精选上海市初三中考数学一模模拟试卷【含答案】

合集下载

上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)

上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)

2024~2025学年上海市华东师范大学第二附属中学中考一模模拟卷数学试卷(考试时间100分钟满分150分)考生注意:1.带2B铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。

与考试无关的所有物品放置在考场外。

3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。

一.选择题(共6题,每题4分,满分24分)1.航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星,距离地球约192000000千米.其中192000000用科学记数法表示为()A.1.92×108B.0.192×109C.1.92×109D.1,92×1072.中华文化博大精深,以下是古汉字“雷”的四种写法,可以看作轴对称图形的是()A.B.C.D.3.生物学研究表明,在一定的温度范围内,酶的活性会随温度的升高逐渐增强,在最适宜温度时,酶的活性最强,超过一定温度范围时,酶的活性又随温度的升高逐渐减弱,甚至会失去活性.现已知某种酶的活性值y(单位:IU)与温度x(单位:℃)的关系可以近似用二次函数y=―12x2+14x+142来表示,则当温度最适宜时,该种酶的活性值为()A.14B.240C.3.5D.444.已知a、b、c是△ABC的三边,且满足a2-b2+ac-bc=0,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5.若AB =―4CD,且|AD|=|BC|,则顺次链接四边形ABCD中点得到的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形6.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁二.填空题(共12题,每题4分,满分48分)12.如图,AB与CD交于点O,且AC∥__________.13.从“等腰直角三角形”,“等腰梯形”,“平行四边形”,“菱形”中随机抽取一个,是中心对称图形的概率为_________14.等腰梯形ABCD 中,AB ∥CD ,E 、F 分别是AD,BC 的中点,DC=2,AB=4,设AB =a ,则EF 用向量a 表示可得EF =________15.小华探究“幻方”时,提出了一个问题:如图,将0,-4,-2,2,4这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)(14题图)(15题图)(12题图)(11题图)16.如图,在△ABC 中,AB=4,AC=6,E 为BC 中点,AD 为△ABC 的角平分线,△ABC 的面积记为S 1,△ADE 的面积记为S 2,则S 2:S 1=_____.17.在平面直角坐标系中,过点A (m,0),且垂直于x 轴的直线l 与反比例函数y=B ,将直线l 绕(16题图)三.解答题(满分78分)19.计算: 3tan30°-tan60°+13―2―(2024)020.在菱形ABCD 中,E ,F 为线段BC 上的点,且CD=2BE=4BF ,连接AE ,DF 交于点G .(1)如图(1)所示,若∠BAE=∠ADF ,求:∠B 的余弦值的值;(2)连接CG ,在图(2)上求作CG 在AB 与AG 方向上的分向量(保留作图痕迹即可)21.如图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城A1A2A3A4A5A6A7A设立在A6A7边的正中央,游乐城南侧有23.如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,联结AE,CF.求证:(1)四边形AFCE是平行四边形:(2)FG·BE=CE·AE25.新定义1:将宽与长的比等于黄金分割比的矩形称为黄金矩形 新定义2:将顶角为36°的等腰三角形称为黄金三角形①在一张矩形纸片的一端,利用图个正方形,然后把纸片展平②如图把纸片展平③折出内侧矩形的对角线中所示的④展平纸片,按照所得到的点(1)根据以上折纸法,求证:矩形BCDE 为黄金矩形(2)如图5,已知∠A=36°,△ABC 为黄金三角形,BC=1,求:AB 的长(3)在(2)的条件下,截取BD=BC 交AC 于D ,截取CE=CD 交线段BD 于E ,过E 作任意直线与边AB,BC 交于P,Q 两点,试判断:1BP +1BQ 是否为定值,若是,请求出定值,若不是,请说明理由(图5)参考答案及部分评分标准选择题(1~6题)ADBCCD填空题(7~18题)7.(3x+1)(3x―1)8.x≥19.a<410.111.2012131415.016.1:1017.-2<m<0或m>218.103解答题(19~25题)19.原式=0(10分)20.(1)58(5分)(2)图对即给分(5分)21.(1)90°76°(4分)(2)2km(3分)(3)24km(3分)22.任务1:y=―13+703任务2:w=-2x2+72x+3360(x≥10)(6分)任务3:雅19 风17 正34 最大利润(4分)23.(1)提示:△ADF≌△EDC(6分)(2)提示:△AFG∽△BEA(6分)24.(1)(0,0),y=ax2,(1,-1),-1,y=-x2(5分合理即可)(2)y=-(x-2)2(4分)(3)y=-(x-2-1)2+1或y=-(x+2-1)2+1(4分)25. (1)证明:CDBC =5―12即可(4分)(2)AB=5+1(5分)2(5分)(3)是定值,3+52。

2024届上海市浦东新区初三一模数学试题及答案

2024届上海市浦东新区初三一模数学试题及答案

上海市浦东新区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列函数中,是二次函数的是().A 21y x ;.B 21y x ;.C 221y x x ;.D 21y x.2.已知在Rt ABC 中,90C ,3AC ,4BC ,那么下列等式正确的是().A 3sin 3333.已知a .A a4..A 1:45..A .C 6..A .B .C .D 7.如果34x y ,那么x y y.8.计算:43a a b.9.已知线段2MN cm ,P 是线段MN 的黄金分割点,MP NP ,那么线段MP 的长度等于cm .10.如果点G 是ABC 的重心,且6AG ,那么边BC 上的中线长为.11.已知在Rt ABC 中,90C ,6BC ,3sin 4A,那么AB 的长为.12.如图,ABC 是边长为3的等边三角形,D 、E 分别是边BC 、AC 上的点,60ADE ,如果1BD ,那么CE.13.小明沿着坡度1:2.4i 的斜坡向上行走了130米,那么他距离地面的垂直高度升高了米.14.在一个边长为3的正方形中挖去一个边长为x (03x )的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是.15.已知点 2,A m , 3,B n 都在二次函数 21y x 的图像上,那么m 、n的大小关系是:mn .(填“ ”“ ”或“ ”)16.如图,正方形CDEF 的边CD 在Rt ABC 的直角边BC 上,顶点E 、F 分别在边AB 、AC 上.已知两条直角边BC 、AC 的长分别为5和12,那么正方形CDEF 的边长为.17.平行于梯形两底的直线与梯形的两腰相交,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,//AD BC ,AD 18.在菱形落在点19.计算:20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,且2AD ,4DB ,3AE ,6EC .(1)求DEBC的值;(2)联结DC ,如果DE a ,DA b ,试用a 、b 表示向量CD.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在四边形ABCD 中,//AD BC ,90ABC ,对角线AC 、BD 相交于点O ,2AD ,3AB ,4BC .(1)求BOC 的面积;(2)求ACD 的正弦值.第20题图第21题图221第22题图322.(本题满分10分)上海教育出版社九年级第一学期《练习部分》第48页复习题B 组第2题及参考答案.的代数式表示,以下同),2BD t ;某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究:如图1然后延长(1)(2)(3)如图2然后延长【拓展应用】如图3,在Rt ABC 中,90C ,18AC ,25BC ,点D 、E 分别在边AC 、BC 上,且5DC ,12EC ,联结AE 、BD 交于点P .求证:tan 1BPE .第23题图第24题图23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在梯形ABCD 中,//AD BC ,对角线AC 、BD 相交于点E ,且DEC DCB .(1)求证:AD ACCE CB;(2)点F 在DB 的延长线上,联结AF ,2AF AE AC .求证:EC AF BC AE .24.(本题满分12分,第(1)小题4分,第(2)题4分,第(3)题4分)如图,在平面直角坐标系xOy 中,抛物线2:M y x bx c 过点 2,2A 、点 0,2B ,顶点为点C ,抛物线M 的对称轴交x 轴于点D .(1)求抛物线M 的表达式和点C 的坐标;(2)点P 在x 轴上,当AOP 与ACD 相似时,求点P 坐标;(3)将抛物线M 向下平移t (0t )个单位,得到抛物线N ,抛物线N 的顶点为点E ,再把点C 绕点E 顺时针旋转135 得到点F .当点F 在抛物线N 上时,求t 的值.第25题图备用图备用图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(2)小题4分)如图,已知正方形ABCD 的边长为6,点E 是射线BC 上一点(点E 不与点B 、C 重合),过点A 作AF AE ,交边CD 的延长线于点F ,直线EF 分别交射线AC 、射线AD 于点M 、N .(1)当点E 在边BC 上时,如果15ND AN ,求BAE 的余切值;(2)当点E 在边BC 延长线上时,设线段BE x ,y EN MF ,求y 关于x 的函数解析式,并写出函数定义域;(3)当3CE 时,求EMC 的面积.浦东新区2023学年度第一学期期末练习卷初三数学参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.D ;4.A ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.74;8.3a b ;91 ;10.9;11.8;12.23;13.50;14.29y x ;15.<;16.6017;17.23;18.34.三、解答题:(本大题共7题,满分78分)1922+121222……………………(5分)(每个三角比的值各1分)112…………………………………(3分)(后3个数据,各1分)=12.………………………………………(2分)(每个数据,各1分)20.解:(1)∵AD =2,DB =4,AE =3,EC =6,∴12 AD DB ,12 AE EC .∴ AD AEDB EC.……………………………………(1分)∴DE//BC .……………………………………………………………………(1分)∴ DE ADBC AB .………………………………………………………………(1分)∵12 AD DB ,∴13 AD AB .……………………………………………………(1分)∴13DE BC .…………………………………………………………………(1分)(2)∵13 DE BC ,∴BC =3DE .∵ BC 和 DE 方向相同,∴3 BC DE .(1分)∵ DE a ,∴3BC a .…………………………………………………(1分)∵12 AD DB ,∴DB =2AD .∵ BD 和 DA 方向相同,∴2 BD DA .……(1分)∵ DA b ,∴2BD b .…………………………………………………(1分)∵ CD BD BC ,∴23CD b a .………………………………………(1分)21.解:(1)∵AD//BC ,∴AD AOBC OC.…………………………………………(1分)∵AD =2,BC =4,∴1=2AO OC .∴23OC AC .………………………………(1分)∵△BOC 和△ABC 同高,∴2=3BOC ABC S OC S AC .……………………………(1分)在Rt △ABC 中,∠ABC=90°,AB=3,BC =4,∴1=34=62ABC S .…(1分)∴=4 OBC S .……………………………………………………………………(1分)(2)过点D 作DM ⊥BC ,垂足为点M ,过点D 作DH ⊥AC ,垂足为点H .在Rt △ABC 中,∠ABC=90°,AB=3,BC =4,∴AC =5.∵AD ∥BC ,AB ⊥BC ,DM ⊥BC ,∴AB =DM .∴△ADC 和△ABC 等高.∴1==2ADC ABC S AD S BC .∴=3 ACD S .……………(1分)∴1=32 AC DH .∴6=5DH .………………………………………………(1分)∵DM ⊥BC ,∴∠DMC=90°.∵∠ABC =90°,∴∠ABC=∠DMC .∴AB ∥DM .∵AD ∥BC ,∴四边形ABMD 是平行四边形.∴BM=AD=2,DM=AB=3.∵BC =4,∴MC=2.…………………………(1分)在Rt △DMC 中,∠DMC=90°,DM=3,MC =2,∴ DC .………(1分)在Rt △DHC 中,∵∠DHC=90°,6=5DH, DC,∴sin 65DH ACD CD .…(1分)22.解:【问题探究】∠D=22.5°,BD,tan 22.51 .……………(各1分)【知识迁移】∵BD=AB ,∴∠D =∠BAD .∵∠ABC =∠D+∠BAD ,∴1=2D ABC .………………………………(1分)在Rt △ABC 中,2tan 3ABC ,设AC=2k ,BC=3k,则 AB BD .(1分)∴13tan tan 22AC ABC D DC .……………………(1分)【拓展应用】联结DE .………………………………………………………(1分)在Rt △EDC 中,∠ECD=90°,CD=5,CE =12,∴DE =13.∵CE =12,BC=25,∴BE =13.∴BE =DE .∴∠EBD =∠EDB .∵∠DEC =∠EBD+∠EDB ,∴1=2 DBE DEC .∵CD =5,AC=18,∴AD =13.∴AD =DE .∴∠DAE =∠DEA .∵∠EDC =∠DAE+∠DEA ,∴1=2DAE EDC .…………………………(1分)在Rt △EDC 中,∠ECD=90°,∴∠DEC +∠EDC=90°.∴∠DBE +∠DAE=45°.……………………………………………………(1分)在Rt △ABC 中,∠ACB=90°,∴∠ABC +∠BAC=90°.∴∠ABP +∠BAP=45°.∴∠BPE =∠ABP +∠BAP=45°.………………(1分)∴tan 1BPE .23.证明:(1)∵AD ∥BC ,∴∠ADC +∠DCB=180°.……………………………(1分)又∵∠CEB +∠DEC=180°,∠DEC =∠DCB ,∴∠ADC =∠CEB .……(1分)∵AD ∥BC ,∴∠DAC =∠ECB .……………………………………………(1分)∴△ADC ∽△CEB .…………………………………………………………(2分)∴ AD AC CE CB.……………………………………………………………(1分)(2)∵∠AED =∠CEB ,∠ADC =∠CEB ,∴∠AED =∠ADC .…………(1分)∵∠EAD =∠DAC ,∴△AED ∽△ADC .……………………………………(1分)∴ AE AD AD AC.即2 AD AE AC .…………………………………………(1分)∵2 AF AE AC ,∴22 AD AF .∴AD =AF .…………………………(1分)∵AD ∥BC ,∴AE ADEC BC.……………………………………………(1分)∴ AE AF EC BC.即 EC AF BC AE .………………………………………………………(1分)24.解:(1)抛物线M :2y x bx c 过点A (2,2)、点B (0,2),∴4222.,b c c ………………………………………………………(2分)∴2 b ,2 c .∴抛物线M 的表达式是222 y x x .………………………………(1分)∴点C 的坐标为(1,3).…………………………………………………(1分)(2)由(1)得抛物线的对称轴是直线1 x .……………………………(1分)过点A 作AH 垂直直线1 x ,垂足为点H .∴点H 的坐标为(1,2).过点A 作AG 垂直x 轴,垂足为点G .∴点G 的坐标为(2,0).在Rt △ACH 与Rt △AOG 中,根据题意可得tan 1 AH ACH CH ,tan 1 AGAOG OG.∴tan tan ACH AOP ,∴∠ACH =∠AOP .……………………………(1分)∴当△AOP 与△ACD 相似时,有 CA CD OA OP 或CA CDOP OA.○1 CA CDOA OP 3 OP,OP =6.点P 的坐标是(6,0).……………(1分)○2CA CDOP OA , OP 43 OP .点P 的坐标是(43,0).………(1分)∴综上所述,点P 的坐标是(6,0)或(43,0).(3)过点F 作FQ 垂直直线1 x ,垂足为点Q .根据题意可得∠FEQ =45°,FE =CE =t .……………………………………(1分)在Rt △EFQ 中,∵∠EQF=90°,∠FEQ =45°,FE =t ,∴EQ=FQ =2t .∴点F 的坐标是(1+2t ,32t ).………………………………(1分)∵当点F 在平移后的抛物线N :21)3(y x t 上时,可得231)322(1+t t t .……………………………(1分)解得10 t (舍),2 t 1分)25.解:(1)根据题意可得∠ABC =∠BAD=∠ADC=90°,AB =BC =CD =AD =6,AD ∥BC .∴∠BAE +∠EAD=90°,∠ADF=∠ABC =90°.∵AF ⊥AE ,∴∠DAF +∠EAD=90°.∴∠BAE=∠DAF .∴△BAE ≌△DAF .∴DF =BE .……………………………………………(1分)设BE=x ,则DF =BE =x ,EC =6-x ,FC =6+x .∵正方形ABCD 的边长为6,15ND AN ,∴ND=1,AN =5.………………(1分)∵AD ∥BC ,∴ ND FD EC FC .即166xx x.……………………………(1分)整理得2560 x x .解得12 x ,23 x .……………………………(1分)当2 x 时,6cot 32 BE BAE AB ;当3 x 时,6cot 23BE BAE AB .∴∠BAE 的余切值为2或3.………………………………………………(1分)(2)当点E 在边BC 延长线上时,根据条件可证△BAE ≌△DAF .∴AE =AF .∴∠AEF =∠AFE .∵AF ⊥AE ,∴∠EAF=90°.∵∠EAF +∠AEF +∠AFE =180°,∴∠AEF =∠AFE=45°.∴∠ANE =∠AFE +∠FAD =45°+∠FAD .∵四边形ABCD 是正方形,∴∠DAC=45°.∴∠MAF =∠DAC +∠FAD =45°+∠FAD .∴∠ANE =∠MAF .∴△ANE ∽△MAF .…………………………………………………………(2分)∴ EN AE FA MF.∴2== y EN MF AE FA AE .…………………………(1分)在Rt △ABE 中,∠ABE=90°,AB =6,BE=x ,∴22=36 AE x .即2=36 y x .(x >6)…………………………………………………(2分)(3)有两种情况:点E 在边BC 上,点E 在边BC 延长线上.(i )当点E 在边BC 上时.易证△EMC ∽△AMF ,△AMF ∽△AFC .∴△EMC ∽△AFC .∴2= (EMC AFC S EC S AC.…………………………………………………………(1分)∵EC =3,AC=1=96=272 AFC S ,∴27=8EMC S .……………(1分)(ii )当点E 在边BC 延长线上时.易证△EMC ∽△AMF ,△AMF ∽△AFC .∴△EMC ∽△AFC .∴2= (EMC AFC S EC S AC.…………………………………………………………(1分)∵EC =3,AC=1=156=452AFC S ,∴45=8EMC S .……………(1分)综上所述,△EMC 的面积为278或458.。

