平移 旋转 轴对称 知识点总结

合集下载

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点
嘿,朋友!今天咱来好好唠唠旋转、平移和轴对称这些超有意思的知识点!
先说旋转吧,你就想象一下,一个东西像个小陀螺一样围着一个中心点转圈,这就是旋转啦!比如说,家里的电风扇在呼呼转,那就是在做旋转运动呀!旋转可是有角度的哦,转多少度可是很关键的呢!
平移呢,就好像一个小玩具车在直直地往前跑,没有拐弯,也没有转圈,就是平平地移动。

就像你在操场上笔直地向前走,这就是平移呀!教室里的桌子从这边挪到那边,也是平移呢!
接下来就是轴对称啦!哎呀呀,这就像是有个神奇的镜子,能把一个东西分成两边,两边完全对称,可神奇啦!你看,蝴蝶的翅膀不就是轴对称的嘛!
旋转、平移和轴对称在生活中可到处都是呢!它们可不只是书本上的知识哟!你想想看,那些漂亮的图案、建筑,不都有它们的功劳嘛!它们就像隐藏在生活中的小魔法,让一切变得更有趣、更有秩序!难道不是吗?所以呀,好好了解它们,会发现好多好玩的东西呢!。

图形的平移、旋转与轴对称单元知识点总结

图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。

●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。

●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。

●关键点:一般是图形的各顶点或线段的交点。

●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。

●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。

2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。

这个定点称为旋转中心,旋转的角度称为旋转角度。

●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。

●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。

为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。

●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。

3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。

●轴对称图形至少有一条对称轴。

●轴对称图形中每一组对称点到对称轴的距离相等。

●轴对称图形中对称点的连线与对称轴互相垂直。

●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。

2023-2024小学数学三年级上册期末章节考点复习讲义六单元《平移、旋转和轴对称》(苏教版原卷)

2023-2024小学数学三年级上册期末章节考点复习讲义六单元《平移、旋转和轴对称》(苏教版原卷)

期末知识大串讲苏教版数学三年级上册期末章节考点复习讲义第六单元《平移、旋转和轴对称》知识点01:平移和旋转1.平移:2.旋转:3.平移和旋转都是物体或图形运动的现象,运动中物体的都不变;二者的区别在于:平移是,而旋转是物体,平移只改变,旋转改变的是。

知识点02:轴对称图形1.轴对称图形:把一个图形沿着某一条直线对折,对折后折痕两侧的部分能,这样的图形就是。

是图形的对称轴。

2.轴对称图形的特征:对折后,对称轴两侧能考点01:轴对称1.(2021三上·玄武期末)将一张长方形纸对折后,沿虚线剪开,剪出的图形展开后是()。

A.B.C.2.(2020三上·南通期末)下面各图,不是轴对称图形的是()。

A.B.C.D.3.下列说法正确的是()。

①转椅的升降运动是旋转现象。

②婚礼上贴的“喜”字是利用轴对称原理剪的。

③任何图形都是轴对称图形。

④三种运动都是旋转现象。

A.①和②B.①和③C.②和③D.②和④4.手工课上,毛毛和豆豆做了下面几个手工作品,其中轴对称图形有()个。

A.3 B.4 C.5 D.65.仔细看,认真填。

(1)在上面四个图案中,可以由平移得到的有和。

(2)可以由旋转得到的有和。

(3)是轴对称图形的有和。

6.(2020三上·雨花台期末)下面是轴对称图形的在横线上面画“√”,不是轴对称图形的画“×”。

7.(2020三上·江宁期末)哪个图案是从下面纸上剪下来的?连一连。

(1)(2)(3)8.(2020三上·江阴期末)用4个相同的小正方形可以拼成下面几种图形。

(每个小方格表示边长为1厘米的正方形)(1)观察上面的五个图形,是轴对称图形的有(填序号)(2)请你在上面方格图中,再画一个与图⑤周长相同的长方形,这个长方形的长是()厘米,宽是()厘米。

