生化问答题
生化问答题

1.蛋白质的基本单位是?氨基酸的结构通式和结构特点分别是?答:①基本单位:氨基酸②结构通式:HR-C-COOHNH2③结构特点:组成蛋白质的20种氨基酸都属于a-氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L-氨基酸(甘氨酸除外)2.维持蛋白质各级结构稳定的化学键分别是?答:①维持级结构的键是肽键②维持二级结构的键是氢键③维持三级结构的键主要是氢键、离子键和疏水相互作用④维持四级结构的键主要是氢键、离子键和疏水相互作用3.蛋白质的元素组成N的含量是多少?如果用氮含量计算蛋白质的含量?答:①16%②所测含氮量乘以6.254.蛋白质二级结构主要形式有哪些?答:a-螺旋、β-折叠、β-转角和无规卷曲5.、如何用生物化学的知识解释镰刀形红细胞贫血的发病机制?答:因为蛋白质的-级结构是空间结构的基础,也是蛋白质行使功能的基础,而镰刀形红细胞贫血患者的血红蛋白B键第6位谷氨酸被缬氨酸取代,一级结构中重要部位的氨基酸改变会引起功能的改变,使血红蛋白表面产生-一个疏水小区,引起血红蛋白聚集成不落性的纤维素,导致红细胞变性成镰刀型而极易破碎,产生贫血.6、核酸的基本单位和基本组成成分分别是?答:①基本单位:核苷②成分:碱基、戊糖、磷酸7、维持DNA双螺旋结构的稳定的化学键分别是?答:主要是碱基对之间的氢键和碱基平面之间的碱基堆积力.8.mRNA、tRNA、rRNA的功能分别是?tRNA的二级结构和三级结构分别是?答:①功能:mRNA:指导蛋白质生物合成的模板tRNA:在蛋白质生物合成中转运氨基酸rRNA:蛋白质生物合成的场所②二级结构:三叶草形(四臂四环组成)三级结构:倒L形9、酶促反应的特点是?答:高效性,特异性,可调节性,高度不稳定性10.酶原的定义、酶原微活的实质、酶原与酶原激活的生理意义?举例说明答①定义:有些酶在细胞内合成或初分泌时,没有催化活性,这种酶的无活性前体称为酶原②实质:切断酶原分子中特异肽键或去除部分肽段3.生理意义(举例),酶奶是无活性的酶的前体,经水解激活后才表现出活性。
生化简答题

名词解释:1 、蛋白质:蛋白质是由许多氨基酸通过肽键联系起来的含氮高分子化合物,是机体表现生理功能的基础。
2 、蛋白质的变性:在某些物理和化学因素的作用下,蛋白质的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失称为蛋白质变性。
3 、蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序。
4 、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
5 、蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置,即整条肽链所有原子在三维空间的排布位置。
6 、蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用。
7 、蛋白质的等电点:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
8 、DNA的变性:在某些理化因素的作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,称DNA变性。
9 、DNA的复性:变性DNA在适当条件下,两条互补链可以重新恢复天然的双螺旋构象,称为DNA的复性。
10 、核酸酶:所有可以水解核酸的酶。
可分为DNA酶和RNA酶。
11 、酶:由活细胞合成的,对其特异底物起高效催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂。
12 、核酶:是具有高效,特异催化作用的核酸,是近年发现的一类新的生物催化剂。
13 、酶原:无活性的酶的前体称为酶原。
14 、酶的必需基团:酶分子结构中与酶的活性密切相关的基团称为酶的必需基团。
15、同工酶:指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
16、糖酵解:缺氧情况下,葡萄糖生成乳糖的过程。
17 、酵解途径:由葡萄糖分解成丙酮酸的过程。
18 必需脂酸:某些不饱和脂肪酸,动物机体自身不能合成,需要从植物油摄取,是动物不可缺少的营养素,称为必需脂酸。
生化问答题

医学生物化学复习题各章节问答题小集1.试述肽链中α–螺旋的结构特点。
答:①α-螺旋外观似棒状,肽链的主链形成紧密的螺旋,侧链伸向外侧;②肽链中全部NH都和CO生成氢键,使α-螺旋的结构十分牢固;③螺旋的一圈由3.6个aa残基组成,螺距为0.54 nm;④螺旋的走向都为顺时针方向,所谓右手螺旋。
2. 什么是蛋白质的四级结构? 什么是均一四级结构和不均一四级结构?答:蛋白质分子中各个亚基的空间分布及亚基接触部位的布局和相互作用称为蛋白质的四级结构。
由相同的亚基构成的四级结构称为均一四级结构,由不同亚基构成的,则称为不均一四级结构。
