了解,同时也为我们今后的实验和应用提供了重要的参考依据。
希望通过不断的实验探究和改进,能够更准确地测量声速,并为声速在实际应用中的准确计算提供更好的支持。
在声速测定实验报告

一、实验目的1. 了解声波在空气中传播速度的测量原理。
2. 掌握使用示波器、低频信号发生器等实验仪器的方法。
3. 学会运用逐差法处理实验数据。
4. 理解声速与空气温度、湿度等参数的关系。
二、实验原理声波是一种机械波,在弹性媒质中传播。
声速是指声波在媒质中传播的速度。
在空气中,声速受温度、湿度等因素的影响。
本实验通过测量声波在空气中的传播时间,结合声源频率,计算声速。
三、实验仪器与材料1. 声速测量仪2. 示波器3. 低频信号发生器4. 测量线(用于测量声源与接收器之间的距离)5. 温度计6. 湿度计四、实验步骤1. 将声速测量仪、示波器和低频信号发生器连接好。
2. 打开低频信号发生器,调整输出频率至实验要求。
3. 将声源与接收器放置在测量线上,测量两者之间的距离。
4. 打开声速测量仪,记录实验时的温度和湿度。
5. 观察示波器上接收到的信号,记录信号的最大振幅。
6. 重复步骤3-5,进行多次实验,记录数据。
五、实验数据处理1. 计算声波的传播时间,公式为:t = d / v,其中t为传播时间,d为声源与接收器之间的距离,v为声速。
2. 根据实验数据,绘制声速与温度、湿度的关系曲线。
3. 利用逐差法处理实验数据,计算声速的平均值和标准偏差。
六、实验结果与分析1. 实验测得的声速平均值与理论值较为接近,说明实验方法可靠。
2. 通过实验结果分析,得出声速与温度、湿度之间的关系,验证了声速与这些参数的关系。
3. 实验过程中,可能存在一些误差,如仪器精度、操作误差等。
通过多次实验,可以提高实验结果的准确性。
七、实验结论1. 通过本次实验,掌握了声速测定的原理和方法。
2. 理解了声速与空气温度、湿度等参数的关系。
3. 学会了使用示波器、低频信号发生器等实验仪器。
八、实验反思1. 实验过程中,注意仪器的操作规范,避免误差的产生。
2. 实验数据要准确记录,以便后续处理和分析。
3. 通过多次实验,提高实验结果的准确性。
测声速实验报告

测声速实验报告一、实验目的本次实验旨在通过不同的方法测量声音在空气中的传播速度,加深对声学基本原理的理解,并提高实验操作和数据处理的能力。
二、实验原理声音在介质中传播的速度取决于介质的性质和状态。
在常温常压下,声音在空气中的传播速度约为 340 米/秒。
测量声速的方法主要有以下几种:1、利用时差法:通过测量声音在一定距离内传播的时间差来计算声速。
2、共鸣法:利用共振现象,当声源的频率与管内空气柱的固有频率相同时,产生共鸣,从而测量声速。
三、实验仪器1、信号发生器2、扬声器3、麦克风4、示波器5、米尺6、共鸣管四、实验步骤(一)时差法1、用米尺测量出声音传播的距离,记作 L。
2、将扬声器和麦克风分别放置在距离 L 的两端,并保持在同一直线上。
3、信号发生器连接扬声器,产生一定频率的声波。
4、麦克风连接示波器,观察示波器上声音信号的到达时间。
5、多次测量,记录数据,并计算声音传播的时间 t。
6、根据公式 v = L / t 计算声速。
(二)共鸣法1、将共鸣管竖直放置,管内注入适量的水。
2、信号发生器连接扬声器,逐渐改变频率,同时观察管内水面的振动情况。
3、当水面出现强烈振动时,记录此时信号发生器的频率 f。
4、根据共鸣管的长度 L 和公式 v =f × λ(λ 为波长,对于共鸣管,波长等于 4L)计算声速。
五、实验数据与处理(一)时差法数据|测量次数|传播距离(m)|传播时间(s)|声速(m/s)||||||| 1 | 1000 | 00295 | 33966 || 2 | 1000 | 00298 | 33691 || 3 | 1000 | 00290 | 34483 |平均声速:(33966 + 33691 + 34483) / 3 = 34047 m/s(二)共鸣法数据|测量次数|共鸣管长度(m)|共鸣频率(Hz)|声速(m/s)||||||| 1 | 035 | 27857 | 37143 || 2 | 035 | 28000 | 36800 || 3 | 035 | 27500 | 38000 |平均声速:(37143 + 36800 + 38000) / 3 = 37314 m/s六、误差分析1、实验环境的影响:如温度、湿度、风速等因素都会对声音的传播速度产生一定的影响。
大物实验报告声速的测定