上海市初三中考数学一模模拟试题【含答案】

上海市初三中考数学一模模拟试题【含答案】
在△PDE中,∠D+∠DPE+∠PED=180°,
∴∠DEP=72°.
由(1)得,∠FEB=60°,
∴∠BED=∠DEP+∠BEP=72°+60°=132°.
∴∠CBE=∠BED-∠C=132°-120°=12°.8分
20.(本题8分)
(1)90,80,80.6分
(2)不合理,因为若将每位营销员月销售量定为90台,则多数营销员可能完不成任务.
A.
B.
C.
D.二、填空Biblioteka (本大题6小题,每小题4分,共24分)
11.(4分)因式分解:x2y﹣y3=.
12.(4分)81的平方根等于.
13.(4分)不等式组 的解集是.
14.(4分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣1,0)、C(0,1),将△ABC绕点B顺时针旋转90°,得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,则点A1的坐标为.
所以,联络员出发 h后与第一次后队相遇.8分
24.(本题8分)
证明:(1)如图,连接BD,交AC于点F.
∵∠BAD=90°,∴BD是直径.
∴∠BCD=90°.∴∠DEC+∠CDE=90°.
∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.
∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°.
∴∠BDE=90°,即BD⊥DE.
8分
21.(本题8分)
解:(1) .2分
(2)随机选两位同学打第一场比赛,可能出现的结果有12种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙),(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙),(丁,丙)、并且它们出现的可能性相等.恰好选中甲、乙两位同学(记为事件A)的结果有2种,即(甲,乙)、(乙,甲),所以P(A)= = .8分

上海市初三中考数学一模模拟试题【含答案】

上海市初三中考数学一模模拟试题【含答案】

上海市初三中考数学一模模拟试题【含答案】一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDE第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上) 11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和(第9题)BADCEF△BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.【解答】解:(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2;(2)①当0<k<2时,如图1所示.根据题意知,四边形OAPB是矩形,且BP=1,AP=2.∵点E、F都在反比例函数(k>0)的图象上,∴E(,2),F(1,k).则BE=,PE=1﹣,AF=k,PF=2﹣k,∴S△OEF=S矩形OAPB﹣S△OBE﹣S△PEF﹣S△OAF=1×2﹣××2﹣×(1﹣)×(2﹣k)﹣×1×k=﹣k2+1;②当k=2时,由(1)知,△OEF不存在;③当k>2时,如图2所示.点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD 为矩形.∵PF⊥PE,∴S△FPE=PE•PF=(﹣1)(k﹣2)=k2﹣k+1,∴四边形PFGE是矩形,∴S△PFE=S△GEF,∴S△OEF=S矩形OCGD﹣S△DOF﹣S△GEF﹣S△OCE=•k﹣﹣(k2﹣k+1)﹣=k2﹣1;(3)当k>0时,存在点E使△OEF的面积为△PEF面积的2倍.理由如下:①如图1所示,当0<k<2时,S△PEF=×(1﹣)×(2﹣k)=,S△OEF=﹣k2+1,则×2=﹣k2+1,解得,k=2(舍去),或k=;②由(1)知,k=2时,△OEF与△PEF不存在;③如图2所示,当k>2时,S△PEF=﹣k2+k﹣1,S△OEF=k2﹣1,则2(﹣k2+k﹣1)=k2﹣1,解得k=(不合题意,舍去),或k=2(不合题意,舍去),则E点坐标为:(3,2).中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.。

