2019-2020年八年级上册期末数学试题(有答案)
新人教版2019-2020学年初二上册期末考试数学试卷及答案

新人教版2019-2020学年初二上册期末考试数学试卷及答案2019-2020学年八年级上学期期末考试数学试卷一、选择题(3*8=24)1.下列运算结果正确的是()A.2a(2a)=8aB.(x)=x236C.6xy÷(−2xy)=XXX(x−y)=x−y2.如果把3222y中的x和y都扩大5倍,那么分式的值()A.不变B.扩大5倍C.缩小5倍D.扩大4倍3.下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ayB.x−4x+4=x(x−4)+4C.x−16=(x+4)(x−4)D.10x−5x=5x(2x−1)4.一个多边形的内角和是720°,则这个多边形的边数是()A.5B.6C.7D.85.在下列图形中,对称轴最多的是()A.等腰三角形B.等边三角形C.正方形D.圆6.若二次三项式x2+mx+422221为完全平方式,则m的值为()A.±2B.2C.±1D.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(3*6=18)9.分解因式:a−1= a(a-1).10.若分式2−|x|的值为零,则x的值为2或-2.11.已知P(2a+b,b)与Q(8,-2)关于y轴对称,则a+b=3.12.若a+b=−3,ab=2,则a2+b2的值为13.13.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=40°.14.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△XXX分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画一条.三、解答题(5*5=25)15.计算:(2a−3b)(−2a−3b)=−4a2+9b2.16.如图,点B、E、C、F在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.证明:由题意可知,BE=CF,∠A=∠D,∠1=∠2,所以△ABE和△DCF全等,因此∠EAB=∠XXX,∠XXX∠FCD,所以△AEB和△DFC相似,因此AE/DF=AB/DC,又因为AB=DC,所以AE=DF,因此AC=AE+EC=DF+FC=DE.17.解分式方程:13/(2x−2)-4=1.13/(2x-2)-4=113/(2x-2)=52x-2=13/5x=11/5.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,设等腰三角形的腰长为x,底边长为y,则有:周长为2x+y。
2019-2020学年八年级上期末考试数学试卷及答案解析

2019-2020学年八年级上期末考试数学试卷一.选择题(共6小题,满分12分,每小题2分)1.(2分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a102.(2分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(2分)无论a取何值时,下列分式一定有意义的是()A.B.C.D.4.(2分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(2分)下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.(2分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共8小题,满分24分,每小题3分)7.(3分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.8.(3分)因式分解:4a3b3﹣ab=.9.(3分)请用代数式表示:一个长方形的长为a,宽是长的,则这个长方形的周长是.10.(3分)如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.11.(3分)如果x2﹣mx+81是一个完全平方式,那么m的值为.12.(3分)如果分式的值为9,把式中的x,y同时扩大为原来的3倍,则分式的值是.13.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC 于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为。
人教版2019-2020学年八年级上册期末数学试题及答案

2019-2020学年八年级上册期末数学试卷一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=22.若代数式A.x=0有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3有意义,则x的取值是()B.x≠0C.x≥0D.x>03.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°5.下列多边形中,内角和为720°的图形是()A.B.C.D.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.10.实数的平方根是.11.=.12.写出一个比4大且比5小的无理数:.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:18.计算:19.=.20.解方程:.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.22.已知a﹣b=2,求代数式的值.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.参考答案与试题解析一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=2有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.2.若代数式A.x=0有意义,则x的取值是()B.x≠0C.x≥0D.x>0【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:x≥0,故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.3.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°【分析】依据三角形内角和定理,即可得到∠C的度数,再根据平行线的性质,即可得到∠FDB的度数.【解答】解:∵∠A=40°,∠B=60°,∴∠C=80°,又∵DF∥AC,∴∠CDF=∠C=80°,∴∠FDB=100°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列多边形中,内角和为720°的图形是()A.B.C.D.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)180°=720°,解得:n=6.则这个正多边形的边数是六,故选:D.【点评】本题考查了多边形内角和定理,此题只要结合多边形的内角和公式,寻求等量关系,构建方程求解.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A【分析】首先判断出B.B C.C D.D的取值范围,然后根据:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判定出这个点是哪个即可.【解答】解:∵2.5<<3,∴在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是D.故选:D.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同【分析】利用随机事件发生的可能性是否一样对各选项进行判断.【解答】解:A、在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性不相同,应该对50件产品编序号,然后抽取序号的方式,这样满足是随机事件且该事件每个结果发生的可能性都相等;B、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等;C、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不相同;D、口袋里有5个颜色不同的球,从口袋里随意摸出一个球,满足摸出每个球的可能性相同,则要使5个球只是颜色不同,其它都一样.故选:B.【点评】本题考查了可能性的大小:对于机事件发生的可能性(概率)的计算方法,只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣a,得.∴括号内应填入﹣ab.故答案为:﹣ab.【点评】本题考查了分式的基本性质,解题时注意:分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.实数的平方根是.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±)2=,∴实数的平方根是±.故答案为±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.【分析】根据简=﹣2.=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣故答案为﹣2.|=﹣(2﹣)=﹣2.【点评】本题考查了二次根式的性质与化简:12.写出一个比4大且比5小的无理数:=|a|.也考查了绝对值的意义..【分析】由于4=即可.,5=,所以可写出一个二次根式,此根式的被开方数大于16且小于25【解答】解:比4大且比5小的无理数可以是.故答案为.【点评】本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为100°.【分析】根据等腰三角形的性质和三角形的内角和解答即可.【解答】解:∵∠DAC=130°,∠DAC+∠CAB=180°,∴∠CAB=50°,∵AC=BC,∴∠CBA=50°,∠ACB=180°﹣50°﹣50°=80°,∴∠ECF=180°﹣80°=100°,故答案为:100°.【点评】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.【分析】等腰三角形的腰和底边高线构成直角三角形,根据勾股定理即可求得底边上高线的长度.