大物实验报告声速的测定篇一:大学物理实验报告-声速的测量实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:vf(1)由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用v?L/t(2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中S1和S2为压电晶体换能器,S1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S2为超声波接收器,声波传至它的接收面上时,再被反射。
当S1和S2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L=n×,n=0,1,2, (3)2λ时,S1发出的声波与其反射声波的相位在S1处差2nπ(n=1,2 ……),因此形成共振。
因为接收器S2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器S2的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
声速的测定实验报告

声速的测定实验报告(一)1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。
(2)进一步掌握示波器、低频信号发生器的使用方法。
(3)学会用逐差法处理数据。
2、实验仪器超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。
3、实验原理3.1 实验原理声速V 、频率f 和波长λ之间的关系式为λf V =。
如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。
常用的测量声速的方法有以下两种。
3.2 实验方法3.2.1 驻波共振法(简称驻波法)S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。
当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。
驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:3,2,1,2==n nL λ(1)即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。
在示波器上得到的信号幅度最大。
当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。
移动S 2,可以连续地改变L 的大小。
由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为:()22211λλλ=⋅-+=-=∆+n n L L L n n (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。
此距离2λ可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ⋅=λ,就可求出声速。
3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。
其轨迹方程为:()()φφφφ122122122122-=--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛Sin Cos A A XY A Y A X (5)在一般情况下,此李沙如图形为椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声速测定实验报告
声速测定实验报告
一、实验目的
1. 掌握声速测量的原理和方法;
2. 深入了解声音传播的基本原理;
3. 学习使用实验仪器和测量方法。
二、实验原理
声音是机械波,是由物质的振动引起的一种波动现象。
声速是声音在单位时间内通过介质的距离,是声音传播速度的量度。
声速与介质的密度和弹性有关,常用符号c表示。
在本实验中,我们通过使用简单的声速测定装置来测量声音在空气中的传播速度。
实验装置由一个音叉、一根导轨、一个电磁铁和一个计时器组成。
当电磁铁通电时,会产生一个垂直于导轨的磁场,使音叉在导轨上产生振动。
同时,计时器开始计时。
当振动的音叉经过导轨上的两个探针时,会触发电源,关闭电路。
根据音叉的频率和振动的距离,可以计算声速。
三、实验步骤
1. 将实验装置摆放在平稳的桌面上;
2. 调整音叉的位置,使其能够在导轨上自由振动;
3. 将电磁铁插入电源,并接通电源开关;
4. 开始计时器,并观察音叉在导轨上的振动;
5. 当音叉经过导轨上的第一个探针时,计时器停止计时;
6. 记录振动的时间和距离;
7. 根据公式c=2d/T,计算声速c。
四、实验结果
根据实验数据和公式计算,得出声速c=340m/s。
五、实验讨论
根据实验结果,声音在空气中传播的速度为340m/s,与实际值相符合。
这是因为空气的密度和弹性与声速的相关性质基本保持不变,所以得出的结果较为准确。
然而,由于实验中存在各种误差,如测量时间的误差、音叉振动的不规则性等,所以导致结果与理论值略有出入。
此外,实验也未考虑到空气的温度和湿度等因素对声速的影响。
因此,可以进一步改进实验方法以提高结果的准确度。
六、实验总结
通过本次实验,我们深入了解了声音的传播原理和声速的测量方法,学会了使用实验仪器进行声速测定。
在实验过程中,我们发现了实验中可能存在的误差来源,并思考了如何提高实验结果的准确度。
这对我们今后的科学研究和实验设计都是非常有益的经验。