2023年上海市金山区初三3月线下中考一模数学试卷含详解

2023年上海市金山区初三3月线下中考一模数学试卷含详解

5上海市金山区2023届初三一模数学试卷一、选择题(本大题共6题,每题4分,共24分)1.下列y 关于x 的函数中,属于二次函数的是()A.21y x =+ B.2y x=C.231y x =+ D.y =2.下列各组中的四条线段成比例的是()A.1cm 2cm 3cm 4cm 、、、B.2cm 3cm 4cm 5cm 、、、C.3cm 4cm 6cm 9cm、、、 D.2cm 3cm 4cm 6cm、、、3.在Rt ABC △中,90,3,4,tan C AC BC B ︒∠====()A.45B.34C.35 D.434.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =4,那么由下列条件能够判断DE ∥BC 的是()A.AE AC =12 B.DE BC =13 C.AE AC =13D.DE BC =125.已知a ,b ,c是非零问量,下列条件中不能判定a ∥b 的是()A.a ∥c ,b∥c B.3a b= C.||||a b =D.12a c = ,2bc =- 6.如图,已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴直线1x =与x 轴交于点D ,若OA OD <,那么下列判断正确的是()A.0a b c ++<B.0a b c -+>C.20a b c ++<D.930a b c ++<二、填空题(本大题共12题,每题4分,共48分)7.已知43a b =,则a b b-=__________.8.已知2()23=-+f x x x ,那么(2)f =_________.9.已知α是锐角,且2cos 2α=,那么α=_________.10.将抛物线22(4)y x =+向右平移3个单位,得到新抛物线的表达式是_________.11.抛物线2(2)31y k x x =+--有最高点,那么k 的取值范围是_________.12.如图,已知上海东方明珠电视塔塔尖A 到地面底部B 的距离是468米,第二球体点P 处恰好是整个塔高的一个黄金分割点(点A 、B 、P 在一直线),且BP AP >,那么底部B 到球体P 之间的距离是_________米(结果保留根号)13.某商场营业厅自动扶梯的示意图如图所示,自动扶梯AB 坡度i 1:=,自动扶梯AB 的长度为12米,那么大厅两层之间的高度BC =_________米.14.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,tan ∠DCB =34,AC =12,则BC =___.15.如图,AB 与CD 相交于点E ,AC BD ∥,联结BC ,若2,3AE BE ==,设AC a = ,ED b =,那么BC = _________(用含a b、的式子表示)16.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果:1:2EAF CDF C C =△△,那么:EAF ABCF S S =△四边形_________.17.我们把将一个三角形面积分为相等的两个部分的直线称为美丽线.如图,在Rt ABC △中,90ACB ∠=︒,直线DE 是Rt ABC △的一条美丽线,直线DE 分别交边AB BC 、于点D 、E ,交AC 延长线于点F ,当,2DE AB BD AD ⊥=时,那么cos F 的值为_________.18.如图,ABC 为等腰直角三角形,1906A AB G ∠=︒=,,为ABC 的重心,E 为线段AB 上任意一动点,以CE 为斜边作等腰Rt CDE △(点D 在直线BC 的上方),2G 为Rt CDE △的重心,设12G G 、两点的距离为d ,那么在点E 运动过程中d 的取值范围是_________.三、解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:24sin 45tan 452cot 30sin 602cos 60︒-+︒︒︒⋅︒.20.如图,已知抛物线2(2)4(0)y a x a =--≠与x 轴交于原点O 与点A ,顶点为点B .(1)求抛物线的表达式以及点A 的坐标;(2)已知点(2,)(0)P m m >,若PAB 的面积为6,求点P 的坐标.21.如图,已知在四边形ABCD 中,,90,2,6,AD BC A AD BC BD ∠=︒==∥是对角线,BD DC ⊥.(1)求证:ABD DCB △∽△;(2)求CD 的长.22.如图,小睿为测量公园的一凉亭AB 的高度,他先在水平地面点E 处用高1.5m 的测角仪DE 测得顶部A 的仰角为31︒,然后沿EB 方向向前走3m 到达点G 处,在点G 处用高1.5m 的测角仪FG 测得顶部A 的仰角为42︒.求凉亭AB 的高度(,,AB BE DE BE FG BE ⊥⊥⊥,结果精确到0.1m ).(参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.60︒≈,sin 420.67︒≈,cos 420.74︒≈,tan 420.90︒≈)23.如图,已知菱形ABCD 中,点E 在边CB 延长线上,联结DE 交边AB 于点F ,联结AE ,过点F 作FG BE ∥交AE 于点G .(1)求证:FG BF =;(2)联结AC 交DE 于点O ,联结BO ,当FOB DAO ∠=∠时,求证:2DO AB GF =⋅.24.已知抛物线23y ax bx =+-经过点(1,0)A ,(2,3)B --,顶点为点P ,与y 轴交于点C .(1)求该抛物线的表达式以及顶点P 的坐标;(2)将抛物线向上平移(0)m m >个单位后,点A 的对应点为点M ,若此时MB AC ,求m 的值;(3)设点D 在抛物线23y ax bx =+-上,且点D 在直线BC 上方,当DBC BAC ∠=∠时,求点D 的坐标.25.已知平行四边形ABCD 中,35,tan 2,5AB ABC BC =∠==,点P 是对角线BD 上一动点,作EPD ABC ∠=∠,射线PE 交射线BA 于点E ,联结AP .(1)如图1,当点E 与点A 重合时,证明:ABP BCD ∽;(2)如图2,点E 在BA 的延长线上,当EP AD =时,求AE 的长;(3)当APE V 是以AP 为底的等腰三角形时,求AE 的长.5上海市金山区2023届初三一模数学试卷一、选择题(本大题共6题,每题4分,共24分)1.下列y 关于x 的函数中,属于二次函数的是()A.21y x =+B.2y x=C.231y x =+ D.y =【答案】C【分析】根据二次函数的定义判断解答即可.【详解】∵21y x =+中x 的指数是1,∴21y x =+是一次函数,∴A 选项不符合题意;∵2y x=中x 的指数是-1,∴2y x=是反比例函数,∴B 选项不符合题意;∵231y x =+中x 的指数是2,且231x +是整式,∴231y x =+是二次函数,∴C 选项符合题意;∵y =∴D 选项不符合题意;故选C .【点睛】本题考查了二次函数的定义,熟记二次函数的定义,从指数,表达式的整式性两个角度思考是解题的关键.2.下列各组中的四条线段成比例的是()A.1cm 2cm 3cm 4cm 、、、B.2cm 3cm 4cm 5cm 、、、C.3cm 4cm 6cm 9cm 、、、D.2cm 3cm 4cm 6cm、、、【答案】D【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【详解】解:A 、∵1423⨯≠⨯,∴四条线段不成比例,不符合题意;B 、∵2534⨯≠⨯,∴四条线段不成比例,不符合题意;C 、∵3946⨯≠⨯,∴四条线段成比例,不符合题意;D 、∵2634⨯=⨯,∴四条线段成比例,符合题意;故选:D .【点睛】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.在Rt ABC △中,90,3,4,tan C AC BC B ︒∠====()A.45B.34C.35 D.43【答案】B【分析】根据题意及三角函数直接进行求解即可.【详解】解:如图,由题意得:90,3,4C AC BC ︒∠===,3tan 4AC B BC ∴==;故选B .【点睛】本题主要考查三角函数,熟练掌握求一个角的三角函数值是解题的关键.4.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =4,那么由下列条件能够判断DE ∥BC 的是()A.AE AC =12B.DE BC =13C.AE AC =13D.DE BC =12【答案】C【分析】先求出比例式,再根据相似三角形的判定得出△ADE ∽△ABC ,根据相似推出∠ADE=∠B ,根据平行线的判定得出即可.【详解】只有选项C 正确,理由:如图:∵AD=2,BD=4,AE AC =13,∴AD AB =AE AC =13,∵∠DAE=∠BAC ,∴△ADE ∽△ABC ,∴∠ADE=∠B ,∴DE ∥BC ,根据选项A 、B 、D 的条件都不能推出DE ∥BC ,故选C .【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.已知a,b,c是非零问量,下列条件中不能判定a ∥b的是()A.a ∥c ,b ∥cB.3a b=C.||||a b =D.12a c = ,2b c=- 【答案】C【分析】根据平面向量的定义与性质逐一判断即可得出答案.【详解】解: //a c,//b c ,∴//a b,故A 选项能判定//a b ;3a b = ,∴//a b,故B 选项能判定//a b ;||||a b =,不能判断a 与b 方向是否相同,故C 选项不能判定//a b ; 12a c =,2bc =- ,∴14a b =-,∴//a b,故D 选项能判定//a b,故正确答案为:C .【点睛】本题考查了平面向量,熟练掌握平面向量的定义与性质是解题的关键.6.如图,已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴直线1x =与x 轴交于点D ,若OA OD <,那么下列判断正确的是()A.0a b c ++<B.0a b c -+>C.20a b c ++<D.930a b c ++<【分析】根据图象和二次函数的性质,逐一进行判断即可.【详解】解:A 、由图可知:当1x =时,0y a b c =++>,选项错误,不符合题意;B 、由图可知:1OD =,∵OA OD <,∴1OA <,∴点A 的横坐标大于1-,∵1x <时,y 随x 的增大而增大,∴当=1x -时的函数值小于点A 的纵坐标0,即:<0a b c -+,选项错误,不符合题意;C 、∵抛物线的对称轴为12bx a=-=,∴2b a =-,即:20a b +=,由图可知,当0x =时,0y c =>,∴20a b c c ++=>,选项错误,不符合题意;D 、∵01OA <<,1OD =,∴12AD <<,∵,A B 关于对称轴对称,∴12BD <<,即B 点的横坐标在2x =和3x =之间,∵1x >时,y 随x 的增大而减小,∴当3x =时的函数值小于点B 的纵坐标0,即:930a b c ++<,选项正确,符合题意;故选D .【点睛】本题考查根据二次函数的图象,判断式子的符号.熟练掌握二次函数的性质,是解题的关键.二、填空题(本大题共12题,每题4分,共48分)7.已知43a b =,则a b b -=__________.【答案】13【分析】将a bb -变形为-a b b b,代入条件即可求值.【详解】41133-=-=-=a b a b b b b 故答案为:13【点睛】本题考查比例的性质,根据式子的特征适当的变形,再采用整体代入是解题的关键.8.已知2()23=-+f x x x ,那么(2)f =_________.【分析】根据把自变量的值代入函数解析式,可得相应的函数值.【详解】解:2222234433f =-⨯+=-+=().故答案为:3【点睛】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.已知α是锐角,且cos 2α=,那么α=_________.【答案】45︒##45度【分析】直接根据特殊角的三角函数值解答即可.【详解】∵2cos 2α=,∴45α=︒.故答案为:45︒.【点睛】本题主要考查了特殊角的三角函数值,记忆特殊角的三角函数值是解题的关键.10.将抛物线22(4)y x =+向右平移3个单位,得到新抛物线的表达式是_________.【答案】22(1)y x =+【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】解:二次函数22(4)y x =+的图象向右平移3个单位,得:222(43)2(1)y x x =+-=+,故答案为:22(1)y x =+.【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.11.抛物线2(2)31y k x x =+--有最高点,那么k 的取值范围是_________.【答案】2k <-【分析】根据题意可知20k +<,解不等式即可求解.【详解】解:∵抛物线2(2)31y k x x =+--有最高点,∴20k +<,解得:2k <-,故答案为:2k <-.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.12.如图,已知上海东方明珠电视塔塔尖A 到地面底部B 的距离是468米,第二球体点P 处恰好是整个塔高的一个黄金分割点(点A 、B 、P 在一直线),且BP AP >,那么底部B 到球体P 之间的距离是_________米(结果保留根号)【答案】(2345234)【分析】根据黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值512⎛⎫- ⎪ ⎪⎝⎭叫做黄金比.【详解】解:∵点P 是线段AB 上的一个黄金分割点,且468AB =米,BP AP >,∴51468(2345234)2BP =⨯=米.故答案为:(2345234).【点睛】本题考查了黄金分割的概念,熟记黄金分割的定义是解题的关键.13.某商场营业厅自动扶梯的示意图如图所示,自动扶梯AB 坡度i 1:3=,自动扶梯AB 的长度为12米,那么大厅两层之间的高度BC =_________米.【答案】6【分析】如图,由坡度易得BC 与AC 的比为3,设出相应未知数,利用勾股定理可得BC 的长度.【详解】解:设大厅两层之间的高度BC 为x 米,如图,在Rt ABC △中,90C ∠=︒,坡度:3i =,12AB =,∴BC 与AC 的比为3,∴BC x =,3AC =,∵222BC AC AB +=,∴)222312x x +=,解得:16x =,26x =-(负值不符合题意,舍去),∴大厅两层之间的高度BC 为6米.故答案为:6.【点睛】本题考查解直角三角形及勾股定理.理解坡度的意义是解题的关键.14.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,tan ∠DCB =34,AC =12,则BC =___.【答案】9【分析】根据直角三角形的性质、同角的余角相等得到∠BCD =∠A ,根据正切的定义计算即可【详解】解:∵∠ACB =90°,∴∠A +∠B =90°,∵CD ⊥AB ,∴∠BCD +∠B =90°,∴∠BCD =∠A ,在Rt △ACB 中,∵tan A =tan ∠BCD =34=BC AC,∴BC =34AC =34×12=9.故答案为:9.【点睛】本题考查了解直角三角形:掌握正切的定义是解题的关键.15.如图,AB 与CD 相交于点E ,AC BD ∥,联结BC ,若2,3AE BE ==,设AC a = ,ED b = ,那么BC = _________(用含a b 、的式子表示)【答案】3523a b -- 【分析】由平行线截线段成比例和平面向量的角形法则解答,先求出DE EC 、,然后表示出DC ,再求出BD,然后根据BC BD DC =+ 即可求解.【详解】解:∵AC BD ∥,∴23EC AC AE ED BD EB ===∵ED b = ,AC a = ∴23EC b =- ,32BD a =- ∴2533DC DE EC b b =+=--=- ∴3523BC BD DC a =+=-- 故答案为:3523a b -- 【点睛】本题考查了平行线的性质和平面向量,需要掌握平行线截线段成比例和平面向量的三角形法则.16.