3. 以血红蛋白与O2的结合为例,说明什么是协同效应?答:协同效应是指一个亚基与其配体结合后,能影响此寡聚体中另一亚基与配体的结合能力,如果是促进作用,则称为正协同效应,反之则为负协同效应。
以血红蛋白为例,当Hb的第一个亚基与O2结合以后,促进第二及第三个亚基与O2的结合,当第三个亚基与O2结合后,又大大促进了第四个亚基与O2结合,这种效应为正协同效应。
4.举例说明蛋白质一级结构和功能的关系。
答:蛋白质的一级结构(即氨基酸残基排列顺序)是空间结构和性质的基础,蛋白质分子中的氨基酸残基的改变有的会严重影响其功能,有的则影响甚微。
有的结构相似的功能也相似。
①结构相似的具有相似的功能:例如从哺乳动物胰脏中分离出来的胰岛素,都由A链和B链组成,不同来源的胰岛素氨基酸排列顺序不完全相同,但相似,分子量也几乎相等,均具有降低血糖的生物学功能。
②一级结构与分子病:血红蛋白是由四个亚基构成的四聚体。
珠蛋白有两条α-链和两条β链,它们分别由141和146个氨基酸残基组成。
由于基因突变使珠蛋白多肽链的氨基酸残基改变所致的异常血红蛋白近400种。
其中只有某些残基改变才影响该蛋白带O2功能。
例如正常珠蛋白β链上第6位的谷氨酸被缬氨酸取代,使血红蛋白溶解度改变而导致镰刀状红细胞贫血。
5.试述如何分析多肽链中氨基酸的顺序?答:首先分析已纯化蛋白质的氨基酸残基的组成。
生化考试试题

生物化学习题一、最佳选择题:下列各题有A、B、C、D、E五个备选答案;请选择一个最佳答案..1、蛋白质一级结构的主要化学键是A、氢键B、疏水键C、盐键D、二硫键E、肽键D2、蛋白质变性后可出现下列哪种变化A、一级结构发生改变B、构型发生改变C、分子量变小D、构象发生改变E、溶解度变大3、下列没有高能键的化合物是A、磷酸肌酸B、谷氨酰胺C、ADPD、1;3一二磷酸甘油酸E、磷酸烯醇式丙酮酸4、嘌呤核苷酸从头合成中;首先合成的是A、IMPB、AMPC、GMPD、XMPE、ATP5、脂肪酸氧化过程中;将脂酰~SCOA载入线粒体的是A、ACPB、肉碱C、柠檬酸D、乙酰肉碱E、乙酰辅酶Ab6、体内氨基酸脱氨基最主要的方式是A、氧化脱氨基作用B、联合脱氨基作用C、转氨基作用D、非氧化脱氨基作用E、脱水脱氨基作用d7、关于三羧酸循环;下列的叙述哪条不正确A、产生NADH和FADH2B、有GTP生成C、氧化乙酰COAD、提供草酰乙酸净合成E、在无氧条件下不能运转c8、胆固醇生物合成的限速酶是A、HMG COA合成酶B、HMG COA裂解酶C、HMG COA还原酶D、乙酰乙酰COA脱氢酶E、硫激酶9、下列何种酶是酵解过程中的限速酶A、醛缩酶B、烯醇化酶C、乳酸脱氢酶D、磷酸果糖激酶E、3一磷酸甘油脱氢酶10、DNA二级结构模型是A、α一螺旋B、走向相反的右手双螺旋C、三股螺旋D、走向相反的左手双螺旋E、走向相同的右手双螺旋11、下列维生素中参与转氨基作用的是A、硫胺素B、尼克酸C、核黄素D、磷酸吡哆醛E、泛酸12、人体嘌呤分解代谢的终产物是A、尿素B、尿酸C、氨D、β—丙氨酸E、β—氨基异丁酸13、蛋白质生物合成的起始信号是A、UAGB、UAAC、UGAD、AUGE、AGU14、非蛋白氮中含量最多的物质是A、氨基酸B、尿酸C、肌酸D、尿素E、胆红素b15、脱氧核糖核苷酸生成的方式是A、在一磷酸核苷水平上还原B、在二磷酸核苷水平上还原C、在三磷酸核苷水平上还原D、在核苷水平上还原E、直接由核糖还原16、妨碍胆道钙吸收的物质是A、乳酸B、氨基酸C、抗坏血酸D、柠檬酸E、草酸盐e17、下列哪种途径在线粒体中进行A、糖的无氧酵介B、糖元的分解C、糖元的合成D、糖的磷酸戊糖途径E、三羧酸循环d18、关于DNA复制;下列哪项是错误的A、真核细胞DNA有多个复制起始点B、为半保留复制C、亲代DNA双链都可作为模板D、子代DNA的合成都是连续进行的E、子代与亲代DNA分子核苷酸序列完全相同d19、肌糖元不能直接补充血糖;是因为肌肉组织中不含 A、磷酸化酶 B、已糖激酶C、6一磷酸葡萄糖脱氢酶D、葡萄糖—6—磷酸酶E、醛缩酶20、肝脏合成最多的血浆蛋白是A、α—球蛋白B、β—球蛋白C、清蛋白D、凝血酶原E、纤维蛋白原a21、体内能转化成黑色素的氨基酸是A、酪氨酸B、脯氨酸C、色氨酸D、蛋氨酸E、谷氨酸c22、磷酸戊糖途径是在细胞的哪个部位进行的 A、细胞核 B、线粒体C、细胞浆D、微粒体E、内质网c23、合成糖原时;葡萄糖的供体是A、G-1-PB、G-6-PC、UDPGD、CDPGE、GDPGd24、下列关于氨基甲酰磷酸的叙述哪项是正确的A、它主要用来合成谷氨酰胺B、用于尿酸的合成C、合成胆固醇D、为嘧啶核苷酸合成的中间产物E、为嘌呤核苷酸合成的中间产物e25、与蛋白质生物合成无关的因子是A、起始因子B、终止因子C、延长因子D、GTPE、P因子26、冈崎片段是指A、模板上的一段DNAB、在领头链上合成的DNA片段C、在随从链上由引物引导合成的不连续的DNA片段D、除去RNA引物后修补的DNA片段E、指互补于RNA引物的那一段DNA27、下列哪组动力学常数变化属于酶的竞争性抑制作用A、Km增加;Vmax不变B、Km降低;Vmax不变C、Km不变;Vmax增加D、Km不变;Vmax降低E、Km降低;Vmax降低a28、运输内源性甘油三酯的血浆脂蛋白主要是 