【解答】解:如图,∵AB=AC=3,BC=4,AD⊥BC,∴BD=DC=2,在△Rt ABD中,由勾股定理得:AD=故答案为:.=.【点评】本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【分析】依据分式的基本性质进行判断即可.【解答】解:在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变,故答案为:分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【点评】本题主要考查了解分式方程,解决问题的关键是掌握解分式方程的基本步骤.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为40°.【分析】利用基本作图可判断BG平分∠ABC,则∠ABG=∠CBG,再利用BG=CG得到∠C=∠CBG,然后根据三角形内角和计算∠C的度数.【解答】解:由作法得BG平分∠ABC,∴∠ABG=∠CBG,∵BG=CG,∴∠C=∠CBG,∴∠ABG=∠CBG=∠C,∵∠A+∠ABC+∠C=180°,即60°+3∠C=180°,∴∠C=40°.故答案为40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:【分析】先通分化为同分母分式,再利用同分母分式的加减法则计算,约分得到最简结果.【解答】解:原式=====.【点评】本题考查了分式的加减运算,掌握运算法则是解题的关键.18.计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.19.=.【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验即可.【解答】解:方程两边同时乘以2x(x+3)得,x+3=4x,整理得,3x=3,解得x=1,把x=1代入2x(x+3)得,2x(x+3)=8,故x=1是原分式方程的解.【点评】本题考查的是解分式方程,在解答此类问题时要注意验根.20.解方程:.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)整理,得2x=4(3分)x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE (SAS).22.已知a﹣b=2,求代数式的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,把a﹣b=2体代入计算即可求出值.【解答】解:原式====,整当a﹣b=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:原式====a(a+2)=a2+2a,∵a2+2a﹣1=0,∴原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.【分析】连接AC,首先由勾股定理求得AC2的值;然后在直角△ACD中,再次利用勾股定理来求AD的长度即可.【解答】解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.【分析】(1)根据要求画出图形即可.(2)根据AAS证明即可.【解答】(1)解:如图所示.(2)证明:∵直线l⊥AB,∴∠CAB=90°,∴∠CAE+∠DAB=90°,∵BD⊥m,∴∠ADB=90°,∴∠DAB+∠B=90°,∴∠CAE=∠B,∵BD⊥m于点D,CE⊥m于点E,∴∠CEA=∠DAB=90°,在△AEC和△BDA中,,∴△AEC≌△BDA(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.【分析】(1)分别以A,B为圆心,大于AB长的一半为半径画弧,过两弧的交点作直线l即可;(2)①依据图形即可得到∠ABC度数的取值范围.②连接AC,依据线段垂直平分线的性质以及等边三角形的性质,即可得到结论.【解答】解:(1)如图所示,直线l即为所求,(2)①当垂足E在线段BC上时,45°≤∠ABC<90°;②如图,连接AC,∵CD是AB的垂直平分线∴,CA=CB,又∵∠B=60°,∴△ABC是等边三角形,∴BC=AB,∴.【点评】本题主要考查了基本作图以及线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(△1)∵ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠P AB=∠MAC,AQ=AM∴∠P AM=∠BAC=60°,∴△APM为等边三角形∴P A=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
2019-2020学年新人教版八年级数学上册期末考试试卷及答案

2019-2020学年八年级数学第一学期期末考试试卷一、选择题(每小题3分,共30分)1、下列四个手机APP 图标中,是轴对称图形的是( )A 、B 、C 、D 、2、下列图形中具有稳定性的是( )A 、正方形B 、长方形C 、等腰三角形D 、平行四边形 3、下列长度的三根木棒能组成三角形的是( )A 、1 ,2 ,4B 、2 ,2 ,4C 、2 ,3 ,4D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为( )A 、152×105米B 、1.52×10﹣5米C 、﹣1.52×105米D 、1.52×10﹣4米 5、下列运算正确的是( )A 、(a +1)2=a 2+1B 、a 8÷a 2=a 4C 、3a ·(-a )2=﹣3a 3D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A 、AB =2BD B 、AD ⊥BC C 、AD 平分∠BAC D 、∠B =∠C第6题 第8题7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为( )A 、4B 、﹣4C 、0D 、18、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B =∠E =90°,判定△ABC ≌△DEF 的依据是( )A 、SASB 、ASAC 、AASD 、HL 9、分式2mn m +n中的m 、n 的值同时扩大到原来的5倍,则此分式的值( )A 、不变B 、是原来的15 C 、是原来的5倍 D 、是原来的10倍 10、如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A 、90°-12α B 、12α C 、90°+12α D 、360°-α二、填空题(每小题4分,共24分)11、若分式xx+2有意义,则x的取值范围为。
2019-2020学年人教版八年级上册期末数学试题含答案

2019-2020学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10 个小题,每小题2 分,共20 分)下列各题均有四个选项,其中只有一个是符合题意的.1.若代数式x 1x 1有意义,则x的取值范围是A.x 1且x 1B.x1C.x 1D.x≥-1且x 12.下列各式从左到右的变形正确的是x y x x 1x13x3x2 A.=-1B.=C.= D.()2= x y y y 1x y1y y y23.在实数223π,3,,39,3.14中,无理数有72A.2个B.3个C.4个D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是A.22B.19C.17D.17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是A.2311B.C.D.55327.下列事件中,属于必然事件的是A.2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B.某班级11名学生中,至少有两名同学的生日在同一个月份C.用长度分别为2cm,3cm,6cm的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数8.下列运算错误的是A.236B.623C.235D.(2)229.如图,AD是△ABC 的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则AC 长是△ABCA.9B.8C.7D.610.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8…31=332=933=27…新运算log2=1log4=2log8=3…log3=1log9=2log27=32 2 23 3 3…根据上表规律,某同学写出了三个式子:1①log16=4,②log25=5,③log=﹣1.其中正确的是2A.①②B.①③C.②③D.①②③二、填空题(共10 个小题,每小题2分,共20分)11.25的平方根是.12.计算:( 32)2=.13.若实数x,y满足x 3y 50,则代数式xy2的值是.14.已知:ABC中,AB AC,B A30,则A .15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:1①分别以B,C为圆心,以大于BC的同样长为半径画弧,两弧相交于两点M,N;2②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.MCB D AN(第17 题图)18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是系式是.14,则y与x 之间的关2521 1 2a 5a b 4b a 2b 4ab 3a 6b的值为.20.已知: 如图 △,ABC中,ABC 45, H是高 AD和 BE的交点,AD12 ,BC 17,则线段 BH的长为.三、解答题 (共 12 个小题,共 60 分)21.(4 分)51520 10 222.(5 分)计算:5( 515) ( 15 2 3)( 15 2 3)23.(4 分)已知:x y 1,( x 2 y )364,求代数式x y x 2 y2的值.24. (5 分)先化简,再求值:x 25x 3x 2 3x 2 6 x,其中 x 满足 x 2 3x 10 .25.(5 分).已知: 如图,点 B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5 分) 解关于 x的方程:3 2 x2x 1 x 1.27.(4 分) 在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6 个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为事件 A .