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果:1:2EAF CDF C C =△△,那么:EAF ABCF S S =△四边形_________.【答案】18【分析】在平行四边形ABCD 中,根据AB CD ∥,得出EAF CDF ∽ ,根据12EAF CDF C C = ,得出12AF DF =,证明EAF EBC ∽,根据相似三角形的性质得到1=9EAF EBC S S 即可得到1:8EAF ABCF S S =△四边形.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC =,AF BC ∥,AE CD ∥,∴EAF CDF ∽ ,∵12EAF CDF C C = ,∴12AF DF =,∴13AF BC =,∵AF BC ∥,∴EAF EBC ∽,∴2211=39EAF EBC S AF S BC ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,∴1:8EAF ABCF S S =△四边形,故答案为:18.【点睛】本题考查了平行四边形的性质,相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.17.我们把将一个三角形面积分为相等的两个部分的直线称为美丽线.如图,在Rt ABC △中,90ACB ∠=︒,直线DE 是Rt ABC △的一条美丽线,直线DE 分别交边AB BC 、于点D 、E ,交AC 延长线于点F ,当,2DE AB BD AD ⊥=时,那么cos F 的值为_________.【答案】223【分析】连接AE ,根据新定义得出13ACE ABE S S =,设CE c =,则3BE c =,根据cos BD BC B BE AB ==得出222a d =,继而得出a d =,即可求得222cos 33a B d ==,进而根据等角的余角相等,得出B F ∠=∠,即可求解.【详解】解:连接AE,依题意,在Rt ABC △中,90ACB ∠=︒,直线DE 是Rt ABC △的一条美丽线,∴BDE ACEDS S = 四边形∵,2DE AB BD AD⊥=∴111222AD DE AC CE DE BD ⨯+⨯⨯=⨯设AD a =,DE b =,则2BD a =,.∴11222ACE a b ab S ⨯⨯=+ ∴12ACE ADE S ab S == ,∴13ACE ABE S S =,设CE d =,则3BE d =,∴4BC d =,∵cos BD BC B BE AB ==,即2433a d d a=∴222a d =,∵0,0a d >>∴a d=∴222cos 33a B d ==∵90ACB ∠=︒,,DE AB ⊥∴90B BAC F FAD ∠+∠=∠+∠=︒∴B F ∠=∠,∴22cos cos 3F B ==故答案为:223.【点睛】本题考查了余弦的定义,根据新定义得出13ACE ABE S S =是解题的关键.18.如图,ABC 为等腰直角三角形,1906A AB G ∠=︒=,,为ABC 的重心,E 为线段AB 上任意一动点,以CE 为斜边作等腰Rt CDE △(点D 在直线BC 的上方),2G 为Rt CDE △的重心,设12G G 、两点的距离为d ,那么在点E 运动过程中d 的取值范围是_________.【答案】0d ≤≤【分析】当点E 与点B 重合时,0d =,当点E 与点A 重合时,d 的值最大,利用重心的性质以及勾股定理求得1CG =,2CG =12CG G BCA ∽△△,推出12CG G △是等腰直角三角形,据此求解即可.【详解】解:当点E 与点B 重合时,0d =,当点E 与点A 重合时,d 的值最大,如图,点FH 分别为BC AC 、的中点,∵ABC 为等腰直角三角形,1906A AB G ∠=︒=,,为ABC 的重心,∴12AF BF FC BC ====,∴113G F AF ==1CG ==,同理11322DH AH HC AC AB =====,∴2113G H DH ==,2CG ==1245BAC G CG ∠=∠=︒,22AC BC ==,2122CG CG ==,即21CG AC CG BC =,∴12CG G BCA ∽△△,∴12CG G △是等腰直角三角形,∴122G G CG ==∴0d ≤≤故答案为:0d ≤≤【点睛】本题考查了相似三角形的判定和性质,重心的性质,勾股定理,等腰直角三角形的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:24sin 45tan 452cot 30sin 602cos 60︒-+︒︒︒⋅︒.【答案】4【分析】先将特殊角的三角函数值代入,再进行二次根式的计算即可.【详解】24sin 45tan 452cot 30sin 602cos 60︒-+︒︒︒⋅︒22412321222⎛⨯- ⎝⎭=+⨯⨯141231⨯-=+13=+4=.【点睛】本题考查了特殊角的三角函数值,以及二次根式的混合运算,熟记特殊角的三角函数值是解答本题的关键.20.如图,已知抛物线2(2)4(0)y a x a =--≠与x 轴交于原点O 与点A ,顶点为点B.(1)求抛物线的表达式以及点A 的坐标;(2)已知点(2,)(0)P m m >,若PAB 的面积为6,求点P 的坐标.【答案】(1)24y x x =-,(4,0)A (2)(2,2)P 【分析】(1)将原点代入解析式求出a 即可求出表达式,并令0y =求出点A 坐标;(2)先求出顶点B 的坐标,表示出BP ,根据三角形面积公式列出等式,解得m 即可.【小问1详解】解:∵抛物线经过坐标原点O ,代入得440a -=,解得1a =,∴抛物线解析式为24y x x =-,∵抛物线与x 轴正半轴交于点A ,∴240x x -=,解得10x =(舍去),24x =,∴点(4,0)A ;【小问2详解】设PB 与OA 交于点H,∵抛物线解析式为24y x x =-,∴顶点(2,4)-B ,∵(2,)P m ,∴4,2BP m AH =+=,∵6PAB S =△,即1(4)262m ⋅+⋅=,解得2m =,∴点(2,2)P .【点睛】本题考查待定系数法求二次函数解析式,二次函数的性质,解题的关键是熟知二次函数的性质.21.如图,已知在四边形ABCD 中,,90,2,6,AD BC A AD BC BD ∠=︒==∥是对角线,BD DC ⊥.(1)求证:ABD DCB △∽△;(2)求CD 的长.【答案】(1)见解析(2)【分析】(1)由题意易知90A BDC ∠=∠=︒,由AD BC ∥,可知ADB DBC ∠=∠,即可证明结论;(2)由ABD DCB △∽△,可列比例式BC BD BD AD=,即2BD BC AD =⋅,进而求得BD =,再由勾股定理即可CD 的长度.【小问1详解】解:∵,90BD DC A ⊥∠=︒,90A BDC ∠=∠=︒,∵AD BC ∥,∴ADB DBC ∠=∠,∴ABD DCB △∽△;【小问2详解】∵ABD DCB△∽△∴BC BD BD AD=,即2BD BC AD =⋅,∵2AD =,6BC =,∴BD =(负值舍去),在Rt BCD 中,=90BDC ∠︒,∴222BD CD BC +=,∴CD =【点睛】本题考查相似三角形的判定及性质,勾股定理,掌握证明两个三角形相似的方法是解决问题的关键.22.如图,小睿为测量公园的一凉亭AB 的高度,他先在水平地面点E 处用高1.5m 的测角仪DE 测得顶部A 的仰角为31︒,然后沿EB 方向向前走3m 到达点G 处,在点G 处用高1.5m 的测角仪FG 测得顶部A 的仰角为42︒.求凉亭AB 的高度(,,AB BE DE BE FG BE ⊥⊥⊥,结果精确到0.1m ).(参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.60︒≈,sin 420.67︒≈,cos 420.74︒≈,tan 420.90︒≈)【答案】6.9m【分析】设m CF x =,在Rt ACF 中,根据正切三角函数关系得到tan 420.9(m)AC CF x =⋅︒≈,在Rt ACD △中,根据正切三角函数关系列方程0.90.63x x ≈+,然后解方程求出CF ,最后利用AB AC BC =+关系即可得解.【详解】解:联结DF 并延长,交AB 于点C ,由题意得:DC BE , 1.5m BC FG DE ===,3m DF GE ==,90ACF ∠=︒,设m CF x =,则(3)m CD CF DF x =+=+,在Rt ACF 中,tan tan 420.9AC AFC CF∠==︒≈,∴tan 420.9(m)AC CF x =⋅︒≈,在Rt ACD △中,tan tan 310.6AC ADC CD ∠==︒≈,∴0.90.63x x ≈+,解得6x =,经检验:6x =是原方程的根,∴0.9 1.5 6.9(m)AB AC BC x =+=+=答:凉亭AB 的高约为6.9m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.如图,已知菱形ABCD 中,点E 在边CB 延长线上,联结DE 交边AB 于点F ,联结AE ,过点F 作FG BE ∥交AE 于点G .(1)求证:FG BF =;(2)联结AC 交DE 于点O ,联结BO ,当FOB DAO ∠=∠时,求证:2DO AB GF =⋅.【答案】(1)见解析(2)见解析【分析】(1)首先证明GF AD ∥,再证明GF BF AD CD =即可解决问题.(2)证明OFB AOB ∽,可得BO BF AB BO =,即可解决问题.【小问1详解】∵四边形ABCD 是菱形∴,,AD BC AB CD AD CD =∥∥∵GF BE∥∴GF AD∥∴GF EF AD ED =,同理BF EF CD ED=∴GF BF AD CD =∵AD CD=∴GF BF=【小问2详解】∵四边形ABCD 是菱形∴AC 垂直平分BD∴BO DO=∵四边形ABCD 是菱形∴FAO DAO∠=∠∵FOB DAO∠=∠∴FAO FOB∠=∠∵FBO ABO∠=∠∴OFB AOB∽∴BO BF AB BO=即2BO AB BF =⋅∵BO DO =,GF BF=∴2DO AB GF =⋅【点睛】本题考查菱形的性质和判定,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.24.已知抛物线23y ax bx =+-经过点(1,0)A ,(2,3)B --,顶点为点P ,与y 轴交于点C.(1)求该抛物线的表达式以及顶点P 的坐标;(2)将抛物线向上平移(0)m m >个单位后,点A 的对应点为点M ,若此时MB AC ,求m 的值;(3)设点D 在抛物线23y ax bx =+-上,且点D 在直线BC 上方,当DBC BAC ∠=∠时,求点D 的坐标.【答案】(1)223y x x =+-,(1,4)P --(2)6m =(3)17,24D ⎛⎫- ⎪⎝⎭【分析】(1)利用待定系数法即可求解;(2)由题意可得(0,3)C -,由此可求得直线AC 的解析式为33y x =-,由MB AC ,可设直线MB 解析式为23y x b =+,进而求得其解析式为33y x =+,由1x M =,代入直线MB 的表达式求得(1,6)M ,即可求得m 的值;(3)由点(1,0)A ,(2,3)B --,(0,3)C -,易知AB =,45ABC ∠=︒,作DH ⊥直线BC 于H ,作CK AB ⊥于K ,在Rt BCK △中,2sin 2CK ABC BC ∠==,进而可求得CK BK ==,AK =,可得1tan 2CAK ∠=,由DBC BAC ∠=∠,可得1tan 2DBC ∠=,在Rt DBH 中,可设DH k =,则2BH k =,可知(22,3)D k k --,将其代入223y x x =+-,求出k 即可得点D 坐标.【小问1详解】∵抛物线经过A 、B ,代入得304233a b a b +-=⎧⎨--=-⎩,解得12a b =⎧⎨=⎩∴抛物线解析式为223y x x =+-,∴顶点(1,4)P --;【小问2详解】令0x =,则=3y -,即(0,3)C -∵直线AC 经过点A 、C ,设其解析式为11y k x b =+,则11103k b b +=⎧⎨=-⎩,解得1133k b =⎧⎨=-⎩∴直线:33AC y x =-,∵MB AC ,且直线MB 经过点(2,3)B --,设解析式为23y x b =+,则()2332b -=⨯-+,解得23b =,∴直线:33MB y x =+,∵点M 是点A 向上平移m 个单位所得∴1x M =,代入直线MB 的表达式,得(1,6)M ∴6m =;【小问3详解】由点(1,0)A ,(2,3)B --,(0,3)C -,则3A B A B x x y y -=-=,易知AB =45ABC ∠=︒,作DH ⊥直线BC 于H ,作CK AB ⊥于K ,在Rt BCK △中,2sin 2CK ABC BC ∠==∴CK BK ==,∵AB =∴AK =,∴在Rt ACK △中,1tan 2CAK ∠=∵DBC BAC ∠=∠,∴1tan 2DBC ∠=,∴在Rt DBH 中,可设DH k =,则2BH k=∴(22,3)D k k --∵点D 在抛物线上,∴2(22)2(22)33k k k -+--=-解得10k =(舍去),254k =,∴17,24D ⎛⎫- ⎪⎝⎭.【点睛】本题考查待定系数法求函数解析式,二次函数图形平移及解直角三角形,熟练掌握函数性质及添加辅助线构造直角三角形是解决问题得关键.25.已知平行四边形ABCD 中,tan 2,5AB ABC BC =∠==,点P 是对角线BD 上一动点,作EPD ABC ∠=∠,射线PE 交射线BA 于点E ,联结AP .(1)如图1,当点E 与点A 重合时,证明:ABP BCD ∽;(2)如图2,点E 在BA 的延长线上,当EP AD =时,求AE 的长;(3)当APE V 是以AP 为底的等腰三角形时,求AE 的长.【答案】(1)见解析(2)10-(3)【分析】(1)由平行四边形的性质得到AB CD ,则ABP BDC ∠=∠,由角之间的关系得到BAP DBC ∠=∠,即可证明ABP BCD ∽;(2)设AD EP 、交于点O .先证明EBP DBA △≌△,得到BD BE =,过点D 作DH BC ⊥延长线于H ,由ABCD Y 得到DCH ABC ∠=∠,则tan tan 2DCH ABC ∠=∠=,在Rt DCH 中,cos 5CH DCH CD ∠==,由AB CD ==得到3CH =,6DH =,8BH =,在Rt BDH 中,由勾股定理得到10BD =,则10BE =,即可得到10AE =-;(3)当点E 在边BA 延长线上或在边BA 上两种情况,分别求解即可.【小问1详解】证明:∵ABCD Y ,∴AB CD ,∴ABP BDC ∠=∠,∵ABP BAP APD ∠+∠=∠,又ABP DBC ABC ∠+∠=∠且EPD ABC ∠=∠,∴BAP DBC ∠=∠,∴ABP BCD ∽;【小问2详解】设AD EP 、交于点O .∵ABCD Y ,∴AD BC ∥,∴EAD ABC ∠=∠,∵EPD ABC∠=∠∴EPD EAD ∠=∠,∵在AOE △中,180EAO AEO AOE ∠+∠+∠=︒,在PDO △中,180DPO PDO DOP ∠+∠+∠=︒,∵AOE DOP ∠=∠,∴AEO PDO ∠=∠,∵EBP DBA ∠=∠,AD PE =,∴EBP DBA △≌△,∴BD BE =,过点D 作DH BC ⊥延长线于H ,∵ABCD Y ,∴AB CD ,∴DCH ABC ∠=∠,∴tan tan 2DCH ABC ∠=∠=,∴在Rt DCH 中,5cos 5CH DCH CD ∠==,∵35AB CD ==∴3CH =,∴6DH =,∵5BC =,∴8BH =,∵在Rt BDH 中,222DH BH BD +=,∴2210BD DH BH =+=,∴10BE =,∴1035AE =-【小问3详解】AEP △是以AP 为底的等腰三角形时,∴当点E 在边BA 延长线上时,设EA EP x ==,则BE x =,由EBP BDC △△∽得,EP BE BC BD=,即35510x x +=,解得x =,∴AE =;当点E 在边BA 上时,设EA EP x ==,则BE x =,由EBP BDC △△∽得,EP BEBC BD =,即510x x -=,解得x =∴AE =,∴综上所述,AE 长为.【点睛】此题考查了相似三角形的判定和性质、平行四边形的性质、解直角三角形、全等三角形的判定和性质等知识,熟练掌握相似三角形的判定和性质是解题的关键.。