A、VLDL B、CM C、HDLD、IDLE、LDL29、结合胆红素是指A、胆红素——清蛋白B、胆红素——Y蛋白C、胆红素——葡萄糖醛酸D、胆红素——Z蛋白E、胆红素——珠蛋白30、合成卵磷脂所需的活性胆碱是A、ATP胆碱B、ADP胆碱C、CTP胆碱D、CDP胆碱E、UDP胆碱31、在核酸分子中核苷酸之间连接的方式是A、2′-3′磷酸二酯键B、2′-5′磷酸二酯键C、3′-5′磷酸二酯键D、肽键E、糖苷键c32、能抑制甘油三酯分解的激素是A、甲状腺素B、去甲肾上腺素C、胰岛素D、肾上腺素E、生长素d33、下列哪种氨基酸是尿素合成过程的中间产物 A、甘氨酸 B、色氨酸C、赖氨酸D、瓜氨酸E、缬氨酸c34、体内酸性物质的主要来源是A、硫酸B、乳酸C、CO2D、柠檬酸E、磷酸d35、下列哪种物质是游离型次级胆汁酸A、鹅脱氧胆酸B、甘氨胆酸C、牛磺胆酸D、脱氧胆酸E、胆酸c36、生物体编码氨基酸的终止密码有多少个A、1B、2C、3D、4E、5二、填充题1、氨基酸在等电点PI时;以______离子形式存在;在PH>PI时以______离子存在;在PH<PI时;以______离子形式存在..2、血浆脂蛋白用超速离心法可分为______、______、______、______四类..3、饱和脂酰COAβ—氧化主要经过______、______、______、______四步反应;β—氧化的终产物是______;每次β—氧化可产生______克分子ATP..4、大肠杆菌RNA聚合酶全酶由______组成;核心酶组成是______;参予识别起始信号的是______..5、根据激素的化学本质;可将其分成______、______、______和______四类..6、肝脏生物转化作用的第一相反应包括______、______、______;第二相反应是______..7、大多数真核细胞的MRNA5′一端都有______ 帽结构;3′一端有______结构..8、体内硫酸根的供体是______、甲基的供体是______、磷酸核糖的供体是______..9、常见的一碳单位有______、______、______、______等;携带它们的载体是_______..10、下列氨基酸的脱羧产物分别为:组氨酸______;色氨酸______;谷氨酸______..11、对神经肌肉应激性Ca+2起______作用;K+起______..12、VitD的活性形式是______..13、合成血红蛋白中血红素的基本原料是______、______、______..14、血红素在体内分解代谢的主要产物是______、包括______、______、______、______等..15、Watsan-Crick提出的双螺旋结构中;______处于分子外边;______处于分子中央;螺旋每上升一圈bp数为 ..16、蛋白质二级结构的形式有______、______和______..17、组成蛋白质的氨基酸分子结构中含有羟基的有______、______、______..18、血钙可分为______和______;血浆钙中只有______才直接起生理作用..19、丙酮酸脱氢酶系包括______、______、______三种酶;______、______、______、______、______五种辅助因子..20、人体铁的贮存形式有______、______..21、影响酶促反应速度的因素有______、______、______、______和______等..22、胆固醇在体内可转变为哪些活性物质______、______和______..23、生物体物质代谢调节的基本方式是______、______、______..24、肾小管的“三泌”作用是______、______、______;其功用是换回______..25、线粒体呼吸链的递氢体和递电子体有______、______、______、______、______..26、酮体是由______、______、______组成..27、核苷酸是由______、______和______三种成分组成..28、DNA的三级结构是______结构;核小体是由______和______构成..三、名词解释1、蛋白质的变性作用2、酶的活性中心3、糖异生4、氧化磷酸化5、呼吸链6、载脂蛋白7、r-谷氨酰循环8、DNA半保留复制9、不对称转录10、酶原的激活11、胆色素12、反向转录四、问答题1、简述血氨的来源和去路..2、磷酸戊糖途径分哪两个阶段;此代谢途径的生理意义是什么3、试述成熟红细胞糖代谢特点及其生理意义..4、血糖正常值是多少;机体是如何进行调节的..5、简述蛋白质及肽类激素的调节机制..6、代谢性酸中毒时;机体是如何调节酸碱平衡的..