请 完成下列表格:事件 Am 的值必然事件随机事件(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性 大小是 ,求 m 的值.28.(5 分) 某服装厂接到一份加工 3000 件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的 1.5 倍,结果提前 10 天完工.原计划每天加工 多少件服装?19.已知 3 ,则代数式29. (5 分) 在ABC中, AB,BC,AC三边的长分别为 5,3 2,17,求这个三角形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为 1),再在网格中画出格点 ABC 中,(即 ABC 三个顶点都在小正方形的顶点处),如图 1 所示,这样不需 要 ABC 高,借用网格就能计算出它的面积.(1)△ABC 的面积为;(2)如果MNP 三边的长分别为 10 , 2 5 , 26 ,请利用图 2 的正方形网格(每个小正方形的边长为 1)画出相应的格点MNP,并直接写出MNP的面积为.30.(5 分) 已知:如图,在ABC 中, C90.(1)求作: ABC 的角平分线 AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若 AC 6 , BC 8 ,求C D 的长.31.(5 分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①(填写序号即可);x 1 a 2b x y a 2 b 2;② ;③ ;④ . 其中是“和谐分式”是x 2 1 a 2 b 2 x 2 y 2 ( a b ) 2(2)若 a 为正整数,且x 1 x 2ax 4为“和谐分式”,请写出 a 的值;(3) 在化简4a 2a b ab 2b 3b 4时,小东和小强分别进行了如下三步变形:小东:原式=4a2a44a24aab2b3b b ab2b3b24a2b24a ab 2b3ab 2b3b2小强:原式=4a2a44a24a4aab b b b b2a b b224aa ba b b2显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是:请你接着小强的方法完成化简.,32.(6分)已知:如图,D是ABC的边BA延长线上一点,且AD AB,E是边AC上一点,且DE BC.求证:DEA C.23数学试题答案及评分参考一、选择题题号答案1D2A3B4A5C6B7D8C9D10B二、填空题题号11121314151617181920答案5526154075253cm2105y 3x 51213三、解答题21.解:原式=5255=25………………………………………3分(各1 分)…………………………………………4分22.解:原式=553(1512)…………………………………4分(前2分后2 分)=853…………………………………………5 分23解:∵x y 1,(x 2y)364,∴x y 1x2y 4………………………………………………2分(各1 分)解得x 2y 1……………………………………………4分(各1 分)∴x y213x2y222125………………………………………5分24解:原式=(x 2)(x 2)5x 33x(x 2)………………………1分=x293x(x 2)x 2x 3……………………………………………2分x 2=(x 3)(x 3)3x(x 2)x 2x 3……………………………3分=3x29x……………………………………………4分∵∴x23x 10 x23x 1∴原式=3x29x 3(x23x)313……………………5分25.证明:∵BD AE,∴BD AD AE AD.即AB DE.……………………………………………………………… 1 分∵BC∥EF,∴B E.………………………………………………………………2分又∵C F………………………………………………………………3分在ABC和DEF中,B E,C F,AB DE,∴ABC≌DEF.………………………………………………………4分∴AC DF.……………………………………………………………5分26.解:方程两边同乘以(x 1)(x 1),……………………………………………1分3(x 1)2x(x 1)2(x 1)(x 1).……………………………………………2分3x+32x22x 2x22.……………………………………………3分解这个整式方程,得x5.……………………………………………4分检验:当x 5时,(x 1)(x 1)0.…………………………………………5分x5是原方程的解.27.解:(1)事件A必然事件随机事件m的值43,2…………………………………………… 3分(2)依题意,得解得6 m 410 5m 2…………………………………………… 4 分…………………………………………… 5 分所以 m 的值为 228. 解:设该服装厂原计划每天加工 x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得3000 300010x 1.5 x…………………………………3 分 解这个方程得 x 100 …………………………………………4 分 经检验, x 100 是所列方程的根. ………………………………5 分 答:该服装厂原计划每天加工 100 件服装.29. 解: (1)ABC 的面积为 4.5………………………………………… 2 分正确画图………………………………………4 分(2)MNP 的面积为 7………………………………………… 5 分30. 解:(1)如图………………1 分 (2)过点 D 作 DE ⊥AB 于 E .………………2 分∵DE ⊥AB ,∠C =90°∴由题意可知 DE =DC , ∠DEB =90°又∵DE =DC ,AD =AD∴AD -ED =AD -DC∴AE =AC =6 ………………3 分∵A B =10 ∴BE =AC -AE =4 ………………4 分 设 DE =DC =x ,则 BD =8-x∴在 △R t BED 中8x216x 2∴x =3 ………………5 分 ∴CD =3.31. (1)②………………1 分2 2 2 2(2)4,5………………3分(2)小强通分时,利用和谐分式找到了最简公分母.………………4分解:原式4a24a24a ba b b24a ba b b24aa b4ab a b b2………………5分32.证明:过点D作BC的平行线交CA的延长线于点F.………………1 分∴C F.∵点A是BD的中点,∴AD=AB.……………………………2 分在△ADF和△ABC中,C F,DAF BAC,AD AB,∴△ADF≌△ABC.…………………3分∴DF=BC.…………………………… 4 分∵DE=BC,∴DE=DF.∴F DEA.…………………………………………………………5分又∵C F,∴C DEA.……………………………………………………………6分其它证法相应给分。
2019-2020学年新人教版八年级(上)期末数学试卷 (解析版)

2019-2020学年新人教版八年级(上)期末数学试卷一、选择题1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)下列长度的三条线段,能组成三角形的是()A.4,5,9B.8,8,15C.5,5,10D.6,7,143.(3分)已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°4.(3分)已知分式的值是零,那么x的值是()A.﹣1B.0C.±1D.15.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿坐标轴翻折后,若点A的对应点A′的坐标为(﹣1,3),则点B的对应点B′的坐标为()A.(2,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)6.(3分)若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.527.(3分)如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC=()A.45°B.60°C.67.5°D.75°8.(3分)若a=,b=,则下列结论正确的是()A.a=b B.a<b C.a>b D.ab=19.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.810.(3分)若x≠﹣1,则把﹣称为x的“和1负倒数”,如:2的“和1负倒数”为﹣,﹣3的“和1负倒数”为,若x1=,x2是x1的“和1负倒数”,x3是x2的“和1负倒数”,…依此类推,则x2020的值为()A.B.﹣C.D.﹣二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:(﹣2)0=.12.(4分)若正多边形的一个外角等于45°,则这个多边形是正边形.13.(4分)如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE,则∠ACE+∠DBC=°.14.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=.15.(4分)若x+=4,则的值是.16.(4分)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=.三、解答题(本题有8小题,共66分)17.(6分)(1)因式分解:a3﹣4a;(2)解方程:=.18.(6分)先化简,再求值:()÷,其中x=.19.(6分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.20.(6分)在天台县“城乡公交一体化改造项目”中,某工程队承接了6千米地下管廊铺设任务,为了赶在年底前完成,实际每天的工作效率比原计划提高20%,结果提前20天完成了任务.问实际每天铺设管廊多少米.21.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长.(用含a,b的式子表示)22.(12分)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.①若∠A=50°,则∠O=,∠P=;②若∠A=α,则∠O=,∠P=.(用含α的式子表示)(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P 与∠A,∠D的数量关系,并说明理由;(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系.23.