【2023年上海市初中一模数学卷】2023年上海市静安区初中毕业生学业模拟考试试卷九年级数学及答案

【2023年上海市初中一模数学卷】2023年上海市静安区初中毕业生学业模拟考试试卷九年级数学及答案

九年级数学学科练习考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列实数中,无理数是( )A. B. C. ()02 + D. 872. 计算x 3•x 2的结果是( )A. xB. x 5C. x 6D. x 93. 如果非零向量a 、b互为相反向量,那么下列结论中错误的是( ) A. a b ∥ B. a b = C. 0a b += D. a b =-4. 如图,已知ABC 与DEF ,下列条件一定能推得它们相似的是( )A. A D B E ∠=∠∠=∠,B. AB BC A D DF EF ∠=∠=且C. A B D E ∠=∠∠=∠,D. AB AC A E DE DF∠=∠=且 5. 如果045A ︒<∠<︒,那么sin A 与cos A 的差( ) A. 大于0 B. 小于0 C. 等于0D. 不能确定 6. 如图,在ABC 中,中线AD 与中线BE 相交于点G ,联结DE .下列结论成立的是( )A. 13DG AG =B. BG DE EG AB =C. ΔΔ14DEG AGB S S =D. ΔΔ12CDE AGB S S = 二、填空题:(本大题共12题,每题4分,满分48分) 7. 13倒数是_____. 8. 计算:2422a a a +=++_________. 9. 已知23a b =,则a a b+的值是 _____. 10. 抛物线()=+-2y x 12与y 轴的交点坐标是_________.11. 请写出一个以直线3x =为对称轴,且在对称轴左侧部分是下降的抛物线,这条抛物线的表达式可以是_________.(只要写出一个符合条件的抛物线表达式)12. 有一座拱桥的截面图是抛物线形状,在正常水位时,桥下水面AB 宽20米,拱桥的最高点O 距离水面AB 为3米,如图建立直角坐标平面xOy ,那么此抛物线的表达式为_________.13. 一水库的大坝横断面是梯形,坝顶、坝底分别记作BC 、AD ,且迎水坡AB 的坡度为1 2.5∶,背水坡CD 的坡度为13∶,则迎水坡AB 的坡角________背水坡CD 的坡角.(填“大于”或“小于”) 14. 已知111222ABC A B C A B C ,ABC 与111A B C △的相似比为15,ABC 与222A B C △的相似比为23,那么111A B C △与222A B C △的相似比为_________.15. 在矩形ABCD 内作正方形AEFD (如图所示),矩形的对角线AC 交正方形的边EF 于点P .如果点F 恰好是边CD 的黄金分割点()DF FC >,且2PE =,那么PF =_________.的16. 在ABC 中,6,5AB AC ==,点D 、E 分别在边,AB AC 上,当4,AD ADE C =∠=∠时,DE BC=_________. 17. 如图,ABC 绕点C 逆时针旋转90︒后得DEC ,如果点B 、D 、E 在一直线上,且60,3BDC BE ∠=︒=,那么A 、D 两点间的距离是_________.18. 定义:把二次函数()2y a x m n =++与2()y a x m n =---(a ≠0,m 、n 是常数)称作互为“旋转函数”.如果二次函数2322y x bx =+-与214y x cx c =--+(b 、c 是常数)互为“旋转函数”,写出点(),P b c 的坐标_________. 三、解答题:(本大题共7题,满分78分)19. 2cot 45sin 45tan 45-︒︒⎛⎫ ⎪︒⎝⎭. 20. 如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,且2BD AD =,12AE EC =.(1)求证:DE BC ∥;(2)设BE a = ,BC b =,试用向量a 、b 表示向量AC .21. 如图,已知在ABC 中,B 为锐角,AD 是BC 边上的高,5cos 13B =, 13,21AB BC ==.(1)求AC 的长;(2)求BAC ∠的正弦值.22. 有一把长为6米的梯子AB ,将它的上端A 靠着墙面,下端B 放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示),一般满足5075α≤︒≤︒时,人才能安全地使用这架梯子.(1)当梯子底端B 距离墙面2.5米时,求α的度数(结果取整数),此时人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A 离开地面最高时,梯子开始下滑 ,如果梯子顶端A 沿着墙面下滑1.5米到墙面上D 点处停止,梯子底端B 也随之向后平移到地面上的点E 处(如图2所示),此时人是否能安全使用这架梯子?请说明理由.23. 如图,梯形ABCD 中,AD BC ∥, DF 分别交对角线AC 、底边BC 于点E 、F ,且=AD AC AE BC ⋅⋅.(1)求证:AB FD ∥;(2)点G 在底边BC 上,=10BC ,=3CG ,连接AG ,如果AGC 与EFC 的面积相等,求FC 的长. 24. 如图所示,在平面直角坐标系xOy 中,抛物线26y ax bx =+-(0a ≠)与x 轴交于点A 、B (点A 在点B 的左侧),交y 轴于点C ,联结BC ,ABC ∠的余切值为13,8AB =,点P 在抛物线上,且PO PB =. 的在(1)求上述抛物线表达式;(2)平移上述抛物线,所得新抛物线过点O 和点P ,新抛物线的对称轴与x 轴交于点E .①求新抛物线的对称轴;②点F 在新抛物线对称轴上,且EOF PCO ∠=∠,求点F 的坐标.25. 在等腰直角ABC 中,90,4C AC ∠=︒=,点D 为射线CB 上一动点(点D 不与点B 、C 重合),以AD 为腰且在AD 的右侧作等腰直角ADF △,90ADF ,射线AB 与射线FD 交于点E ,联结BF .(1)如图1所示,当点D 线段CB 上时,①求证:~ACD ABF ;②设,tan CD x BFD y =∠=,求y 关于x 的函数解析式,并写出x 的取值范围;(2)当2AB BE =时,求CD 的长.的在参考答案考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列实数中,无理数是( )A.B. C. ()02 + D. 87【答案】B【分析】先根据二次根式的性质和零指数幂进行化简,再根据无理数的定义逐项进行判断即可.【详解】4=,是整数,是有理数,不是无理数,故不符合题意;C.()0π21+=,是整数,是有理数,不是无理数,故不符合题意;D.87,是分数,是有理数,不是无理数,故不符合题意; 故选:B .【点睛】本题考查了二次根式的性质,零指数幂及无理数的定义,熟练掌握无限不循环小数为无理数是解题的关键.2. 计算x 3•x 2的结果是( )A. xB. x 5C. x 6D. x 9 【答案】B【分析】根据同底数的幂相乘的法则即可求解.【详解】解:x 3•x 2=x 5.故选:B .【点睛】本题主要考查了同底数幂相乘的计算法则,正确理解法则是关键.3. 如果非零向量a 、b互为相反向量,那么下列结论中错误是( ) A. a b ∥ B. a b =C. 0a b +=D. a b =- 【答案】C 【分析】非零向量a 、b 互为相反向量,则非零向量a 、b大小相等,方向相反,据此分析即可. 的【详解】∵非零向量a 、b 互为相反向量,∴a b ∥ ,a b =- ,a b =,∴0a b += ,则C 选项错误,故选:C .【点睛】本题考查相反向量的概念,属基础题,正确理解定义是解决问题的关键.4. 如图,已知ABC 与DEF ,下列条件一定能推得它们相似的是( )A. A D B E ∠=∠∠=∠,B. AB BC A D DF EF ∠=∠=且C. A B D E ∠=∠∠=∠,D. AB AC A E DE DF∠=∠=且 【答案】A 【分析】三角形相似的判定方法有(1)平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似;(2)如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。