参考答案一、选择题:1、E2、D3、B4、A5、B6、B7、D8、C9、D 10、B 11、D 12、B 13、D 14、D 15、B 16、E 17、E 18、D 19、D 20、C 21、A 22、C 23、C 24、D 25、E 26、C 27、A 28、A 29、C 30、D 31、C 32、C 33、D 34、C 35、D 36、C二、填充题:1、两性离子、负离子、正离子2、CM、VLDL、LDL、HDL3、脱氢、加水、再脱氢、硫解、乙酰辅酶A、54、α2ββ′σ、α2ββ′、σ5、蛋白质和多肽类激素、氨基酸衍生物类激素、类固醇激素、脂肪酸衍生物6、氧化、还原、水解、结合反应7、M7G 、POLYA8、PAPS SAM PRPP9、-CH3、=CH2、-CH=、-CHO、-CH=NH、FH410、组胺、5-羟角胺、r-氨基丁酸11、降低、升高12、1;25-OH2VitD313、甘氨酸、琥珀酰CoA、Fe2+14、铁卟啉化合物、胆红素、胆绿素、胆素原、胆素15、磷酸核糖、碱基、1016、α-螺旋、β-折叠、β-转角、无规则卷曲17、酪氨酸丝氨酸苏氨酸18、非扩散钙、可扩散钙、Ca2+19、丙酮酸脱羧酶、硫辛酸乙酰转移酶、二氢硫辛酸脱氢酶、TPP、硫辛酸、FAD NAD CoASH20、铁蛋白、含铁血黄素21、温度、PH、酶浓度、底物浓度、抑制剂22、胆汁酸、类固醇激素、VitD323、细胞水平、器官水平、整体水平24、泌H+、泌K+、泌、NaHCO325、NAD+或NADP+、FAD或FMA、铁硫蛋白、辅酶Q、细胞色素类26、乙酰乙酸、β-羟丁酸、丙酮27、含氮碱基、戊糖、磷酸28、超螺旋、DNA、组蛋白、三、名词解释1、物理或化学因素如加热、酸、碱等引起蛋白质结构变化;并导致蛋白质理化性质改变和生物学活性丧失;称为蛋白质变性;变性时不涉及一级结构改变或肽键的断裂..2、必需基团相对集中并构成一定空间构象;直接负责结合及催化底物发生反应的区域..3、由非糖物质如乳酸、甘油等在肝中转变为糖的过程..4、生物氧化的释能反应同时伴有ADP磷酸化生成ATP的吸能反应;二者偶联;称为氧化磷酸化..5、定位于线粒体内膜;由一组H和电子传递体按一定顺序排列所构成的;能把还原当量2H=2e+2H+氧化成H2O的反应链称为呼吸链..6、载脂蛋白是存在于血浆脂蛋白中的一类蛋白质..现一般将其以A、B、C、D、E表示分为五类;其中有的又分若干亚类以Ⅰ、Ⅱ、Ⅲ等表示;它们的共同作用是促使脂类溶于血浆转运;稳定脂蛋白结构..有的尚有激活有关酶、识别受体等特殊功能..7、是指氨基酸从肠粘膜细胞吸收;通过定位于膜上的r-谷氨酰转肽酶催化使吸收的氨基酸与G-SH反应;生成r-谷氨酰基-氨基酸而将氨基酸转入细胞内的过程..由于该过程具有循环往复的性质;故称其为r-谷氨酰循环..8、一个亲代DNA分子复制一次所得到的两个子代DNA分子;两条链里的一股是来自亲代;另一股是新合成的;即“新、旧”各半;称半保留复制..9、双链DNA分子上分布着很多基因;并不是所有基因的转录均在同一条DNA 单链上;而是一些基因在这条单链转录;另一些基因的转录在另一条单链上;DNA双链一次只有一条链或某一区段可作为模板转录;称之为不对称转录..10、有些酶在细胞内合成和初分泌时;并不表现有催化活性;这种无活性状态的酶的前身物称为酶原..酶原在一定条件下;受某种因素的作用;酶原分子的部分肽键被水解;使分子结构发生改变;形成酶的活性中心;无活性的酶原转化成有活性的酶称酶原的激活..11、胆色素是铁卟啉化合物的分解产物;它包括:胆红素、胆绿素、胆素原和胆素..因其具有颜色故名胆色素..正常时随胆汁排泄..12、以病毒RNA为模板;以4SRNA或色氨酸RNA为引物;4种dNTP为原料;根据碱基配对原则;在反向转录酶催化下合成DNA的过程..四、问答题略。
生化问答题

圈数:
核苷酸对数/螺距 485.44/10=48.54圈
11.为什么用稀酸或高盐溶液处理染色质可以解离DNA与组蛋白
组蛋白与DNA之间的结合依靠的是组蛋白带正电的碱性基团和DNA带负电的磷酸基团之间的静电作用,如果用稀酸处理染色质,磷酸基团质子化失去所带的电荷,复合物解离,如果用高盐溶液处理染色质,阳离子与磷酸基团结合取代了组蛋白,导致解离
1》孕激素、雌激素、雄激素、醛固酮等类固醇激素存在不同于基因组作用的快速非基因组作用。非基因组作用的特点:(1)作用快;(2)可在不能完成mRNA转录和蛋白质合成的细胞株或没有类固醇激素核受体的细胞株中观察到该作用;(3)偶联大分子不能穿过胞膜进入胞内的类固醇激素仍然具有该作用;(4)不能被转录/蛋白合成抑制剂所阻断;(5)不能被经典的基因组类固醇激素受体拮抗剂所阻断。类固醇激素诱导的非基因组作用信号转导机制是多种多样的,如激活信号分子Src、胞内钙离子、cAMP等。目前认为类固醇激素非基因组作用存在两种形式:(1)特异性作用:通过受体介导特异性非基因组作用;(2)非特异性作用
6.某一蛋白质的多肽链有一些区段为α-螺旋构象,另一些区段为β-折叠构象,蛋白质的分子量为240000,多肽链外形的长度为5.06×10-5,试计算链中的α–螺旋构象占多肽分子的百分数?.