(10分)对实数a,b定义运算“*”,,例如,4*3=42﹣32=7,3*4==﹣7,.(1)化简:(x+1)*x=;(2)化简:0*(x2+4x+9);(3)化简:(3x﹣5)*(x+3).24.(12分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB 的大小关系,并证明你的结论.参考答案一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)下列长度的三条线段,能组成三角形的是()A.4,5,9B.8,8,15C.5,5,10D.6,7,14解:A、4+5=9,不能组成三角形,故此选项错误;B、8+8>16,能组成三角形,故此选项正确;C、5+5=10,不能组成三角形,故此选项错误;D、6+7<14,不能组成三角形,故此选项错误;故选:B.3.(3分)已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°解:∵等腰三角形的一个角为100°,∴100°的角是顶角,底角为(180°﹣100°)=40°;故选:A.4.(3分)已知分式的值是零,那么x的值是()A.﹣1B.0C.±1D.1解:由题意可知:x﹣1=0且x+1≠0,∴x=1,故选:D.5.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿坐标轴翻折后,若点A的对应点A′的坐标为(﹣1,3),则点B的对应点B′的坐标为()A.(2,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)解:∵将线段AB沿坐标轴翻折后,若点A(1,3)的对应点A′的坐标为(﹣1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(﹣2,1)故选:C.6.(3分)若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.52解:∵a+b=6,ab=4,∴原式=(a+b)2+2ab=36+8=44,故选:B.7.(3分)如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC=()A.45°B.60°C.67.5°D.75°解:由翻折可知:△BED≌△BCD,∴∠EBD=∠CBD,∠E=∠C=90°∵△EDF是等腰三角形,∴∠EFD=∠AFB=∠ABF=45°,∴∠CBF=45°,∴∠CBD=∠CBE=22.5°,∴∠BDC=67.5°,故选:C.8.(3分)若a=,b=,则下列结论正确的是()A.a=b B.a<b C.a>b D.ab=1解:∵a===,b=,∴a=b.故选:A.9.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.8解:如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C.10.(3分)若x≠﹣1,则把﹣称为x的“和1负倒数”,如:2的“和1负倒数”为﹣,﹣3的“和1负倒数”为,若x1=,x2是x1的“和1负倒数”,x3是x2的“和1负倒数”,…依此类推,则x2020的值为()A.B.﹣C.D.﹣解:∵x1=,∴x2=﹣=﹣,x3=﹣=﹣,x4=﹣=,……∴此数列每3个数为一周期循环,∵2020÷3=673…1,∴x2020=x1=,故选:A.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:(﹣2)0=1.解:(﹣2)0=1.故答案为:1.12.(4分)若正多边形的一个外角等于45°,则这个多边形是正8边形.解:外角和是360°,且正多边形的每个外角相等,则多边形的边数是:360÷45=8,故答案为:8.13.(4分)如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE,则∠ACE+∠DBC=45°.解:∵∠BAC=90°,AB=AC,∴∠ABC=45°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD,∴∠ACE+∠DBC=∠ABD+∠DBC=∠ABC=45°,故答案为:4514.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=108°.解:∵CD=AC,∠A=48°,∴∠ADC=48°,由作图知MN是BC的垂直平分线,∴DB=DC,∴∠B=∠BCD=∠ADC=24°,则∠ACB=180°﹣∠A﹣∠B=108°,故答案为:108°.15.(4分)若x+=4,则的值是.解:原式==当x+=4时,原式=,故答案为:.16.(4分)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=.解:如图,连接CD,DB,过点D作DM⊥AB于点M,∵AD平分∠FAB,∴∠FAD=∠DAM,且AD=AD,∠AFD=∠AMD,∴△AFD≌△AMD(AAS)∴AF=AM,FD=DM,∵DE垂直平分BC∴CD=BD,且DF=DM,∴Rt△CDF≌Rt△BDM(HL)∴BM=CF∵AB=AM+BM=AF+MB=AC+CF+MB=AC+2CF∴8=5+2CF∴CF=故答案为:三、解答题(本题有8小题,共66分)17.(6分)(1)因式分解:a3﹣4a;(2)解方程:=.解:(1)原式=a(a2﹣4)=a(a+2)(a﹣2);(2)方程两边同时乘以3(x+1)得:3x=2,解得:x=,经检验x=是分式方程的解.18.(6分)先化简,再求值:()÷,其中x=.解:()÷===,当x=时,原式==﹣1.19.(6分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.解:(1)∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN,又∵MN∥BC,∴∠AMN=∠B,∠CMN=∠BCM,∴∠B=∠BCM=∠ACM,∵∠A=90°,∴∠B=×90°=30°;(2)由(1)得,∠AMN=∠B=30°,∠MCN=∠CMN,∠A=90°,∴MN=2AN=2,MN=CN,∴CN=2.20.(6分)在天台县“城乡公交一体化改造项目”中,某工程队承接了6千米地下管廊铺设任务,为了赶在年底前完成,实际每天的工作效率比原计划提高20%,结果提前20天完成了任务.问实际每天铺设管廊多少米.解:设原计划每天铺设管廊x米,则实际每天铺设管廊(1+20%)x米,根据题意得:﹣=20,解得:x=50,经检验,x=50是所列方程的解,且符合题意,∴(1+20%)x=60.答:实际每天铺设管廊60米.21.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长a﹣b.(用含a,b的式子表示)解:(1)∵∠ACB=90°,∴∠ACD+∠BCD=90°∵AD⊥CE,BE⊥CE,∴∠D=∠BEC=90°,∴∠CBE+∠BCD=90°,∴∠ACD=∠CBE,且AC=BC,∠ADC=∠BEC=90°∴△ACD≌△CBE(AAS),∴CE=AD=a,∵DC=CE+DE∴BE=CD=a+b(2)∵∠ACB=90°,∴∠ACD+∠BCD=90°∵AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°,∴∠CBE+∠BCD=90°,∴∠ACD=∠CBE,且AC=BC,∠ADC=∠BEC=90°∴△ACD≌△CBE∴CE=AD=a,∵CD=CE﹣DE∴BE=CD=a﹣b,故答案为:a﹣b22.(12分)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.①若∠A=50°,则∠O=115°,∠P=65°;②若∠A=α,则∠O=90°+α,∠P=90°﹣α.(用含α的式子表示)(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P 与∠A,∠D的数量关系,并说明理由;(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系∠P=360°﹣(∠A+∠B+∠E+∠F).解:(1)①解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣50°)=115°;∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣50°)]=65°;故答案为:115°;65°.②解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣α)=90°+α;∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣α)]=90°﹣α;故答案为:90°+α;90°﹣α,(2)解:∠P=180°﹣(∠A+∠D).理由如下:∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠EBC+∠FCB)=180°﹣[360°﹣(∠ABC+∠DCB)]=(∠ABC+∠DCB)=(360°﹣∠A﹣∠D)=180°﹣(∠A+∠D).(3)∠P=180°﹣(∠GCD+∠HDC)=180°﹣(180°﹣∠BCD+180°﹣∠CDE)=(∠BCD+∠CDE)=[(6﹣2)×180°﹣(∠A+∠B+∠E+∠F)]=360°﹣(∠A+∠B+∠E+∠F).故答案为:∠P=360°﹣(∠A+∠B+∠E+∠F)23.(10分)对实数a,b定义运算“*”,,例如,4*3=42﹣32=7,3*4==﹣7,.(1)化简:(x+1)*x=2x+1;(2)化简:0*(x2+4x+9);(3)化简:(3x﹣5)*(x+3).解:(1)因为x+1>x,所以:(x+1)*x=(x+1)2﹣x2=2x+1故答案为:2x+1(2)因为x2+4x+9=(x+2)2+5>0,所以:0*(x2+4x+9)==﹣1;(3)当(3x﹣5)≥(x+3),即x≥4时.(3x﹣5)*(x+3)=(3x﹣5)2﹣(x+3)2=8x2﹣36x+16;当(3x﹣5)<(x+3),即x<4时.(3x﹣5)*(x+3)===.24.(12分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB 的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB。
2019--2020学年第一学期八年级上册期末考试数学试题及答案
八年级数学试卷注意:本试卷共8页,三道大题,26小题。
总分120分。