【3套试卷】上海市中考一模数学试题及答案

【3套试卷】上海市中考一模数学试题及答案

中考模拟考试数学试题一、选择题(每小题3分,共36分)1.﹣的绝对值是()A.﹣B.C.﹣D.2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.3.下列计算正确的是()A.x3+x2=x6B.m2•m3=m6C.D.4.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣65.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮筐的个数为:6,10,5,3,4,8,4,这组数据的中位数和极差分别是()A.4,7 B.7,5 C.5,7 D.3,76.一个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为()A.6 B.7 C.8 D.97.不等式组的解集在数轴上可表示为()A.B.C.D.8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800 B.﹣=40C.﹣=40 D.﹣=409.下列命题中的真命题是()A.对角线互相垂直的四边形是菱形B.中心对称图形都是轴对称图形C.三角形的一个外角大于它的内角D.数据2,3,1,2的方差是0.510.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧、是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为()A.4π+2B.π﹣2C.π+2D.4π11.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则:①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣l<x<3,其中正确的是()A.①②④B.②④C.①④D.②③12.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O 和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点G,交y轴于点F(0,2),连接AC,若AC=1,则k的值为()A.B.2 C.D.二、填空题(每小题3分,共12分)13.因式分解:x3y2﹣x3=.14.函数y=中自变量x的取值范围是.15.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是.16.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线AP交DE于点P.若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD +S△APB=1+.⑤S正方形ABCD=4+.其中正确结论的序号是.三、解答题17.(5分)计算:﹣2cos30°+()﹣2﹣|1﹣|.18.(6分)先化简,再求值:(﹣)÷,其中x=+1.19.(7分)国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为人,并补全条形统计图;(2)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是;(3)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.20.(8分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)求出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?21.(8分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).22.(9分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.23.(9分)如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点F从点O出发,以每秒1个单位长度的速度沿线段OC方向运动,到达点C后停止运动:点M同时从点D出发以每秒1个单位长度的速度沿x轴正方向运动,当点F停止时点M也停止运动.设点F的运动时间为t秒,过点F 作AB的垂线EF交直线AB于点E,交AD于点H.(1)求抛物线的解析式;(2)以线段EH为斜边向右作等腰直角△EHG,当点G落在第一象限内的抛物线上时,求出t的值;(3)设△EFM与四边形ADCB重合时的面积为S,请直接写出S与t的函数关系式与相应的自变量t的取值范围.参考答案一、选择题1.解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是.故选:D.2.解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.3.解:A、x3和x2不能合并,故本选项错误;B、m2•m3=m5,故本选项错误;C、3﹣=2,故本选项错误;D 、===3,故本选项正确;故选:D.4.解:0.000 0025=2.5×10﹣6;故选:D.5.解:把数据重新排序后为3,4,4,5,6,8,10,∴中位数为5,极差为10﹣3=7.故选:C.6.解:根据题意,得(n﹣2)•180=720,解得:n=6.故这个多边形的边数为6.故选:A.7.解:,解得,不等式组的解集是﹣1<x≤1,故选:A.8.解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.9.解:A、对角线互相垂直的平行四边形是菱形,故A错误,是假命题;B、中心对称图形不一定都是轴对称图形,故B错误,是假命题;C、三角形的一个外角大于任何一个与它不相邻的内角,故C错误,是假命题,D、数据2,3,1,2的方差是0.5,正确,是真命题,故选:D.10.解:∵AB=4,∠A=30°,∴BC=2,AC=2,∴图中阴影部分的面积=Rt△ABC+扇形ABA′的面积﹣扇形CBC′的面积=2×2÷2+﹣=2+π﹣π=4π+2.故选:A.11.解:①当x=1时,y=a+b+c最大,故①正确;②∵B(﹣1,0),∴当x=﹣1时,y=a+b+c=0,故②错误;③∵二次函数与x轴有两个不同交点,∴b2﹣4ac>0,故③错误;④∵对称轴为x=1,B(﹣1,0),∴A(3,0),由图象可得,y>0时,﹣l<x<3,故④正确.故正确的由①④.故选:C.12.解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:A.二、填空题13.解:原式=x3(y2﹣1)=x3(y+1)(y﹣1),故答案为:x3(y+1)(y﹣1).14.解:根据题意得:x+1≥0且x﹣3≠0,解得:x≥﹣1且x≠3.15.解:(5,4)表示第5排从左向右第4个数是:,(15,7)表示第15排从左向右第7个数,可以看出奇数排最中间的一个数都是1,第15排是奇数排,最中间的也就是这排的第8个数是1,那么第7个就是:,•=2.故答案为:2.16.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED;故此选项成立;②过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE==2,∴BF=EF=,故此选项正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=2,∵△APD≌△AEB,∴PD=BE=2,∵EF =BF =,AE =1,∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=5+2,∴S △ABP +S △ADP =S △ABD ﹣S △BDP =S 正方形ABCD﹣×DP ×BE =×(5+2)﹣×2×2=+.故此选项不正确. ∵AB 2=5+2,∴S 正方形ABCD =AB 2=5+2,故此选项不正确. 故答案为:①②③.三、解答题 17.解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.18.解:原式=(+)×(x ﹣1)=×(x ﹣1)=x +2. 把x =+1代入得,原式=+3.19.解:(1)由图可得,此次抽查的学生数为:60÷20%=300(人), 故答案为:300;C 组的人数=300×40%=120(人),A 组的人数=300﹣100﹣120﹣60=20人,补全条形统计图如右图所示;(2)该生当天在校体育活动时间低于1小时的概率是:=0.4,故答案为:0.4;(3)当天达到国家规定体育活动时间的学生有1200×=720人故答案为:720.20.解:(1)z=(x﹣20)y=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,故z与x之间的函数解析式为z=﹣2x2+140x﹣2000;(2)∵厂商每月的制造成本不超过520万元,每件制造成本为20元,∴每月的生产量小于等于=26万件,由y=﹣2x+100≤26,得:x≥37,又由限价40元,得37≤x≤40,∵z=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,∴图象开口向下,对称轴右侧z随x的增大而减小,∴当x=37时,z最大为442万元.当销售单价为37元时,厂商每月获得的利润最大,最大利润为442万元.21.解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里≈141海里,则此时船距灯塔的距离为141海里.22.(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CA B,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10﹣2.5x,AB=8﹣2x,∵AO2=AB2+OB2,∴(10﹣2.5x)2=(8﹣2x)2+(2.5x)2,解得:x=(负值舍去),∴⊙O的半径=;(3)解:由(2)知B E=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴,∴=,∴EF=,∴BF==.23.解:(1)由题意得:函数的对称轴为:x=2,则函数与x轴的另外一个交点坐标为(﹣2,0),则函数的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12),则﹣12a=4,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+4;(2)将点A、D的坐标代入一次函数表达式并解得:直线AD的表达式为:y=﹣x+4,则点E、F的坐标分别为:(t,4)、(t,0),则点H(t,4﹣t),则点G(,4﹣t),将点G的坐标代入表达式得:4﹣t=﹣()2+()+4,解得:t=;(3)点M(t+4,0),点E(t,4)、点F(t,0),①当0<t≤2时,设EF交AD于点N(t,4﹣t),S=S△EFM ﹣S△FND=8﹣×(4﹣t)2=﹣t2+4t,②2<t≤6时,设直线EM交BC于点R,EF交AD于点K(t,4﹣t),同理可得:直线ME的表达式为:y=﹣x+t+4,直线BC的表达式为:y=﹣2x+12,联立上述两式并解得:x=8﹣t,故点R(8﹣t,2t﹣4),S=S△EFM ﹣S△RCM﹣S△KFD=4×4﹣(t+4﹣6)(2t﹣4)﹣×(4﹣t)2=﹣t2+8t﹣4;故S=.中考第一次模拟考试数学试题含答案1.﹣2020的相反数是()A.B.C.2020 D.﹣20202.环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣63.下列计算正确的是()A.3a﹣a=2 B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a54.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.x>﹣且x≠1 5.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°7.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A.80°B.100°C.120°D.160°8.如图,在矩形纸片ABCD中,AB=8,AD=17,折叠纸片使点B落在边AD上的E处,折痕为PQ.当E在AD边上移动时,折痕的端点P,Q也随着移动.若限定P,Q分别在边BA,BC上移动,则点E在边AD上移动的最大距离为()A.6 B.7 C.8 D.9二.填空题(共8小题)9.如果某数的一个平方根是﹣2,那么这个数是.10.因式分解:2x3﹣8x=.11.从平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,抽到既是中心对称图形又是轴对称图形的概率是.12.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.13.一个圆锥的主视图是边长为6cm的正三角形,则这个圆锥的侧面积等于.14.如图,△ABC的顶点都在正方形网格的格点上,则sin∠BAC的值为.15.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.16.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan ∠BA3C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).三.解答题(共11小题)17.(1)计算:|+2|+(﹣)﹣1+(2018﹣π)0﹣tan45°(2)解不等式组:并求其非负整数解.18.先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=50°,则∠BDE=°.20.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?21.北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共“金山银山,不如绿水青山”.某市不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:(1)扇形统计图中松树所对的圆心角为度,并补全条形统计图.(2)该市今年共种树16万棵,成活了约多少棵?(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)22.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当S△ADP=S△BOD时,求点P的坐标.23.如图,小王在长江边某瞭望台D处测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为多少米?(结果精确到0.1,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).25.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?26.(1)【操作发现】如图1,将△ABC绕点A顺时针旋转50°,得到△ADE,连接BD,则∠ABD=度.(2)【解决问题】①如图2,在边长为的等边三角形ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC的面积.②如图3,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,若PB=1,PA=3,∠BPC=135°,则PC=.(3)【拓展应用】如图4是A,B,C三个村子位置的平面图,经测量AB=4,BC=3,∠ABC=75°,P 为△ABC内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.27.如图(1),抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x+5经过点A,C.(1)求抛物线的解析式;(2)如图(2),若过点B的直线交直线AC于点M.①当BM⊥AC时,过抛物线上一动点P(不与点B,C重合),作直线BM的平行线交AC于点Q,若以点B,M,Q,P为顶点的四边形是平行四边形,求点P的横坐标;②连结BC,当直线BM与直线AC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.参考答案与试题解析一.选择题(共8小题)1.﹣2020的相反数是()A.B.C.2020 D.﹣2020【分析】直接利用相反数的定义得出答案.【解答】解:﹣2020的相反数是:2020.故选:C.2.环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6.故选:D.3.下列计算正确的是()A.3a﹣a=2 B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a5【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故A选项错误;a2+a3≠a5,故B选项错误;a6÷a2=a4,故C选项正确;(a2)3=a6,故D选项错误;故选:C.4.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.x>﹣且x≠1 【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1,故选:A.5.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出两个不等式的解集,各个不等式的解集的公共部分就是这个不等式组的解集.【解答】解:解不等式组得:.再分别表示在数轴上为.在数轴上表示得:.故选A.6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.7.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A.80°B.100°C.120°D.160°【分析】在优弧AB上任取一点D,连接AD,BD,先由圆内接四边形的性质求出∠ADB的度数,再由圆周角定理求出∠AOB的度数即可.【解答】解:优弧AB上任取一点D,连接AD,BD,.∵四边形ACBD内接与⊙O,∠C=100°,∴∠ADB=180°﹣∠C=180°﹣100°=80°,∴∠AOB=2∠ADB=2×80°=160°.故选:D.8.如图,在矩形纸片ABCD中,AB=8,AD=17,折叠纸片使点B落在边AD上的E处,折痕为PQ.当E在AD边上移动时,折痕的端点P,Q也随着移动.若限定P,Q分别在边BA,BC上移动,则点E在边AD上移动的最大距离为()A.6 B.7 C.8 D.9【分析】分别利用当点P与点A重合时,以及当点C与点Q重合时,求出AE的极值进而得出答案.【解答】解:如图1,当点P与点A重合时,根据翻折对称性可得AE=AB=8,如图2,当点C与点Q重合时,根据翻折对称性可得QE=BC=17,在Rt△ECD中,EC2=DE2+CD2,即172=(17﹣AE)2+82,解得:AE=2,所以点A'在BC上可移动的最大距离为8﹣2=6.故选:A.二.填空题(共8小题)9.如果某数的一个平方根是﹣2,那么这个数是 4 .【分析】计算﹣2的平方为4,可解答.【解答】解:∵某数的一个平方根是﹣2,∴这个数为4.故答案为:4.10.因式分解:2x3﹣8x=2x(x+2)(x﹣2).【分析】先提公因式2x,分解成2x(x2﹣4),而x2﹣4可利用平方差公式分解.【解答】解:2x3﹣8x=2x(x2﹣4)=2x(x+2)(x﹣2).故答案为:2x(x+2)(x﹣2).11.从平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,抽到既是中心对称图形又是轴对称图形的概率是.【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.【解答】解:∵平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,既是中心对称图形又是轴对称图形的有菱形、圆共2个,∴抽到既是中心对称图形又是轴对称图形的概率是;12.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为45 .【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.13.一个圆锥的主视图是边长为6cm的正三角形,则这个圆锥的侧面积等于18πcm2.【分析】根据视图的意义得到圆锥的母线长为6cm,底面圆的半径为3cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的母线长为6cm,底面圆的半径为3cm,所以这个圆锥的侧面积=×6×2π×3=18π(cm2).故答案为:18πcm2.14.如图,△ABC的顶点都在正方形网格的格点上,则sin∠BAC的值为.【分析】利用网格构造直角三角形,再根据勾股定理、逆定理求出三角形的边长,最后又三角函数的意义求解即可.【解答】解:如图,连接格点BD,∵BD2=12+12=2,CD2=12+12=2,BC2=22=4,∴BD2+CD2=BC2,∴∠BDC=90°=∠ADB,由勾股定理得,AB==,BD==,∴sin∠BAC===,15.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为 2 .【分析】根据∠CHB=90°,BC是定值,可知H点是在以BC为直径的半圆上运动,当A、H、O三点共线时,AH最短,借助勾股定理求解.【解答】解:∵∠CHB=90°,BC是定值,∴H点是在以BC为直径的半圆上运动(不包括B点和C点),连接HO,则HO=BC=3.∵∠ACB=90°,AC=4,BC=6,∴AO===5,当A、H、O三点共线时,AH最短,此时AH=AO﹣HO=5﹣3=2.故答案为:2.16.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4=,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H=,∴tan∠BA4C=,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为:,三.解答题(共11小题)17.(1)计算:|+2|+(﹣)﹣1+(2018﹣π)0﹣tan45°(2)解不等式组:并求其非负整数解.【分析】(1)原式利用绝对值的代数意义、负整数指数幂法则,零指数幂,以及特殊角的三角函数值计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分确定出不等式组的解集,进而求出非负整数解即可;【解答】解:(1)原式=2﹣2+1﹣2=﹣1;(2),由①得:x≥﹣1,由②得:x<3,则不等式组的解集为﹣1≤x<3,即不等式组的非负整数解为0,1,2.18.先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再由分式有意义的条件选取合适的x的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x=2时,原式=﹣.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=50°,则∠BDE=65 °.【分析】(1)要证明△AEC≌△BED,只要求得∠AEC=∠BED即可,根据∠1=∠2和三角形内角和可以得到∠AEC=∠BED,然后写出△AEC≌△BED的条件,即可证明结论成立;(2)根据(1)中证明的结论和等腰三角形的性质,可以求得∠ECD的度数,然后即可求得∠BDE的度数.【解答】(1)证明:∵∠B=∠A,∠BOE=∠AOD,∴∠3=∠2,∵∠1=∠2,∴∠3=∠1,∴∠3+∠AED=∠1+∠AED,∴∠BED=∠AEC,在△AEC和△BED中∴△AEC≌△BED(ASA);(2)∵△AEC≌△BED,∴EC=ED,∴∠EDC=∠ECD,∵∠1=50°,∠1=∠2,∴∠EDC=∠ECD=65°,∠2=50°,∴∠BDE=180°﹣∠2﹣∠EDC=65°,故答案为:65.20.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【分析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.【解答】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.21.北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共“金山银山,不如绿水青山”.某市不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:(1)扇形统计图中松树所对的圆心角为144 度,并补全条形统计图.(2)该市今年共种树16万棵,成活了约多少棵?(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)【分析】(1)求出“松树”所占的百分比,即可求出“松树”所占的圆心角的度数,求出“杨树”成活的棵数即可补全条形统计图;(2)求出样本的总成活率,估计总体成活率,进而求出成活的棵数;(3)用列表法列举出所有等可能出现的情况,从中找出“选到成活率较高的两类树苗,就A、B”的结果数,进而求出概率.【解答】解:(1)松树所对应的圆心角度数:360°×(1﹣15%﹣20%﹣25%)=144°,杨树成活的棵数:4000×25%×97%=970(棵),故答案为:144,补全条形统计图如图所示:(2)160000×=150000(棵)答:该市今年共种树16万棵,成活了约15万棵;(3)用列表法表示所有可能出现的结果如下:(松树、杨树、榆树、柳树分别用A,B,C,D表示)共有12种等可能出现的结果数,其中选中松树和杨树的有2种,∴选到成活率较高的两类树苗的概率为=.答:选到成活率较高的两类树苗的概率为.22.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当S△ADP=S△BOD时,求点P的坐标.【分析】(1)先通过反比例函数解析式确定A(2,3),B(6,1),然后利用待定系数法求直线AB的解析式;(2)先利用直线AB的解析式确定D(8,0),根据三角形面积公式计算出S△OBD=4,则S△ADP=6,设P(t,0),根据三角形面积公式得到×|t﹣8|×3=6,然后求出t即可得到点P的坐标.【解答】解:(1)把点A(m,3)、B(6,n)分别代入y=得3m=6,6n=6,解得m =2,n=1,∴A(2,3),B(6,1),把A(2,3),B(6,1)代入y=kx+b得,解得,∴直线AB的解析式为y=﹣x+4;(2)当y=0时,﹣x+4=0,解得x=8,则D(8,0),∵S△OBD=×8×1=4,∴S△ADP=S△BOD=6,设P(t,0),∴×|t﹣8|×3=6,解得t=4或t=12,∴点P的坐标为(4,0)或(12,0).23.如图,小王在长江边某瞭望台D处测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为多少米?(结果精确到0.1,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i=,可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP=,结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2(米),CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8(米),BQ=6(米),∴DP=DE+PE=11(米),在Rt△ADP中,∵AP=≈13.1(米),∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1(米).24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【分析】(1)连接OD,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE、OE,求出阴影部分的面积=扇形EOD的面积,求出扇形的面积即可.【解答】解:(1)BC与⊙O相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△AOD,∴阴影部分的面积=S扇形ODE==π.25.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?【分析】(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.。