该蛋白质共有的氨基酸残基数目为:240000/120=2000(个)设其中有n个氨基酸处于β-折叠构象,则:3.6n+1.5 ×(2000 - n)=5.06×10-5×108式中(2000-n)为处于α-螺旋的氨基酸数目2.1n = 2060 n = 981 即有981个氨基酸处于β-折叠构象,所以α-螺旋的氨基酸数目为:2000 - 981 = 1019(个)所以α-螺旋氨基酸占总数的百分数为:1019/2000×100%=50.95%
生化问答题集

生化问答题集1、试述血浆脂蛋白的分类及主要生理功能?CM(乳糜微粒):转运来自食物的外源性甘油三酯。
VLDL(极低密度脂蛋白):转运肝脏合成的内源性甘油三酯。
LDL(低密度脂蛋白;):从肝脏向肝外组织转运胆固醇。
HDL(高密度脂蛋白)从肝外组织向肝脏转运胆固醇。
IDL(中密度脂蛋白)2、血糖的来源于去路有哪些?试述胰岛素、胰高血糖素、肾上腺素对血糖浓度额调节作用。
来源:①食物糖消化吸收②肝糖原分解③肝脏内糖异生作用去路:①氧化分解供能②合成糖原③转化成其他糖类或非糖类物质④血糖过高时随尿液排出肝脏调节:肝糖原合成与分解、糖异生;肾脏调节:肾小管的重吸收能力;神经和激素的调节:⑴神经调节⑵激素调。
3、什么是解链温度?影响DNATm值大小的因素有哪些?为什么?解链温度是指核酸在加热变性过程中,紫外吸收值达到最大值的一半的温度,也称为Tm值。
因素:DNA分子中碱基的组成、比例、DNA分子的长度。
原因:在DNA分子中,如果G-C含量较多,Tm值则较大,A-T含量较多,Tm值则较小,因G-C间有三个氢键,A-T间有两个氢键,G-C较A-T稳定。
DNA分子越长,在解链时所需的能量也越高,所以Tm值也越大4、何为蛋白质变性作用?试举例说明其在临床上的应用,以及避免蛋白质变性的例子。
答:蛋白质的变性是指蛋白质在某些理化因素的作用下,严格的空间构象受到破坏,从而改变理化性质并失去生物活性的现象称为蛋白质的变性。
(1)利用酒精、加热煮沸、紫外线照射等方法来消毒灭菌;(2)口服大量牛奶抢救重金属中毒的病人;(3)临床检验中在稀醋酸作用下加热促进蛋白质在pI时凝固反应检查尿液中的蛋白质;(4)加热煮沸蛋白质食品,有利于蛋白酶的催化作用,促进蛋白质食品的消化吸收等。
5、简述tRNA二级结构的基本特点及各种RNA的生物学功能。
答:tRNA典型的二级结构为三叶草型结构,是由一条核糖核苷酸链折叠、盘绕而成,在分子单链的某些区域回折时,因存在彼此配对的碱基构成局部双螺旋区,不能配对的碱基则:形成突环而排斥在双螺旋之外,形成了tRNA的三叶草结构。
生化问答题

1、为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?①三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。
②糖代谢过程中一分子已糖经糖酵解分解成二分子丙酮酸,在有氧的情况下丙酮酸进入线粒体,通过三羧酸循环彻底氧化分解③脂肪分解的脂肪酸经β-氧化产生乙酰CoA可进入三羧酸循环彻底氧化,脂肪分解的甘油也可通过糖有氧氧化进入三羧酸循环氧化分解;同时,三羧酸循环中产生的乙酰CoA和其他中间产物也可用于合成脂肪;④蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受NH3后合成氨基酸。
例如草酰乙酸和α酮戊二酸分别是天冬氨酸和谷氨酸合成的碳架,延胡索酸是苯丙氨酸和酪氨酸合成的前体等。
所以,三羧酸循环是三大物质代谢的共同通路。
2、蛋白质变性天然蛋白质受物理或化学因素的影响,分子内部原有的高度规则性的空间排列发生变化,致使其原有性质和功能发生部分或全部丧失,这种作用称蛋白质的变性作用。
3、酶的活性中心酶的活性中心是指酶分子中能同底物结合并起催化反应的空间部位。
4、DNA的半保留复制在复制时DNA的两条链先分开,然后分别以每条DNA链为模板,根据碱基互补配对原则合成新的互补链,以组成新的DNA分子。
因此子代DNA的一条链来自亲代,另一条是新合成的,这种复制方式称为半保留复制。
5、中心法则中心法则认为DNA指导其自身复制及转录为RNA,然后翻译成蛋白质。
遗传信息的流向是从DNA到RNA,再到蛋白质(DNA→RNA→蛋白质)。
同时有些病遗传信息是从RNA传递到DNA的反转录。
这些规则就构成了遗传学的中心法则。
中心法则应表示为DNA⇌RNA →蛋白质。