时间120分钟。
题号一二20212223242526总分得分得分评卷人一、选择题(本题共16小题,总分42分。
1-10小题,每题3分;11-16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)题号12345678910111213141516答案1.点P(﹣1,2)关于y轴的对称点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)∆≅∆,则∠α等于()2. 如图,已知ABC EFGA.72°B.60°C.58°D.50°3.用一条长16cm的细绳围成一个等腰三角形,若其中一边长4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm 4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.一个多边形,每一个外角都是45°,则这个多边形的边数是()A.6 B.7 C.8 D.96.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值是()A.﹣2B.2 C.0D.17.若3x=4,3y=6,则3x+y的值是()A.24 B.10 C.3 D.28. “已知∠AOB,求作射线OC,使OC平分∠AOB”的作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①9. 下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.3x3y2÷xy2=3x4D.x(x﹣2)=﹣2x+x210.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy11.在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD等于()A.30°B.45°C.50°D.75°12. 某市政工程队准备修建一条长1200米的污水处理管道。
人教版2019-2020学年八年级上册期末数学试题及答案
2019-2020学年八年级上册期末数学试卷一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=22.若代数式A.x=0有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3有意义,则x的取值是()B.x≠0C.x≥0D.x>03.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°5.下列多边形中,内角和为720°的图形是()A.B.C.D.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.10.实数的平方根是.11.=.12.写出一个比4大且比5小的无理数:.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:18.计算:19.=.20.解方程:.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.22.已知a﹣b=2,求代数式的值.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.参考答案与试题解析一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=2有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.2.若代数式A.x=0有意义,则x的取值是()B.x≠0C.x≥0D.x>0【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:x≥0,故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.3.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°【分析】依据三角形内角和定理,即可得到∠C的度数,再根据平行线的性质,即可得到∠FDB的度数.【解答】解:∵∠A=40°,∠B=60°,∴∠C=80°,又∵DF∥AC,∴∠CDF=∠C=80°,∴∠FDB=100°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列多边形中,内角和为720°的图形是()A.B.C.D.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)180°=720°,解得:n=6.则这个正多边形的边数是六,故选:D.【点评】本题考查了多边形内角和定理,此题只要结合多边形的内角和公式,寻求等量关系,构建方程求解.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A【分析】首先判断出B.B C.C D.D的取值范围,然后根据:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判定出这个点是哪个即可.【解答】解:∵2.5<<3,∴在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是D.故选:D.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同【分析】利用随机事件发生的可能性是否一样对各选项进行判断.【解答】解:A、在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性不相同,应该对50件产品编序号,然后抽取序号的方式,这样满足是随机事件且该事件每个结果发生的可能性都相等;B、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等;C、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不相同;D、口袋里有5个颜色不同的球,从口袋里随意摸出一个球,满足摸出每个球的可能性相同,则要使5个球只是颜色不同,其它都一样.故选:B.【点评】本题考查了可能性的大小:对于机事件发生的可能性(概率)的计算方法,只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣a,得.∴括号内应填入﹣ab.故答案为:﹣ab.【点评】本题考查了分式的基本性质,解题时注意:分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.实数的平方根是.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±)2=,∴实数的平方根是±.故答案为±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.【分析】根据简=﹣2.=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣故答案为﹣2.|=﹣(2﹣)=﹣2.【点评】本题考查了二次根式的性质与化简:12.写出一个比4大且比5小的无理数:=|a|.也考查了绝对值的意义..【分析】由于4=即可.,5=,所以可写出一个二次根式,此根式的被开方数大于16且小于25【解答】解:比4大且比5小的无理数可以是.故答案为.【点评】本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为100°.【分析】根据等腰三角形的性质和三角形的内角和解答即可.【解答】解:∵∠DAC=130°,∠DAC+∠CAB=180°,∴∠CAB=50°,∵AC=BC,∴∠CBA=50°,∠ACB=180°﹣50°﹣50°=80°,∴∠ECF=180°﹣80°=100°,故答案为:100°.【点评】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.【分析】等腰三角形的腰和底边高线构成直角三角形,根据勾股定理即可求得底边上高线的长度.【解答】解:如图,∵AB=AC=3,BC=4,AD⊥BC,∴BD=DC=2,在△Rt ABD中,由勾股定理得:AD=故答案为:.=.【点评】本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【分析】依据分式的基本性质进行判断即可.【解答】解:在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变,故答案为:分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【点评】本题主要考查了解分式方程,解决问题的关键是掌握解分式方程的基本步骤.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为40°.【分析】利用基本作图可判断BG平分∠ABC,则∠ABG=∠CBG,再利用BG=CG得到∠C=∠CBG,然后根据三角形内角和计算∠C的度数.【解答】解:由作法得BG平分∠ABC,∴∠ABG=∠CBG,∵BG=CG,∴∠C=∠CBG,∴∠ABG=∠CBG=∠C,∵∠A+∠ABC+∠C=180°,即60°+3∠C=180°,∴∠C=40°.故答案为40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:【分析】先通分化为同分母分式,再利用同分母分式的加减法则计算,约分得到最简结果.【解答】解:原式=====.【点评】本题考查了分式的加减运算,掌握运算法则是解题的关键.18.计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.19.=.【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验即可.【解答】解:方程两边同时乘以2x(x+3)得,x+3=4x,整理得,3x=3,解得x=1,把x=1代入2x(x+3)得,2x(x+3)=8,故x=1是原分式方程的解.【点评】本题考查的是解分式方程,在解答此类问题时要注意验根.20.解方程:.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)整理,得2x=4(3分)x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE (SAS).22.已知a﹣b=2,求代数式的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,把a﹣b=2体代入计算即可求出值.