9.(2021三上·玄武期末)下图是一个用4个边长为1厘米的小正方形拼成的图形。

(1)方格纸中涂色图形的周长是厘米。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

图形的轴对称平移与旋转

图形的轴对称平移与旋转

姓名: 中考复习提升组22图形的轴对称 平移与旋转☻☻☻知识回顾1.轴对称轴对称 轴对称图形: (1)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形称为轴对称图形,这条直线称为这条直线称为 ,对称轴一定为直线. (2) 轴对称: 如果一个图形沿某一条直线翻折过去,如果它能与另一个图形重合,那么就称这两个图形那么就称这两个图形 性质:(1)对应线段相等,对应角对应角 ;对称点的连线被对称轴对称点的连线被对称轴 . 轴对称图形变换的特征是不改变图形的形状和轴对称图形变换的特征是不改变图形的形状和 ,只改变图形的位置,新旧图形具有对称性. (2)轴对称的两个图形,它们对应线段或延长线相交,交点在交点在2.中心对称中心对称 中心对称图形中心对称图形(1)中心对称:把一个图形绕着某一点旋转把一个图形绕着某一点旋转 ,如果它能与另一个图形重合,那么这两个图形成中心对称,该点叫做点叫做(2)中心对称图形:一个图形绕着某一点旋转一个图形绕着某一点旋转 后能与自身重合,这种图形叫这种图形叫 ,该点叫对称中心该点叫对称中心(3)性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心且被连结对称点的线段都经过对称中心且被 平分. 3.图形的平移: (1)定义:在平面内,将某个图形沿某个方向移动一定的将某个图形沿某个方向移动一定的 ,这样的图形运动称为平移. (2)特征:①平移后①平移后,,对应线段相等且平行对应线段相等且平行,,对应点所连的线段对应点所连的线段 且且②平移后②平移后,,对应角对应角 且对应角的两边分别平行方向相同且对应角的两边分别平行方向相同且对应角的两边分别平行方向相同. .③平移不改变图形的③平移不改变图形的 和大小和大小和大小,, 只改变图形的位置,平移后新旧两个图形全等. 4.图形的旋转: (1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个将一个图形绕一个定点沿某个方向旋转一个 ,这样的图形运动称为旋转,这个定点称为旋转中心,转动的转动的 称为旋转角. (2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相向方向转动了相同角度;注意每一对对应点与旋转中心的连线所成的角度都旋转角,旋转角都旋转角都 ;对应点到旋转中心的距离相等对应点到旋转中心的距离相等☻☻☻限时集训一 选择题选择题选择题1.(2010甘肃)观察下列银行标志甘肃)观察下列银行标志,,从图案看既是轴从图案看既是轴对称图形又是中心对称图形的有对称图形又是中心对称图形的有( )( )( )个个A .1B 1B..2C 2C..3D.42(2010浙江宁波)下列各图是选自历届世博会浙江宁波)下列各图是选自历届世博会会徽中的图案, 其中是中心对称图形的是( ) 3.(2011广东广州市,4,3)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是(的坐标是( )A.(0,1)B.(2,-1)C.(4,1)D.(2,3) 4.(2011江苏扬州,8,3)如图,在Rt △ABC 中,∠ACB=90ºACB=90º,,∠A=30ºA=30º,BC=2,,BC=2,将△ABC 绕点C 按顺按顺 时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图的大小和图中阴影部分的面积分别为(中阴影部分的面积分别为( A. 30,2 B.60,2 C. 60,23 D. 60,3 5. (2011山东菏泽,5,3)如图所示,已知在三角形纸片ABC 中,BC =3,AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为的长度为 ( ) A .6 B .3 C . 23 D . 36. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针 方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150° B .120° C.90° D .60°7.(011山东济宁,9,3)如图,△ABC 的周长为30cm,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 上,则三角板上,则三角板 2343682的图象③一段圆弧④平行四边个的余角为的余角为 度.度. 的度数为的度数为 .ABC 绕A 点 则图中阴影部分的面积是______. ABD 某乡镇为了解决抗旱问题,要在某河道要在某河道工程人员设计图纸时,以河道上的大桥以河道上的大桥 ? 2010(本小题满分在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、33,133,0(-3(-433,0)的直线EF 向右下300C D A B【答案】【答案】【答案】解:(1)作点B关于x轴的对称点E,连接AE,则点E为(12,-7),,则设直线AE的函数关系式为y=kx+b,则等.。