6、核酸杂交两种来源不同的具有互补碱基序列的核苷酸片段在溶液中冷却时可以再形成双螺旋结构(不同来源的DNA单链与DNA或RNA链彼此可有互补的碱基序列,可以通过变性、复性以形成局部的双链,即所谓杂化双链)7、写出糖酵解途径中三个关键限速酶及其催化的生化反应。
生化问答题(下)

10 核苷酸代谢1.嘧啶核苷酸分子中各原子的来源及合成特点怎样?2.嘌呤核苷酸分子中各原子的来源及合成特点怎样?3.嘌呤和嘧啶碱基是真核生物的主要能源吗,为什么?4.用两组人作一个实验,一组人的饮食主要是肉食,另一组人主要是米饭。
哪一组人发生痛风病的可能性大?为什么?5.为什么一种嘌呤和嘧啶生物合成的抑制剂往往可以用作抗癌药和/或抗病毒药?6.不同种类的生物分解嘌呤的能力不同,为什么?参考答案四、问答题1.答:(1)各原子的来源:N1、C4、C5、C6-天冬氨酸;C2-二氧化碳;N3-氨;核糖-磷酸戊糖途径的5′磷酸核糖。
(2)合成特点:氨甲酰磷酸 + 天冬氨酸→乳清酸乳清酸 + PRPP →乳清酸核苷-5′-磷酸→尿苷酸2.答:(1)各原子的来源:N1-天冬氨酸;C2和C8-甲酸盐;N7、C4和C5-甘氨酸;C6-二氧化碳;N3和N9-谷氨酰胺;核糖-磷酸戊糖途径的5′磷酸核糖(2)合成特点:5′磷酸核糖开始→5′磷酸核糖焦磷酸(PRPP)→5′磷酸核糖胺(N9)→甘氨酰胺核苷酸(C4、C5 、N7)→甲酰甘氨酰胺核苷酸(C8)→5′氨基咪唑核苷酸(C3)→5′氨基咪唑-4-羧酸核苷酸(C6)5′氨基咪唑甲酰胺核苷酸(N1)→次黄嘌呤核苷酸(C2)。
3. 答:在真核生物中,嘌呤和嘧啶不是主要的能源。
脂肪酸和糖中碳原子能够被氧化产生ATP,相比较而言含氮的嘌呤和嘧啶没有合适的产能途径。
通常核苷酸降解可释放出碱基,但碱基又能通过补救途径重新生成核苷酸,碱基不能完全被降解。
另外无论是在嘌呤降解成尿酸或氨的过程还是嘧啶降解的过程中都没有通过底物水平的磷酸化产生ATP。
碱基中的低的C:N 比使得它们是比较贫瘠的能源。
然而在次黄嘌呤转变为尿酸的过程中生成的NADH也许能够通过氧化磷酸化间接产生ATP。
4. 答: 痛风是由于尿酸的非正常代谢引起的,尿酸是人体内嘌呤分解代谢的终产物,由于氨基酸是嘌呤和嘧啶合成的前体,所以食用富含蛋白质饮食有可能会导致过量尿酸的生成,引起痛风病。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生化问答题更多1酮体生成和利用的生理意义。
(1)酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。
酮体分子小,易溶于水,容易透过血脑屏障。
体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。
2试述乙酰CoA在脂质代谢中的作用.在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。
3试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。
4什么是血浆脂蛋白?试述血浆脂蛋白的分类,来源及生理功能?血浆脂蛋白是脂质与载脂蛋白结合形成球形复合体,是血浆脂蛋白的运输和代谢形式。
.血浆脂蛋白的分类方法有两种:1电泳法:可敬脂蛋白分为乳糜微粒(CM) β-脂蛋白, 前-β脂蛋白和α脂蛋白四类2超速离心法:可将脂蛋白分为乳糜微粒(CM),极低密度脂蛋白(VLDL),低密度脂蛋白(LDL)和高密度脂蛋白(HDL)四类,分别相当于电泳分离的CM、前β-脂蛋白、β-脂蛋白和α-脂蛋白四类。
各种血浆脂蛋白的来源主要生理功能如下:①CM由小肠黏膜细胞合成,功能是转运外源性甘油三酯和胆固醇;②VLDL由肝细胞合成、分泌,功能是转运内源性甘油三酯和胆固醇;③LDL由VLDL在血浆中转化而来,功能是转运内源性胆固醇,即将胆固醇由肝转运至肝外组织;④HDL主要由肝细胞合成、分泌,功能是逆向转运胆固醇,即将胆固醇由肝外组织转运到肝。
1、酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高10 8~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。
2、距离说明酶的三种特异性(定义、分类、举例)。