【解答】解:原式====,整当a﹣b=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:原式====a(a+2)=a2+2a,∵a2+2a﹣1=0,∴原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.【分析】连接AC,首先由勾股定理求得AC2的值;然后在直角△ACD中,再次利用勾股定理来求AD的长度即可.【解答】解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.【分析】(1)根据要求画出图形即可.(2)根据AAS证明即可.【解答】(1)解:如图所示.(2)证明:∵直线l⊥AB,∴∠CAB=90°,∴∠CAE+∠DAB=90°,∵BD⊥m,∴∠ADB=90°,∴∠DAB+∠B=90°,∴∠CAE=∠B,∵BD⊥m于点D,CE⊥m于点E,∴∠CEA=∠DAB=90°,在△AEC和△BDA中,,∴△AEC≌△BDA(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.【分析】(1)分别以A,B为圆心,大于AB长的一半为半径画弧,过两弧的交点作直线l即可;(2)①依据图形即可得到∠ABC度数的取值范围.②连接AC,依据线段垂直平分线的性质以及等边三角形的性质,即可得到结论.【解答】解:(1)如图所示,直线l即为所求,(2)①当垂足E在线段BC上时,45°≤∠ABC<90°;②如图,连接AC,∵CD是AB的垂直平分线∴,CA=CB,又∵∠B=60°,∴△ABC是等边三角形,∴BC=AB,∴.【点评】本题主要考查了基本作图以及线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(△1)∵ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠P AB=∠MAC,AQ=AM∴∠P AM=∠BAC=60°,∴△APM为等边三角形∴P A=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
2019-2020学年人教版八年级上学期期末考试数学试题(含答案)
2019-2020学年人教版八年级上学期期末考试数学试题(本卷共五个大题,满分150分,考试时间 120分钟)一、选择题(每小题4分,共48分)每小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列几个图形是国际通用的交通标志,其中是轴对称图形的有( )个A .4B .3C .2D .1 2.若分式11x +有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x =- C .1x ≠ D .1x ≠- 3.下列计算正确的是( )A .8442x x x =+ B .()326x yx y =C .210532xy )xy ()y x (=÷D .()853x x x =-⋅-4.已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,还需补充一个条件,下列选项中不能满足要求的是( )A .AB DE = B .A D ∠=∠C .AB ∥DED .BC EF = 5.等腰三角形的两边分别为3和6,则它的周长等于( ) A.12 B.12或15 C.15或18 D.156.如图,△ABC 中,AB=AC =10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( ) A .5 B .6 C .8 D .107.已知xx mn ==23,,2m n x +=( )A.12B. 108C. 18D. 36 8.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+- 9.方程11161122+=---x x x 的增根为( ) (4题图)A.1B.1和-1C. -1D.010.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C .20D .21 11. 如图,ABC ∆中,A ∠=84°,BD 、CD 分别平分ABC ∠、ACB ∠,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分MBC ∠、BCN ∠,BF 、CF 分别平分EBC ∠、ECQ ∠,则F ∠=( )A.15°B.12°C.18°D.24°12. 初二(1)班为元旦文艺表演者发奖,用一定数量的钱去买奖品.若以1支钢笔和2个笔记本为一份奖品,正好能买60份;若以1支钢笔和3个笔记本为一份奖品,正好能买50份;若以1支钢笔和1个笔记本为一份奖品,则这笔钱能买奖品( )份 A .80 B .70 C .75 D .55二、填空题:(每小题4分,共24分)请将答案填在题后的横线上. 13.利用科学记数法表示:0.0000000135= . 14. 若229a ka ++是一个完全平方式,则k 等于 . 15.分解因式:222(4)16x x +-=___________;16. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .17.若关于x 的方程的解是负数,则m 的取值范围是 .18.正方形ABCD 中,E 、F 分别在AD 、DC 上,15ABE CBF ∠=∠=︒,G 是AD 上另一点,且 120BGD ∠=︒,连接EF 、BG 、FG ,EF 、BG交于点H ,则下面结论:①DE DF =;②BEF ∆ 是等边三角形;③45BGF ∠=︒;④BG EG FG =+中. 正确的是 .(请填番号)三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.计算:|2|8)31()9()1(3202013--+⨯----π.20.解分式方程:11262213x x=---.HG FE DCBA四、解答题:(21题、22题每小题8分,23、24题每小题10分,共36分)解答时必须给出必要的演算过程或推理步骤.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC ∆的顶点均在格点 (1)作出ABC ∆关于y 轴对称的111A B C ∆;(2) 写出1A 、1B 、1C 三点的坐标,并求111A B C ∆的面积.22.如图,点E 、F 在线段BD 上,AB CD =,B D ∠=∠,BF DE =. 求证:(1)AE CF =; (2)AF //CE .23.先化简,再求值:12)11(222+-+÷---+x x x x x x x x ,其中x 为不等式组⎪⎩⎪⎨⎧≤+≤252322-x x的一个整数解.24.ABC ∆中,AB BC ⊥,AB BC =,E 为BC 上一点,连接AE ,过点C 作CF AE ⊥交AE 的延长线于点F ,连结BF ,过点B 作BG BF ⊥交AE 于G . (1)求证:ABG ∆≌CBF ∆;(2)若E 为BC 中点,求证:CF EF EG +=.五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤. 25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三) 若由甲乙两队合作做4天 ,剩下的工程由乙队单独做,也正好按规定工期完工. (1)请你求出完成这项工程的规定时间;来源:学*科*网Z*X*X*K](2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.AC26.长方形ABCD 中,18AB CD cm ==,以AB 为边向上作正ABE ∆,AE 、BE 分别交CD 于F 、G ,5DF cm =,两动点P 、Q 运动速度分别为4scm 、v (scm).(1)AF 的长为 cm ;(2)若点P 从A 出发沿线段AB 向B 运动,同时点Q 从B 出发沿线段BE 向点E 运动,设运 动时间为()t s ,在运动过程中,以A 、F 、P 为顶点的三角形和以P 、B 、Q 为顶点的三 角形全等,求Q 的运动速度v ;(3)若点Q 以(2)中的速度从点B 出发,同时点P 以原来的速度从点A 出发,逆时针沿四边形ABGF 运动.问P 、Q 会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间 P 、Q 第一次在四边形ABGF 的何处相遇?AFGEDCBQP八年级数学答案一.选择题(每小题4分,共48分) 1-12 ADDAD BADAC BC 二、填空题:(每小题4分,共24分)13、8-1035.1⨯ 14、3± 15、()()2222-+x x16、9448448=-++x x 17、m <2, 且m ≠0 18、①、②、④ 三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.2-291-1-+⨯=原式 ……………………5分 =-10 ……………………7分 20.解:去分母得:1=3x-1+4 ……………………3分X=32-……………………5分 经检验:X=32-是原方程的根 ……………………7分四.解答题:(每小题10分,共40分)解答时必须给出必要的演算过程或推理步骤 21.(1)图略 ……………………2分 (2)()()()112240111,,,,,C B A 三角形111A B C ∆的面积=2…10分22.证明略23.原式=()222)1()1(11-+÷---+x x x x x x x ……………………3分 =)1()1(112+-⨯-+x x x x x ……………………5分 =xx 1- ……………………7分解不等式得:21-≤≤x ,因为分式的分母不能为0,且x 为整数,所以x=2 …………9分 原式=21……………………10分 24.(1)略 ……………………4分(2)证明:过B 做BH ⊥AF 于H∵E 是BC 的中点 ∴BE=EC又∵CF AE ⊥,∴∠CFE=∠BFG ∠CEF=∠BEH ∴△CFE ≌△BEH ;∴EH=EF,BH=CF又由(1)ABG ∆≌CBF ∆;∴BG=BF 又∵BG BF ⊥ ∴△BGF 是等腰直角三角形 ∴∠BGH=45°,又知∠BHG=90°∴∠HBG=45°∴△BHG 是等腰直角三角形 ∴BH=GH又∵GE=GH+HE ∴GH=CF+EF ……………………10分 五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤.25.(1)设:完成这项工程的规定时间为x 天。