《轴对称图形》平移、旋转和轴对称

《轴对称图形》平移、旋转和轴对称
对称点的特点
对于任何一对对称点,它们到对称轴的距离相等,且连线垂直于对 称轴。
旋转与轴对称的关系
一个图形以某点为旋转中心旋转一定角度后与另一个图形重合,那 么这两个图形关于这条旋转中心成轴对称。
轴对称应用
艺术领域
许多艺术作品都利用了轴对称原 理,如建筑、雕塑、绘画等,给
人以美的感受。
自然界中
自然界中许多物体也具有轴对称 性,如叶子、花朵、动物身体等 ,这反映了自然界中一种平衡和
平移的性质
平移不改变图形的形状、 大小和方向,只改变图形 的位置。
平移性质
对应线段相等
平移后得到的图形与原图形对应线段相等。
对应角相等
平移后得到的图形与原图形对应角相等。
对应点所连的线段平行(或在同一直线上)且相等
平移后得到的图形与原图形对应点所连的线段平行(或在同一直线上)且相等。
平移应用
平行四边形的判定
旋转定义
旋转
在平面内,将一个图形绕 一个定点沿某个方向转动 一个角度,这样的图形运 动称为旋转。
旋转角
图形旋转时转动的角度。
旋转中心
图形旋转时,定点所在的 位置称为旋转中心。
旋转性质
旋转方向:可以是顺时针或逆 时针方向。
旋转角度:可以是任意角度, 但必须是0°的整数倍。
旋转前后图形全等,对应点到 旋转中心的距离相等,对应线 段长度、对应角大小相等。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。

二年级下册数学图形的运动---轴对称、平移、旋转

二年级下册数学图形的运动---轴对称、平移、旋转

创意性图案1
将正方形进行轴对称和平移,可以设计出 具有对称性的连续方形图案。
创意性图案2
将三角形进行旋转和平移,可以设计出具 有旋转对称性的复杂图案。
创意性图案3
将圆形进行平移和旋转,可以设计出具有 流动感的圆形图案。
欣赏经典数学图案作品
ห้องสมุดไป่ตู้经典作品1
经典作品3
埃舍尔的《相对性》利用轴对称和平 移等变换,展示了视觉上的错觉和数 学的魅力。
• 平移的要素:平移的方向和距离。
关键知识点总结回顾
旋转的定义
在平面内,将一个图形绕一个定 点沿某个方向转动一个角度,这
样的图形运动称为旋转。
旋转的性质
旋转不改变图形的形状和大小,只 改变图形的位置和方向。
旋转的要素
旋转中心、旋转方向和旋转角度。
学生自我评价报告
知识掌握情况
我已经掌握了轴对称、平移和旋转的基本概念和性质,能够识别和判断这些图形运 动。
选择基本图形
选择一个简单的图形,如正方形、三角形 或圆形,作为设计的基础。
应用轴对称
通过轴对称,可以创建出镜像效果,使得 图形具有对称美感。
应用平移
通过平移,可以将基本图形在平面上移动 到不同位置,形成连续的图案。
应用旋转
通过旋转,可以将基本图形绕某一点旋转 一定角度,创造出更丰富的图案效果。
创意性图案设计展示
绘制轴对称图形步骤
01
确定对称轴的位置和方向。
02
在对称轴的一侧绘制图形的一部 分。
03
根据轴对称的性质,在对称轴的 另一侧绘制出与已绘制部分完全 相同的图形。
04
检查绘制的图形是否满足轴对称 的定义,即沿对称轴折叠后两侧 是否能够完全重合。