一种酶仅作用于一种或一种化合物,或一定化学键,催化一定的化学反应,产生一定的产物,这种现象称为酶作用的特异性或专一性。
根据其选择底物严格程度不同,分为三类:①绝对特异性:一种酶只能作用于一种专一的化学反应,生成一种特定结构的产物,称为绝对特异性.如:脲酶仅能催化尿素水解产生CO2 和NH3,对其它底物不起作用;②相对特异性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,对底物不太严格的选择性,称为相对特异性。
如各种水解酶类属于相对特异性;举例:磷酸酶对一般的磷酸酯键都有水解作用,既可水解甘油与磷酸形成的酯键,也可水解酚与磷酸形成的酯键;③立体异构特异性:对底物的立体构型有要求,是一种严格的特异性。
作用于不对称碳原子产生的立体异构体;或只作用于某种旋光异构体(D-型或L-型其中一种),如乳酸脱氢酶仅催化L-型乳酸脱氢,不作用于D-乳酸等。
4、简述Km与Vm的意义。
⑴Km等于当V=Vm/2时的[S]。
⑵Km的意义:①Km值是酶的特征性常数——代表酶对底物的催化效率。
当[S]相同时,Km小——V大;②Km值可近似表示酶与底物的亲和力:1/Km大,亲和力大;1/Km小,亲和力小;③可用以判断酶的天然底物:Km最小者为该酶的天然底物。
⑶Vm的意义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。
5、温度对酶促反应有何影响。
(1)温度升高对V的双重影响:①与一般化学反应一样,温度升高可增加反应分子的碰撞机会,使V增大;②温度升高可加速酶变性失活,使酶促反应V变小(2)温度对V影响的表现:①温度较低时,V随温度升高而增大(低温时由于活化分子数目减少,反应速度降低,但温度升高时,酶活性又可恢复)②达到某一温度时,V最大。
使酶促反应V达到最大时的反应温度称为酶的最适反应温度(酶的最适温度不是酶的特征性常数)③反应温度达到或超过最适温度后,随着反应温度的升高,酶蛋白变性,V下降。
6、竞争性抑制作用的特点是什么?(1)竞争性抑制剂与酶的底物结构相似(2)抑制剂与底物相互竞争与酶的活性中心结合(3)抑制剂浓度越大,则抑制作用越大,但增加底物浓度可使抑制程度减小甚至消除(4)动力学参数:Km值增大,Vm值不变。
7、说明酶原与酶原激活的意义。
(1)有些酶(绝大多数蛋白酶)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身物称为酶原。
酶原激活是指酶原在一定条件下转化为有活性的酶的过程。
酶原激活的机制:酶原分子内肽链一处或多处断裂,弃去多余的肽段,构象变化,活性中心形成,从而使酶原激活。
(2)酶原激活的意义:①消化道内蛋白酶以酶原形式分泌,保护消化器官自身不受酶的水解(如胰蛋白酶),保证酶在特定部位或环境发挥催化作用;②酶原可以视为酶的贮存形式(如凝血酶和纤维蛋白溶解酶),一旦需要转化为有活性的酶,发挥其对机体的保护作用。
8、什么叫同工酶?有何临床意义?(1)同工酶是指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶下称为同工酶。
(2)其临床意义:①属同工酶的几种酶由于催化活性有差异及体内分布不同,有利于体内代谢的协调。
②同工酶的检测有助于对某些疾病的诊断及鉴别诊断.当某组织病变时,可能有特殊的同工酶释放出来,使该同工酶活性升高。
如:冠心病等引起的心肌受损患者血清中LDH1 和LDH2 增高,LDH1 大于LDH2 ;肝细胞受损患者血清中LDH5 含量增高。
1、简述糖酵解的生理意义(1)在无氧和缺氧条件下,作为糖分解功能的补充途径(2)在有氧条件下,作为某些组织细胞主要的供能途径:①成熟红细胞(没有线粒体,不能进行有氧氧化②神经、白细胞、骨髓、视网膜、皮肤等在氧供应充足时仍主要靠糖酵解供能。
2、简述糖异生的生理意义(1)在饥饿情况下维持血糖浓度的相对恒定。
(2)补充和恢复肝糖原。
(3)维持酸碱平衡:肾的糖异生有利于酸性物质的排泄。
(4)回收乳酸分子中的能量(乳酸循环)。
3、简述血糖的来源和去路血糖的来源:(1)食物糖类物质的消化吸收;(2)肝糖原的分解;(3)非糖物质异生而成。
血糖的去路:(1)氧化分解功能;(2)合成糖原;(3)合成其它糖类物质;(4)合成脂肪或氨基酸等。