【2023年上海市初中一模数学卷】2023年上海市闵行区初中毕业生学业模拟考试试卷九年级数学及答案

【2023年上海市初中一模数学卷】2023年上海市闵行区初中毕业生学业模拟考试试卷九年级数学及答案

九年级数学练习(测试时间:100分钟,满分:150分)1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次考试不可以使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各组图形一定相似的是( )(A )两个直角三角形; (B )两个菱形; (C )两个矩形; (D )两个等边三角形. 2.如图,已知AB // CD // EF ,它们依次交直线l 1、l 2于点A 、C 、E 和点B 、D 、F , 如果AC ∶CE =3∶1,BF =10,那么DF 等于( )(A )310; (B )320; (C )25; (D )215. 3.如图,已知在Rt △ABC 中,90ACB ∠=︒,B β∠=,CD AB ⊥,垂足为点D ,那么下列线段的比值不一定等于sin β的是( )(A )AD BD ; (B )AC AB ; (C )AD AC ; (D )CDBC.4.下列说法正确的是( )(A )如果e 为单位向量,那么a a e = ; (B )如果a b =- ,那么a //b;(C )如果a 、b 都是单位向量,那么a b = ; (D )如果a b =,那么a b = .5.抛物线22y x =向下平移3个单位长度后所得新抛物线的顶点坐标为( ) (A )(﹣3,0); (B )(3,0); (C )(0,﹣3); (D )(0,3).6.如图,某零件的外径为10cm ,用一个交叉卡钳(两条尺长AC 和BD 相等)可测量零件的内孔直径AB .如果3==ODBDOC AC ,且量得4CD cm =,则零件的厚度x 为( ) (A )2cm ; (B )1.5cm ; (C )0.5cm ; (D )1cm .B AC (第3题图) D(第6题图) D A C F (第2题图) l 2 l 1 BE二、填空题:(本大题共12题,每题4分,满分48分)7.如果30()a b b=≠,那么a bb+=.8.化简:22(3)33a b b-+-=.9.已知f(x)=xx2+2,那么f(1)的值为.10.抛物线22y x=在对称轴的左侧部分是的(填“上升”或“下降”).11.已知两个相似三角形的相似比为2︰3,那么这两个三角形的面积之比为.12.设点P是线段AB的黄金分割点(AP>BP),AB=2,那么线段AP的长是.13.在直角坐标平面内有一点A(5,12),点A与原点O的连线与x轴的正半轴的夹角为 ,那么sinθ的值为.14.已知D、E分别是△ABC的边AB、AC上的点(不与端点重合),要使得△ADE与△ABC相似,那么添加一个条件可以为(只填一个).15.已知一斜坡的坡角为30°,则它坡度i = .16.如图,一艘船从A处向北偏西30° 的方向行驶5海里到B处,再从B处向正东方向行驶8海里到C处,此时这艘船与出发点A处相距海里.17.如图,在Rt△ABC中,∠ACB=90°,AB=9,cot A=2,点D在边AB上,点E在边AC上,将△ABC沿着折痕DE翻折后,点A恰好落在线段BC的延长线上的点P 处,如果∠BPD=∠A,那么折痕DE的长为.18.阅读:对于线段MN与点O(点O与MN不在同一直线上),如果同一平面内点P满足:射线OP与线段MN交于点Q,且12OQOP=,那么称点P为点O关于线段MN的“准射点”.问题:如图,矩形ABCD中,AB =4,AD=5,点E在边AD上,且AE=2,联结BE.设点F是点A关于线段BE的“准射点”,且点F在矩形ABCD的内部或边上,如果点C与点F之间距离为d,那么d的取值范围为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分))113o11cos308-⎛⎫+--+⎪⎝⎭.(第18题图)BACDE(第16题图)20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知△ABC 中,点D 、E 分别在边AB 和 AC 上,DE ∥BC ,且DE 经过△ABC的重心,设AB a = ,AC b =.(1)DE = (用向量 a ,b表示);(2)求作:13a b +.(不要求写作法,但要指出所作图中表示结论的向量)21.(本题共2小题,每小题5分,满分10分)已知在平面直角坐标系xOy 中,抛物线223y x x =-++与y 轴交于点A ,其顶点坐标为B .(1)求直线AB 的表达式;(2)将抛物线223y x x =-++沿x 轴正方向平移m (0)m >个单位后得到的新抛物线的顶点C 恰好落在反比例函数16y x=的图像上,求∠ACB 的余切值.22.(本题满分10分)2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在海南文昌航天发射场成功发射.天舟五号货运飞船重约13.6吨,长度BD=10.6米,货物仓的直径可达3.35米,是世界现役货物运输能力最大、在轨支持能力最全面的货运飞船,堪称“在职最强快递小哥”.已知飞船发射塔垂直于地面,某人在地面A 处测得飞船底部D 处的仰角45°,顶部B 处的仰角为53°,求此时观测点A 到发射塔CD 的水平距离(结果精确到0.1米).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)A B C D (第22题图)(第20题图)23.(本题共2小题,每第(1)小题5分,第(2)小题7分,满分12分)已知:如图,在△ABC 中,AB =AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:∠ABD =∠ACE ; (2)求证:BD DG CD •=2.24.(本题共3小题,每小题4分,满分12分)在平面直角坐标系xOy 中,抛物线线2y ax bx =+经过A (-1,3)、B (2,0),点C 是该抛物线上的一个动点,联结AC ,与y 轴的正半轴交于点D .设点C 的横坐标为m .(1)求该抛物线的表达式;(2)当32DC AD =时,求点C 到x 轴的距离;(3)如果过点C 作x 轴的垂线,垂足为点E ,联结DE ,当23m <<时,在△CDE中是否存在大小保持不变的角?如果存在,请指出并求其度数;如果不存在,请说明理由.(第23题图)25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图1,点D 为△ABC 内一点,联结BD ,CBD ∠=BAC ∠,以BD 、BC 为邻边作平行四边形DBCE ,DE 与边AC 交于点F ,90ADE ∠=︒.(1)求证:△ABC ∽△CEF ; (2)延长BD ,交边AC 于点G ,如果CE =FE ,且△ABC 的面积与平行四边形DBCE面积相等,求AGGF的值; (3)如图2,联结AE ,若DE 平分AEC ∠,5AB =,2CE =,求线段AE 的长.(第25题图1)BFEACDFACDB(第25题图2)参考答案及评分标准一、选择题(本大题共6题,每题4分,满分24分)1.D ; 2.C ; 3.A ; 4.B ; 5.C ; 6.D .二、填空题(本大题共12题,每题4分,满分48分)7.4; 8.a-2; 9.3; 10.下降; 11.4∶9; 12.1-5; 13.1312; 14.∠ADE =∠B ;(∠ADE =∠B ,DE ∥BC 等) 15.1∶3; 16.7; 17.22; 18.17≤≤556d.三、解答题(本大题共8题,满分78分) 19.(本题满分10分)解:原式12=++…………………………………………………(8分)=.………………………………………………………………(2分)20.(本题共2小题,第(1)小题5分,第(2)小题5分,满分10分)解:(1)2233b a -;…………………………………………………………(5分)(2)画图正确………………………………………………………(4分)写结论.………………………………………………………(1分)21. (本题共2小题,第(1)小题6分,第(2)小题4分,满分10分) 解:(1)∵抛物线223y x x =-++与y 轴交于点A .∴A (0,3).…………………………………………………………(1分) 由223y x x =-++,得2(1)4y x =--+.……………………………(1分) ∴B (1,4).……………………………(1分)设直线AB 的表达式为(0)y k x b k =+≠.∴34b k b =⎧⎨+=⎩……………………………(1分)∴1k =, b =3…………………………………………………………(1分) ∴直线AB 的表达式为3y x =+………………………………………(1分)(2)由B (1,4)沿x 轴正方向平移m 个单位,得C (m +1,4).……(1分)又∵顶点C 恰好落在反比例函数的图像16y x=上, ∴4(1)16m +=.∴3m =,即C (4,4)…………………………………………………(1分)延长CB 交y 轴的正半轴于点D ,得BD =4,AD =1,……………………(1分)在Rt △ADC 中,∠ADC = 90°,∴cot 4CDEFD AD∠==.………………(1分)22. (本题满分10分)解:设此时观测点A 到发射塔CD 的水平距离为x 米.………………………(1分) 由题意,得 BD = 10.6,∠DAC = 45°,∠BAC =53°,∠C = 90°,AC = x .…(2分) 在Rt △ACD 中,由∠C = 90° ,∵tan CDDAC AC∠=;∴CD =AC ×tan ∠DAC =x tan45°=x ………………………………………………(2分) 在Rt △ACB 中,由∠C = 90°,∵tan BCBAC AC∠=∴BC =AC ×tan ∠BAC =x tan53°=1.33x ……………………………………………(2分) ∵BD = 10.6∴10.6BC CD -= 即1.3310.6x x -= ; 32.1x ≈(米).……………………………………………………………………(2分) 答:此时观测点A 到发射塔CD 的水平距离为32.1米.……………………… (1分)23.(本题共2小题,第(1)小题5分,第(2)小题7分,满分12分) (1)证明:∵ 点D 、E 分别是边 AC 、AB 的中点;∴ 12AD AC =,12AE AB =.…………………………………(1分)∵ AB =AC ;∴ AD =AE . …………………………………(1分) ∵ AD =AE ,∠DAB=∠EAC ,AB =AC ;∴ △BAD ≌△CAE ;……………………………………………(2分) ∴ ∠ABD =∠ACE .………………………………………………(1分)(2)证明:∵ 点D 是边AC 的中点,DF ⊥AC ;∴ FA =FC , AD =CD ;………………………………………(2分) ∴ ∠FAD =∠ACE . …………………………………………(1分) ∵ ∠ABD =∠ACE ; ∴ ∠ABD =∠FAD . ∵ ∠ADB =∠GDA ;∴ △BAD ∽ △AGD ;…………………………………………(2分)∴ BD AD AD GD =; ∴ 2AD DG BD =⋅.……………………………………………(1分)∵ AD =CD ;∴ 2CD DG BD =⋅.……………………………………………(1分)24.(本题共3小题,每小题4分,满分12分)解:(1)∵抛物线2y ax bx =+经过A (-1,3)和B (2,0).∴3420a b a b -=⎧⎨+=⎩……………………………………………………………(2分)∴1a =, 2b =-…………………………………………………………(1分)∴该抛物线的表达式为22y x x =-………………………………………(1分)(2)过点C 作y 轴的垂线,垂足为点H ,过点A 作CH 的垂线,垂足为点G ,由题设得GH =1. ∵AG //y 轴,32DC AD =,得32DC CH AD GH ==,……………………………(1分)∴CH =32,即点C 的横坐标为32…………………………………………(1分)令x =32, 由22y x x =-得,34y =-,…………………………………(1分)即点C 到x 的距离为34.…………………………………………………(1分)(3)方法一:存在,∠DEC = 45°.………………………………………………………(1分)过点C 作y 轴的垂线,垂足为点P ,过点A 作CP 的垂线,垂足为点Q , 由题设得PQ =1,点C 的坐标为(m ,2m -2m ) ∵AQ //y 轴,得CP DPCQ AQ=, ∴213(2)m DPm m m =+--, ∴23DP m m =-+, …………………………………………………(1分) 由DO =DP +PO ,22PO m m =-,得DO m =,……………………(1分) 由EO m =,得EO DO =,在Rt △DOE 中,∠DOE = 90°,tan 1EOEDO DO∠==, ∴∠EDO = 45°…………………………………………………………(1分) 由CE //y 轴,得∠DEC =∠EDO = 45°. 方法二:存在,∠DEC = 45°.……………………………………………………(1分) 由A (-1,3)、(m ,2m -2m )设直线AC 的表达式为(0)y k x b k =+≠,∴232k b mk b m m-+=⎧⎨+=-⎩ ∴3k m =-, b m =,∴直线AC 的表达式为(3)y m x m =-+………………………………(1分)∴点D 的坐标为(0,m ),即DO m =.………………………………(1分)由EO m =,得EO DO =,在Rt △DOE 中,∠DOE = 90°,tan 1EOEDO DO∠==, ∴∠EDO = 45°………………………………………………………………(1分)由CE //y 轴,得∠DEC =∠EDO = 45°.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分) 解:(1)在平行四边形ABCD 中,BC // DE ,∠CBD =∠E . 又∵∠CBD =∠BAC ,∴∠BAC =∠E .………………………………………………………(1分)∵BC // DE ,∴∠BCA =∠EFC ,……………………………………(1分)∴△ABC ∽△CEF .…………………………………………………(1分) (2)延长AD 交BC 于点H ,过点A 作AQ // BC ,交射线BG 于点Q ,∵△ABC ∽△CEF ,∴AB ACCE EF=.…………………………………(1分) 又∵CE =FE ,∴AB =AC , ……………………………………………(1分) 由BC // DE ,得∠ADE =∠AHC =90°,即AH ⊥BC . 由△ABC 的面积与平行四边形的面积相等, 得:12BC AH BC DH ⋅=⋅,即2AH DH =,∴AD DH =.