轴对称平移旋转定义总结

轴对称平移旋转定义总结

一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.注:错误!对称轴是一条直线,不是线段,也不是射线.错误!一个轴对称图形的对称轴可以有一条,也可以有多条.错误!判断图形是不是轴对称图形的方法是折叠法,关键是看对折后的两部分能否完全重合.2、轴对称的概念把一个图形沿着某一条线直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点叫作对称点.注:错误!对应点指两个图形重合时互相重合的点.错误!成轴对称的两个图形能够完全重合,这两个图形的形状和大小是相同的.错误!成轴对称是指两个图形某条直线成轴对称,只有一条对称轴.3、轴对称图形的性质轴对称图形或成轴对称的两个图形沿对称轴对折后的两部分是完全重合的,所以轴对称图形或成轴对称的两个图形的对应线段对折后重合的线段相等,对应角对折后重合的角相等.注:错误!轴对称图形或成轴对称的两个图形,如果对应线段或对应线段的延长线相交,那么交点在对称轴上.对应点的连线垂直于对称轴并且被对称轴分成相等的两部分.错误!成轴对称的两个图形的面积也相等.4、线段和角的轴对称性错误!线段是轴对称图形.把垂直并且平分一条线段的直线称为这条线段的垂直平分线.错误!角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线.5、画图形的对称轴图形对称轴画法:错误!找出轴对称图形的任意一组对称点;错误!连接这组对称点;错误!画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴.轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴.注:错误!画出轴对称图形的对称轴,关键是选取一些对称点如线段的端点、角的顶点,然后画对称点连线的垂直平分线.错误!轴对称图形的对称轴是一条直线,有时不只一条,甚至有无数条,如圆.6、画轴对称图形错误!先观察已知图形,并确定能代表已知图形的关键点;错误!分别作出这些关键点对称轴的对称点;错误!根据已知图形连接这些对称点,即可得到与已知图形成轴对称图形.二、平移1、平移的概念平面图形在平面上沿着一定的方向移动一定的距离,这种图形的平行移动称为平移;图形上每个点都沿同一个方向移动相同的距离;平移的方向:任意一对对应点从始点到终点的方向都可以看成平移的方向.平移的距离:连接任意一对对应点的线段长度都可以表示平移的距离对应点:平移前后,互相重合的点称为对称点;对应线段:平移前后,互相重合的线段称为对应线段;对应角:平移前后,互相重合的角称为对应角.注:错误!平移的前提示图形沿直线运动,而不是图形在曲面上沿曲线运动.错误!平移由平移的方向和距离决定.错误!平移可以是左右平移,也可以是上下平移,还可以按任意指定的方向对图形进行平移.错误!找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段.2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化.对应点:对应点所连的线段平行或在同一条直线上且相等.对应角:对应角相等,对应角的两边分别平行或共线且方向一致.对应线段:对应线段平行或共线且相等.注:错误!对应线段、对应角必须在平移前后的两个图形中去找.错误!平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上.错误!对应点所连的线段与对应线段不同.3、平移作图平移作图条件:1图形原来的位置;2平移方向;3平移距离平移步骤:1分析题目要求,找出平移方向和平移距离;2分析图形,找出构成图形的关键点;3沿一定的方向与距离平移各个关键点,确定关键点的对应点; 4顺次连接所作的各个对应点,并标上相应字母.5写出结论注:错误!图形上的每个点、每条线段平移的方向与距离一致的,所以确定图形的平移方向与距离,只要选择容易确定的一对对应点或一对对应线段即可.错误!作图过程要细心、认真,使作出的图形美观、正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连接对应点.
找关键点
过每个关键点做平移方向的平行线截取与之相等的距离,标出对应点
连接对应点。
找关键点
连接关键点与旋转中心,将这条线段按方向和角度旋转,标出对应点
连接对应点.
找关键点
连接关键点与对称中心,延长并截取相等的长度,标出对应点
连接对应点.
重要结论
线段是轴对称图形,对称轴是它的垂直平分线.
角是轴对称图形,对称轴是它的角平分线。
图形上每一点都绕同一点按相同的方向和角度旋转
对应点到旋转中心的距离相等
对应边相等,对应角相等,图形的性状大小不改变
连结对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分。
对应边相等,对应角相等
判断方法
沿着某条直线对折看是否重合。
找平移的方向和距离:
找一组对应点,连线即是他平移的方向和距离
找旋转的方向和角度:
找一组对应点,与旋转中心连线的夹角
旋转180°能否与自身重合
对应点间的连线是否经过同一点,并被这一点平分
各边对应相等
各角对应相等
找对称轴:找一组对应点连线,做其垂直平分线。找两组对应点连线,过两条中点的直线
找对称中心:找一组对应点连线找其中点
两组对应点连线的线截取与之相等的距离,标出对应点
成轴对称
中心对称图形
成中心对称
全等多边形
全等三角形
对应边
对应角
一个图形;
不止一条对称轴
两个图形;
只有一条对称轴
旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合。
一个图形
两个图形
图形
特征
对应角相等,对应边相等
对应点间的连线平行且相等(或在同一条直线上)
对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等.④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线。
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转.
中心对称一定是旋转对称,旋转对称不一定是中心对称。
任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。
两条对称轴互相垂直时,两次轴对称相当于一次中心对称
一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等
两个全等的图形总能经过轴对称、平移或旋转等变换后重合.
第十章知识点总结
轴对称
平移
旋转
中心对称
全等
定义
一个(两个)平面图形沿某条直线对折能够完全重合
平面图形在它所在平面上的平行移动。
决定要素:平移的方向、平移的距离
一个平面图形绕一定点按一定的方向旋转一定的角度的运动。
一个图形旋转180°能与自身重合
能够完全重合的两个图形
表示方法:
ΔABC≌ΔDEF
轴对称图形
相关文档
最新文档