人教版2019-2020学年八年级(上)期末数学试卷及答案
人教版2019-2020学年八年级(上)期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.102.(3分)点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.(3分)下列运算正确的是()A.a2+a2=a4B.(﹣2a3)2=4a6C.(a﹣2)(a+1)=a2+a﹣2D.(a﹣b)2=a2﹣b24.(3分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.5.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对6.(3分)一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4B.6C.8D.107.(3分)下列各式从左到右的变形正确的是()A.=B.C.D.8.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x9.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)10.(3分)已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n11.(3分)已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°12.(3分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)当x时,分式有意义.14.(3分)三角形的三边长分别为5,8,2x+1,则x的取值范围是.15.(3分)化简()的结果是.16.(3分)如果x2+mx+4是一个完全平方式,那么m的值是.17.(3分)如图,已知∠AOB=30°,点P在边OA上,OD=DP=14,点E,F在边OB上,PE=PF.若EF=6,则OF的长为.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t>0).若点P从A点出发沿AC以每秒3个单位的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回到点A停止运动;点Q从点C出发沿CB以每秒1个单位的速度向点B匀速运动,到达点B后停止运动,当t=时,△APD和△QBE全等.三.解答题(共8小题,满分66分)19.(6分)化简:(1);(2).20.(6分)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(﹣2,﹣3),“馬”位于点(1,﹣3),(1)画出所建立的平面直角坐标系;(2)分别写出“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标.21.(8分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.22.(8分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).(1)若点M、N关于x轴对称,试求a,b的值;(2)若点M、N关于y轴对称,试求(b+2a)2019.23.(8分)如图,已知:点B、F、C、E在一条直线上,∠B=∠E,BF=CE,AC∥DF.求证:△ABC≌△DEF.24.(8分)如图,在Rt△ABC中,∠ACB=Rt∠,∠B=30°,AE是∠BAC的角平分线,CD是AB上的高,请从图中找出一个等边三角形,并说明理由.25.(10分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?26.(12分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.2.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.3.【解答】解:A.a2+a2=2a2,错误;C.(a﹣2)(a+1)=a2+a﹣2a﹣2=a2﹣a﹣2,错误D.(a﹣b)2=a2﹣2ab+b2,错误故选:B.4.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.5.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.6.【解答】解:多边形的边数为:360÷45=8.故选:C.7.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选:C.8.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.9.【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.10.【解答】解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.11.【解答】解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.12.【解答】解:设原来参加游览的同学共x人,由题意得﹣=3.故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:因为4x+5≠0,所以x≠﹣.故答案为≠.14.【解答】解:根据三角形的三边关系可得:8﹣5<2x+1<5+8,解得:1<x<6.故答案为:1<x<6.15.【解答】解:()==﹣,故答案为:﹣.16.【解答】解:∵x2+mx+4是一个完全平方式,∴m=±4,故答案为:±417.【解答】解:作PM⊥OB于M,如图所示:∵OD=DP=14,∴∠DPO=∠AOB=30°,∴∠PDM=∠FPD+∠AOB=60°,∵PM⊥OB,∴∠DPM=30°,∴DM=PD=7,又∵PE=PF,∴EM=FM=EF=3,∴DF=DM﹣FM=7﹣3=4,∴OF=DF+OD=4+14=18;故答案为:18.18.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵PD⊥AB,∴∠A+∠APD=90°,∴∠APD=∠B,∴当AP=BQ时,△APD和△QBE全等,当点P从A点出发沿AC向点C运动时,3t=6﹣t,解得,t=1.5(秒),当点P沿CA返回时,8﹣3(t﹣)=6﹣t,解得,t=5(秒),故答案为:1.5秒或5秒.三.解答题(共8小题,满分66分)19.【解答】解:(1)原式==.(2)原式====.20.【解答】解:(1)∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣3).“馬”位于点(1,﹣3),可得出原点的位置,即可建立直角坐标系;(2)“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标是:兵(﹣4,0);炮(﹣1,﹣1).21.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.22.【解答】解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得,∴(b+2a)2019=1.23.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).24.【解答】解:结论:△CEF为等边三角形,理由:在Rt△ACB中,∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵AE平分∠CAB,∴∠CAE=∠CAB=30°,∴∠AEC=90°﹣∠CAE=60°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=60°∴∠CEF=∠ECF=∠CFE=60°,∴△CEF是等边三角形.25.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.26.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省宁德市八年级(上)期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(3分)在实数3,,,0中,无理数是()A.3 B.C.D.02.(3分)如图,AB∥CD,AD,BC相交点O,若∠D=43°,∠BOD=78°,则∠B的大小是()A.35°B.43°C.47°D.78°3.(3分)下列不是方程2+3y=13解的是()A.B.C.D.4.(3分)下列各点中,在如图所示阴影区域内的是()A.(3,5)B.(﹣3,2)C.(2,﹣3)D.(﹣3,5)5.(3分)根据下列表述,能确定具体位置的是()A.某电影院2排B.大桥南路C.北偏东30°D.东经108°,北纬43°6.(3分)与1+最接近的整数是()A.1 B.2 C.3 D.47.(3分)下列图象不能反映y是的函数的是()A .B .C .D .8.(3分)已知函数y=(m﹣3)+2,若函数值y随的增大而减小,则m的值不可能是()A.0 B.1 C.2 D.59.(3分)某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游 D.两个班的最高分在八(2)班10.(3分)已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C.D.12二、填空题(本大题有6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.(2分)小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9.这组数据的中位数是.12.(2分)4的立方根是.13.(2分)如图所示,数轴上点A所表示的数为a,则a的值是.14.(2分)把命题“直角三角形的两个锐角互余”改写成“如果…,那么…”的形式为.15.(2分)已知函数y=+b的部分函数值如表所示,则关于的方程+b+3=0的解是.…﹣2﹣101…y…531﹣1…16.(2分)小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .三、解答题(本大题有8小题,共58分.请在答题卡的相应位置作答)17.(12分)计算:(1)|﹣1|﹣+()﹣2;(2)+×;(3)﹣2.18.(5分)解方程组:19.(5分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.20.