………………………………………………………(1分) ∵AB =AC ,AH ⊥BC . ∴BH =CH . 由AQ // BC ,得AQ ADBH DH=,由DE // BC ,得DF ADCH AH=, 设BH =2x ,则HC =2x ,进一步得AQ =2x ,DF =x .………………(1分) 由AQ // BC , DE // BC ,得DE // AQ , ∴2AQAG GF DF==.……………………………………………………(1分) (3)延长BD ,交AC 于点M ,交边AE 于点P .由△ABC ∽△CEF ,∴52AB AC BC CE EF CF ===. 设5BC m =,5AC n =,得2CF m =,2EF n =. 由BD // CE ,得∠PDE =∠DEC .又∠AED =∠DEC ,∴∠PDE =∠AED ,∴PD =PE .在Rt △ADE 中,∠ADP +∠PDE = 90°,∠DAE +∠AED = 90°,∴∠DAE =∠ADP ,∴PD =P A ,∴PE =P A ,2AE DP =.…………(1分) 由BD //CE ,得DM FM DF CE CF EF ==,12AM PM AP AC CE AE ===由CE =2,PM =1.……………………………………………………………(1分)由522FM n m =-,52DF m n =- , ∴52522222n mm n DM m n --==.……………………………………………(1分)∴n =,……………………………………………………………(1分)∴2DM =-,………………………………………………………(1分)由21DP =-+,得2AE =-.………………………………(1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选上海市初三中考数学一模模拟试卷【含答案】一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列运算正确的是( ) A .a2+a3=a5 B .(2a3)2=2a6 C .a3•a4=a12 D .a5÷a3=a2 7.有一组数据:1,2,3,6,这组数据的方差是( )A .2.5B .3C .3.5D .48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为( ) A .9cm2B .16cm2C .56cm2D .24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是( ) A .1000(1-x%)2=640B .1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.三、解答题(共54分)15.(1)计算:10 120192|3tan3022018π-︒⎛⎫⎛⎫--++⎪ ⎪⎝⎭⎝⎭;(2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt△ABC的直角边BC为直径作⊙O,交斜边AB于点D,作弦DF交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作Rt△ABC,且∠ACB=90°,tanA=3,点B位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;(3)在(2)的条件下(如图2),AB交x轴于点D,点E为直线AB上方抛物线上一动点,过点E作EF⊥BC于F,直线FF分别交y轴、AB于点G、H,若以点B、G、H为顶点的三角形与△ADC相似,求点E的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,,所以该矩形的周长=4×2+8×2=24.故答案为24.【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.15. 【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式=2(231 ---+=1(2)()312215 xx x-+⎧⎨+⎩>①<②解①得:x>1解②得:x<3∴不等式组的解集为:1<x<3【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16. 【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论求解可得.【解答】解:方程两边都乘以(x+1)(x-1),得:2+(x+1)(x-1)=x(x+1),解得:x=1,检验:x=1时,(x+1)(x-1)=0,则x=1是分式方程的增根,所以分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17. 【分析】根据题意可得:AD:CD=1:3,然后根据AD、CD的长度,然后在△ABD中求出BD的长度,最后BC=CD-BD即可求解.【解答】解:由题意得,AD :CD=1:3, 设AD=x ,CD=3x ,则AC ===, 解得:x=6,则AD=6,CD=18, 在△ABD 中, ∵∠ABD=30°,∴则≈8(m ).答:改动后电梯水平宽度增加部分BC 的长约为8米.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据题意构造直角三角形,利用三角函数的知识求解. 18. 【分析】(1)根据自行车的人数和所占的百分比求出总人数,再用总人数乘以步行所占的百分比求出步行的人数,从而补全统计图;(2)画树状图列出所有等可能结果和小明在两个路口都遇到绿灯的情况数,然后根据概率公式计算可得. 【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人), 则样本容量为80;步行的人数有80×20%=16(人),补图如下:故答案为:80;(2)画树状图如下:由树状图知,共有9种等可能结果,其中两个路口都遇到绿灯的结果数为1,所以两个路口都遇到绿灯的概率为19.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 19. 【分析】(1)先将点A 坐标代入反比例函数解析式中求出k2,进而求出点B 坐标,最后将点A ,B 坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出BC2=32,CP2=n2+9,BP2=(n-4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.【解答】解:(1)∵点A (-1,4)在反比例函数y=2k x (k2≠0)的图象上,∴k2=-1×(-4)=4,∴反比例函数解析式为y=4x ,将点B (4,m )代入反比例函数y=4x 中,得m=1,∴B (4,1), 将点A (-1,-4),B (4,1)代入一次函数y=k1x+b 中,得11441k b k b -⎨+⎩+-⎧==, ∴113k b ⎩-⎧⎨==, ∴一次函数的解析式为y=x-3;(2)由(1)知,直线AB 解析式为y=x-3, ∴C (0,-3), ∵B (4,1),P (n ,0),∴BC2=32,CP2=n2+9,BP2=(n-4)2+1, ∵△BCP 为等腰三角形, ∴①当BC=CP 时, ∴32=n2+9,∴②当BC=BP 时,32=(n-4)2+1, ∴③当CP=BP 时,n2+9=(n-4)2+1, ∴n=1(舍), 即:满足条件的n 为.【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.20. 【分析】(1)连接CD,由BC为直径可知CD⊥AB,根据同角余角相等可知∠A=∠BCD,根据BD BD=,可得∠F=∠BCD,从而证明结论.(2)连接OD、OF,易得∠OBD=∠ODB,由∠BDF=∠FCB=2∠CBA可得∠FDO=∠ODB,进而可证△BOD≌△FOD,即可得到DF=DB.(3)取CH中点M,连接OM,所以OM是△BHC的中位线,OM∥BH,又BH⊥DF,由垂径定理可知FN=DN,设FH=x,则FC=3x,OD=OC=OB=2x,设∠CBA=α,则∠CBD=∠DCA=α,由勾股定理可知x,继而得出tanα,由AD=1,即可计算CD、BD、BF、BG、EF长,再求三角形面积即可.【解答】(1)证明:连接CD,∵BC为直径,∴∠CDB=90°,∴∠A+∠DCA=90°,∵∠C=90°,∴∠BCD=∠A,∵BD BD=,∴∠F=∠BCD,∴∠F=∠A.(2)连接OD、OF,∵OB=OD=OF ,∴∠OBD=∠ODB ;∠ODF=∠OFD , ∵BF BF =,∴∠BDF=∠FCB=2∠CBA ,∴∠OBD=∠ODB=∠ODF=∠OFD , 又∵OD=OD ,∴△BOD ≌△FOD (AAS ), ∴DF=DB .(3)取CH 中点M ,连接OM ,交FD 于N 点,设∠CBA=α,则∠CBD=∠DCA=α,∵HM=MC ,BO=CO ,∴ON ∥BH ,OM=12BH ,∵BH ⊥FD , ∴FN=DN , ∵CD CD =,∴∠DBO=∠DFC ,由(2)得∠OBD=∠ODF , 在△ODN 和△MFN 中,DFC ODF FN DNONM MNF ∠∠∠⎧⎪⎪⎩∠⎨===,△ODN ≌△MFN (ASA ), ∴FM=OD ,设FH=x ,则FC=3x ,OD=OC=OB=2x ,∴在Rt △BFC中,BF =, ∵BH ⊥FD ,∠BFH=90°,∴∠FBH=∠CFD=α,∴tan α==,∴1tan tan DA CD DADCA α===∠∴7tan CD BD FD CBD ====∠,∴BC === ∴x=2, ∴BF=2, ∴BG=,∵OD ∥FC ,∴32FC EF OD ED ==, ∴EF=FD ×35=215,S △BEF=12125=. 【点评】本题是一道有关圆的几何综合题,难度较大,主要考查了圆周角定理,三角形中位线定理、全等三角形性质及判定,相似三角形的判断和性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形,利用角相等解三角形.21. 【分析】根据完全平方公式即可求出答案.【解答】解:∵,∴,∴(x+1)2=3,∴x2+2x+1=3,∴x2+2x=2,故答案为:2【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.22. 【分析】首先根据二次函数的解析式求得其对称轴,然后写出该点关于对称轴的对称点的坐标即可.【解答】解:二次函数y=ax2+4ax+5的对称轴为x=-42aa=-2,∴点点P(2,17)关于l的对称点的坐标为(-6,17),故答案为:(-6,17).【点评】本题考查了二次函数的性质,解题的关键是求得二次函数的对称轴,难度不大.23. 【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积-扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:∵S扇形ACB=120443603ππ⨯=,S半圆CBF= 2131,1222ABCSππ⨯==⨯=所以图案面积=S半圆CBF+S△ABC-S扇形ACB=234cm236πππ⎛+=+⎝,故答案为:6π【点评】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.24. 【分析】解方程3111mxx x-=--得41xm=+,当m=1时,该方程有正整数解,据此依据概率公式求解可得.【解答】解:解方程3111mxx x-=--,得:41xm=+,当m=1时,该方程有正整数解,所以使关于x的方程3111mxx x-=--有正整数解的概率为15,故答案为:1 5.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.25. 【分析】作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,根据平行线分线段成比例定理表示出A、C、P的坐标,然后S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,列式计算即可.【解答】解:作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,∴PQ∥AM∥CN,∴21,32 AM AB CN OCPQ PB PQ OP====,设PQ=n,∴21,32 AM n CN n==,∵点A、C分别为函数y=kx(x>0)图象上两点,∴3221,,,232k kA n C nn n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴ON=2k n,∴OQ=2ON=4k n,∴P(4kn,n),∵S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,∴12431212311235 23223222224 k k k k k n n n n n nn n n n n⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+--+--+⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,整理得,7k=35, 解得k=5. 故答案为5.【点评】本题考查了反比例图象上点的坐标特征,图象上点的坐标适合解析式. 26. 【分析】(1)利用待定系数法求y1与x 之间满足的函数表达式,并根据图1写出自变量x 的取值范围;(2)利用顶点式求y2与x 之间满足的函数表达式;(3)根据收益=售价-成本,列出函数解析式,利用配方法求出最大值. 【解答】解:(1)设y1=kx+b , ∵直线经过(3,5)、(6,3),3563k b k b ⎨+⎩+⎧==,解得:273k b -⎧⎪⎨⎪⎩==, ∴y1=-23x+7(3≤x≤6,且x 为整中学数学一模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是( ) A .B .﹣2C .﹣3D .02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为( ) A .44×108B .4.4×109C .4.4×108D .4.4×10103.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)下列各运算中,计算正确的是( ) A .2a •3a =6a B .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a +b )2=a 2+ab +b 25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;。

相关文档
最新文档