4、糖酵解与有氧氧化的比较糖酵解:反应条件:供氧不足或不需氧;进行部位:胞液;关键酶:己糖激酶(或葡萄糖激酶)、磷酸果糖-1、丙酮酸激酶;产物:乳酸、ATP;能量:1mol葡萄糖净得2molATP;生理意义:迅速供能,某些组织依赖糖酵解供能。
有氧氧化:反应条件:有氧情况;进行部位:胞液和线粒体;关键酶:己糖激酶等三个酶及丙酮酸脱氢酶系、异柠檬酸脱氢酶、柠檬酸合酶、α-酮戊二酸脱氢酶系;产物:H2O、CO2 、ATP;能量:1mol葡萄糖净得36mol或38molATP;生理意义:是机体获取能量主要方式5、在糖代谢过程中生成的丙酮酸可进入哪些代谢途径(1)在供氧不足时,丙酮酸在LDH催化下,接受NADH+H的氢还原生成乳酸。
(2)在供氧充足时,丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下,氧化脱羧生成乙酰CoA,再经三羧酸循环和氧化磷酸化,彻底氧化生成CO2 、H2O和ATP。
(3)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸,再异生成糖。
(4)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合生成柠檬酸,可促进乙酰CoA进入三羧酸循环彻底氧化。
(5)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合生成柠檬酸,柠檬酸出线粒体在细胞液中经柠檬酸裂解催化生成乙酰CoA,后者可作为脂肪酸、胆固醇等的合成原料。
(6)丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。
决定丙酮酸代谢的方向是各条代谢途径中关键酶的活性,这些酶受到别构效应剂与激素的调节。
简述三羧酸循环的要点及生理意义要点:(1)TAC中有4次脱氢,2次脱羧,1次底物水平磷酸化(2)TAC中有3个不可逆反应,3个关键酶;(3)TAC的中间产物包括草酰乙酸在内起着催化剂作用,草酰乙酸的回补反应释丙酮酸的直接羧化或者经苹果酸生成;(4)三羧酸循环一周共产生12ATP。
生理意义:(1)TAC是三大营养素彻底氧化的最终代谢通路;(2)是三大营养素代谢联系的枢纽;(3)可为其他合成代谢提供小分子前体(4)可为氧化磷酸化提供还原能量。
蛋白质21、重组DNA技术常包括以下几个步骤:分离制备目的基因-“分”,切割目的基因和载体-“切”,目的基因与载体的连接-“接”,将重组DNA导入宿主细胞-“转”,筛选并鉴定含重组DNA分子的受体细胞克隆-“筛”,克隆基因在受体细胞内进行复制或表达-“表”。
1、蛋白质的元素组成特点是什么?怎样计算生物样品中蛋白质的含量?蛋白质的元素组成特点是含N,平均含量为16%,可用于推算未知样品中蛋白质的含量:100克样品中的蛋白质含量=每克样品含氮克数×6.25×100.2、何谓蛋白质的二级结构?二级结构主要有哪些形式?各有何特征?蛋白质的二级结构是指蛋白质分子中某一段肽键的局部结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
二级结构的主要形式有:α-螺旋,β-折叠、β-转角、无规则卷曲。
特征:(1)α-螺旋:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③相邻螺旋圈之间形成许多氢键;④侧链基团位于螺旋的外侧。
(2)β-折叠:①若干条肽链或肽段平行或反平行排列成片;②所有肽键的C=O和N-H形成链间氢键;③侧链基团分别交替位于片层的上、下方。
(3)β-转角:多肽链180o 回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。
(4)无规则卷曲:主链骨架无规律盘绕的部分。
3、何谓蛋白质的变性作用?引起蛋白质变性的因素有哪些?蛋白质变性的本质是什么?变性后有何特性?(1)蛋白质的变性作用是指蛋白质分子在某些理化因素作用下,其特定的空间结构被破坏而导致理化性质改变及生物学活性丧失的现象。
(2)引起蛋白质变性的因素:物理因素有加热、紫外线、X射线、高压、超声波等;化学因素有极端pH值(强酸、强碱)、重金属盐、丙酮等有机溶剂。
(3)蛋白质变性的本质是:次级键断链,空间结构破坏,一级结构不受影响。
(4)变性后的特性:①活性丧失:空间结构破坏使Pr的活性部位解体②易发生沉淀:疏水基团外露,亲水性下降;③易被蛋白酶水解:肽键暴露出来④扩散常数降低,溶液的粘度增加。