(6分)如图,已知等腰△AOB,AO=AB=5,OB=6.以O为原点,以OB边所在的直线为轴,以垂直于OB的直线为y轴建立平面直角坐标系.(1)求点A的坐标;(2)若点A关于y轴的对称点为M,点N的横、纵坐标之和等于点A的横坐标,请在图中画出一个满足条件的△AMN,并直接在图上标出点M,N的坐标.21.(6分)某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.822.(7分)某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)你能利用该统计图求出平均数、众数和中位数中的哪些统计量?并直接写出结果;(2)小颖认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么?(3)小亮认为,可用该统计图求出方差.你认同他的看法吗?若认同,请求出方差;若不认同,请说明理由.23.(8分)某化妆品销售公司每月收益y万元与销售量万件的函数关系如图所示.(收益=销售利润﹣固定开支)(1)写出图中点A与点B的实际意义;(2)求y与的函数表达式;(3)已知目前公司每月略有亏损,为了让公司扭亏为盈,经理决定将每件产品的销售单价提高2元,请在图中画出提价后y与函数关系的图象,并直接写出该函数的表达式.(要标出确定函数图象时所描的点的坐标)24.(9分)在平面直角坐标系中,长方形OABC的边OC,OA分别在轴和y轴上,点B的坐标是(5,3),直线y=2+b与轴交于点E,与线段AB交于点F.(1)用含b的代数式表示点E,F的坐标;(2)当b为何值时,△OFC是等腰三角形;(3)当FC平分∠EFB时,求点F的坐标.福建省宁德市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(3分)在实数3,,,0中,无理数是()A.3 B.C.D.0【解答】解:3,0,是有理数,是无理数,故选:B.2.(3分)如图,AB∥CD,AD,BC相交点O,若∠D=43°,∠BOD=78°,则∠B的大小是()A.35°B.43°C.47°D.78°【解答】解:∵AB∥CD,∴∠A=∠D=43°,∵∠BOD是△AOB的外角,∴∠B=∠BOD﹣∠A=78°﹣43°=35°,故选:A.3.(3分)下列不是方程2+3y=13解的是()A.B.C.D.【解答】解:A、当=2、y=3时,左边=2×2+3×3=13=右边,是方程的解;B、当=﹣1、y=5时,左边=2×(﹣1)+3×5=13=右边,是方程的解;C、当=﹣5、y=1时,左边=2×(﹣5)+3×1=﹣7≠右边,不是方程的解;D、当=8、y=﹣1时,左边=2×8+3×(﹣1)=13=右边,是方程的解;故选:C.4.(3分)下列各点中,在如图所示阴影区域内的是()A.(3,5)B.(﹣3,2)C.(2,﹣3)D.(﹣3,5)【解答】解:A、(3,5)在第一象限,不在所示区域;B、(﹣3,2)在所示区域;C、(2,﹣3)在第四象限,不在所示区域;D、(﹣3,5)在所示区域上方,不在所示区域;故选:B.5.(3分)根据下列表述,能确定具体位置的是()A.某电影院2排B.大桥南路C.北偏东30°D.东经108°,北纬43°【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬43°,能确定具体位置,故本选项正确.故选:D.6.(3分)与1+最接近的整数是()A.1 B.2 C.3 D.4【解答】解:∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<<2.3.∴3.2<1+<3.3.∴与1+最接近的整数是3.故选:C.7.(3分)下列图象不能反映y是的函数的是()A.B.C.D.【解答】解:A、当取一值时,y有唯一与它对应的值,y是的函数,错误;B、当取一值时,y有唯一与它对应的值,y是的函数,错误;C、当取一值时,y没有唯一与它对应的值,y不是的函数,正确;D、当取一值时,y有唯一与它对应的值,y是的函数,错误;故选:C.8.(3分)已知函数y=(m﹣3)+2,若函数值y随的增大而减小,则m的值不可能是()A.0 B.1 C.2 D.5【解答】解:∵一次函数y=(m﹣3)+2,y随的增大而减小,∴一次函数为减函数,即m﹣3<0,解得:m<3,所以m的值不可能为5,故选:D.9.(3分)某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游 D.两个班的最高分在八(2)班【解答】解:A、∵95>94,∴八(2)班的总分高于八(1)班,不符合题意;B、∵8.4<12,∴八(2)班的成绩比八(1)班稳定,不符合题意;C、∵93<94,∴八(2)班的成绩集中在中上游,不符合题意;D、无法确定两个班的最高分在哪个班,符合题意.故选:D.10.(3分)已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C.D.12【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13•BP=5×12,解得:BP=.故选:A.二、填空题(本大题有6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.(2分)小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9.这组数据的中位数是9小时.【解答】解:将数据从小到大重新排列为7、8、9、9、9、10、10,则这组数据的中位数为9小时,故答案为:9小时.12.(2分)4的立方根是.【解答】解:4的立方根是,故答案为:.13.(2分)如图所示,数轴上点A所表示的数为a,则a的值是﹣.【解答】解:由图可得,a=﹣,故答案为:﹣.14.(2分)把命题“直角三角形的两个锐角互余”改写成“如果…,那么…”的形式为如果一个三角形是直角三角形,那么它的两个锐角互余.【解答】解:如果一个三角形是直角三角形,那么它的两个锐角互余.15.(2分)已知函数y=+b的部分函数值如表所示,则关于的方程+b+3=0的解是=2 .…﹣2﹣101…y…531﹣1…【解答】解:∵当=0时,y=1,当=1,y=﹣1,∴,解得:,∴y=﹣2+1,当y=﹣3时,﹣2+1=﹣3,解得:=2,故关于的方程+b+3=0的解是=2,故答案为:=2.16.(2分)小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S=1 = a2+b2+ab .c2+ab ,S2【解答】解:如图所示:S=c2+ab×2=c2+ab,1=a2+b2+ab×2=a2+b2+ab.S2故答案为:c2+ab,a2+b2+ab.三、解答题(本大题有8小题,共58分.请在答题卡的相应位置作答)17.(12分)计算:(1)|﹣1|﹣+()﹣2;(2)+×;(3)﹣2.【解答】解:(1)原式=﹣1﹣3+9=8﹣2;(2)原式=+=+2=;(3)原式=﹣﹣2=4﹣2﹣2=0.18.(5分)解方程组:【解答】解:,①×2+②,得:7=14,解得:=2,将=2代入①,得:4﹣y=3,解得:y=1,则方程组的解为.19.(5分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.【解答】证明:∵∠DCE=∠E,∴DC∥BE,∴∠D=∠DAE,又∵∠B=∠D,∴∠B=∠DAE,∴AD∥BC.20.(6分)如图,已知等腰△AOB,AO=AB=5,OB=6.以O为原点,以OB边所在的直线为轴,以垂直于OB的直线为y轴建立平面直角坐标系.(1)求点A的坐标;(2)若点A关于y轴的对称点为M,点N的横、纵坐标之和等于点A的横坐标,请在图中画出一个满足条件的△AMN,并直接在图上标出点M,N的坐标.【解答】解:(1)作AH⊥OB于H,∵AO=AB,∴OH=HB=3,在Rt△AOH中,AH==4,∴A(3,4).(2)如图M(﹣3,4),N(3,0),△AMN即为所求.21.(6分)某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8【解答】解:设购买笔记本件,购买水笔y件,依题意有,解得,2×25+1.8×15=50+27=77(元),90﹣77=13(元).答:从网店购买这些奖品可节省13元.22.(7分)某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)你能利用该统计图求出平均数、众数和中位数中的哪些统计量?并直接写出结果;(2)小颖认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么?(3)小亮认为,可用该统计图求出方差.你认同他的看法吗?若认同,请求出方差;若不认同,请说明理由.【解答】解:(1)平均数==15,众数为14,中位数为15;(2)判断错误.可能抽到13岁,14岁,16岁,17岁;(3)可以.设有n个运动员,则S2=•[10%•n(13﹣15)2+30%•n(14﹣15)2+25%•n•(15﹣15)2+20%•n•(16﹣15)2+15%•n(17﹣15)2]=1.5.23.(8分)某化妆品销售公司每月收益y万元与销售量万件的函数关系如图所示.(收益=销售利润﹣固定开支)(1)写出图中点A与点B的实际意义;(2)求y与的函数表达式;(3)已知目前公司每月略有亏损,为了让公司扭亏为盈,经理决定将每件产品的销售单价提高2元,请在图中画出提价后y与函数关系的图象,并直接写出该函数的表达式.(要标出确定函数图象时所描的点的坐标)【解答】解:(1)点A表示固定开支为20万元,点B表示当销售量为5万件时,利润为0万元;(2)设y=+b,把A(0,﹣20),B(5,0)代入得到,解得,∴y=4﹣20.(3)由题意=5时,y=10,设y=′+b′,则有,解得,∴y=6﹣20,函数图象如图所示:24.(9分)在平面直角坐标系中,长方形OABC的边OC,OA分别在轴和y轴上,点B的坐标是(5,3),直线y=2+b与轴交于点E,与线段AB交于点F.(1)用含b的代数式表示点E,F的坐标;(2)当b为何值时,△OFC是等腰三角形;(3)当FC平分∠EFB时,求点F的坐标.【解答】解:(1)∵四边形OABC是矩形,∴BF∥OC,∵B(5,3),∴点F的纵坐标为3,∴3=2+b,∴=,∴F(,3),对于直线y=2+b,令y=0,得到=﹣,∴E(﹣,0).(2)①当FO=FC时,OF=AB=,∴=,∴b=﹣2.②当OF=OC时,AF==4,∴=4,∴b=﹣5.③当CF=OC时,FB=4,AF=1,∴=1,∴b=﹣1.(3)如图,连接CF.∵AB∥OC,CF平分∠EFB,∴∠BFC=∠FCE=∠EFC,∴EF=EC,∴EF2=EC2,∵F(,3),E(﹣,0),∴32+(+)2=(5+)2,∴b=﹣10+3或﹣10﹣3(舍弃).∴F(,3).。