【K12教育学习资料】高中数学第四章导数及其应用4.3导数在研究函数中的应用4.3.3三次函数的性质
导数及其应用知识点总结

导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。
在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。
一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。
二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。
2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。
3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。
4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。
5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。
三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。
2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。
3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。
高中数学 导数及其应用知识归纳

导数及其应用知识归纳一、导数的概念1. 导数的物理意义:瞬时速率一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x ∆→+∆-∆。
2. 导数的几何意义:切线斜率曲线的切线通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是 00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数。
()y f x =的导函数有时也记作y ',即 0()()()lim x f x x f x f x x∆→+∆-'=∆ 二、导数的计算1. 基本初等函数的导数公式① 若()f x x α=,则1()f x x αα-'=;② 若()sin f x x =,则()cos f x x '=;③ 若()cos f x x =,则()sin f x x '=-;④ 若()x f x a =,则()ln xf x a a '=; ⑤ 若()x f x e =,则()xf x e '=; ⑥ 若()log x a f x =,则1()ln f x x a'=; ⑦ 若()ln f x x =,则1()f x x '=. 2. 导数的运算法则[()()]()()()()f x g x f x g x f x g x '''•=•+•2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3. 复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数,则有(())()y f g x g x '''=•三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =在这个区间单调递减。
高中数学 第4章 导数及其应用 4.3 导数在研究函数中的应用 4.3.1 利用导数研究函数的单调性课堂讲义配套课

∴a的取值范围为(-∞,0).
再见
编后语
折叠课件作用 ①向学习者提示的各种教学信息; ②用于对学习过程进行诊断、评价、处方和学习引导的各种信息和信息处理; ③为了提高学习积极性,制造学习动机,用于强化学习刺激的学习评价信息; ④用于更新学习数据、实现学习过程控制的教学策略和学习过程的控制方法。 对于课件理论、技术上都刚起步的老师来说,POWERPOINT是个最佳的选择。因为操作上非常简单,大部分人半天就可以基本掌握。所以,就可以花
(1)f(x)=x2-ln x; (2)f(x)=x3-x2-x.
解 (1)函数f(x)的定义域为(0,+∞). f′(x)=2x-1x,由f′(x)=2x-1x>0且x>0,得x> 22, 所以函数f(x)的单调递增区间为 22,+∞; 由f′(x)<0得x< 22,又x∈(0,+∞), 所以函数f(x)的单调递减区间为0, 22.
a x
(x≠0,常数a∈R).若函数f(x)在x∈
[2,+∞)上是单调递增的,求a的取值范围. 解 f′(x)=2x-xa2=2x3x-2 a.
要使f(x)在[2,+∞)上是单调递增的,
则f′(x)≥0在x∈[2,+∞)时恒成立,
即2x3x-2 a≥0在x∈[2,+∞)时恒成立.∵x2>0,
∴2x3-a≥0,∴a≤2x3在x∈[2,+∞)上恒成立.
(4)f′(x)=3x2-3t,令f′(x)≥0,得3x2-3t≥0, 即x2≥t. ∴当t≤0时,f′(x)≥0恒成立,函数的增区间是(-∞,+ ∞). 当t>0时,解x2≥t得x≥ t或x≤- t; 由f′(x)≤0解得- t≤x≤ t. 函数的增区间是(-∞,- t)和( t,+∞),减区间是(- t,
高中数学导数及其应用

高中数学导数及其应用高中数学导数及其应用一、知识网络二、高考考点1、导数的定义和应用;2、求导公式和运算法则的应用;3、导数的几何意义;4、导数在研究函数单调性上的应用;5、导数在寻求函数的极值或最值的应用;6、导数在解决实际问题中的应用。
三、知识要点一)导数1、导数的概念1)导数的定义设函数在点及其附近有定义,当自变量x在处有增量△x (△x可正可负),则函数y相应地有增量,这两个增量的比,叫做函数在点到这间的平均变化率。
如果极限存在,则函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即。
如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间(),这样在开区间()内每一个确定的值,都对应着一个确定的导数。
在开区间()内构成一个新的函数,我们把这个新函数叫做原函数或,即内的导函数(简称导数),记作。
认知:Ⅰ)函数的导数在点是以x为自变量的函数,而函数处的导数是的导函数在点处的导数时是一个数值;的函数值。
Ⅱ)求函数①求函数的增量;②求平均变化率;③求极限。
上述三部曲可简记为一差、二比、三极限。
2)导数的几何意义函数的导数表示函数在某一点处的切线斜率。
3)函数的可导与连续的关系函数的可导与连续既有联系又有区别:Ⅰ)若函数在点处可导,则在点处连续;若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。
在点处的导数,是曲线在点处的切线的斜率。
Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。
反例:在点处连续,但在点处无导数。
事实上,在点处的增量不存在,故在点处不可导。
2、求导公式和求导运算法则1)基本函数的导数(求导公式)公式1:常数的导数:即常数的导数等于0.公式2:幂函数的导数:公式3:正弦函数的导数:公式4:余弦函数的导数:公式5:对数函数的导数:c为常数)公式6:指数函数的导数:2)可导函数四则运算的求导法则设为可导函数,则有:法则1:法则2:法则3:3、复合函数的导数1)复合函数的求导法则设。
高中数学导数应用知识点精讲

高中数学导数应用知识点精讲在高中数学的学习中,导数是一个极其重要的概念,它不仅在数学领域有着广泛的应用,还为解决实际问题提供了有力的工具。
接下来,让我们深入探讨一下高中数学中导数的应用知识点。
一、导数的定义导数的定义是函数在某一点的瞬时变化率。
如果函数 y = f(x) 在点x = x₀处的导数存在,那么其定义式为:f'(x₀) = lim (Δx→0)f(x₀+Δx) f(x₀) /Δx 。
通俗地说,导数表示了函数在某一点处的切线斜率。
例如,对于函数 f(x) = x²,我们来求它在 x = 1 处的导数。
f(1 +Δx) =(1 +Δx)² = 1 +2Δx +(Δx)² ,f(1) = 1 。
那么 f'(1) = lim (Δx→0) (1 +2Δx +(Δx)² 1) /Δx = lim (Δx→0) (2 +Δx) =2 ,所以函数 f(x) = x²在 x = 1 处的导数为 2 ,意味着在 x = 1 处的切线斜率为 2 。
二、导数的几何意义导数的几何意义是函数图象在某一点处的切线斜率。
如果函数在某点处的导数存在,那么该点处的切线方程可以通过点斜式来求得。
比如,已知函数 f(x) = 2x 3 ,其导数为 f'(x) = 2 。
在点(2, 1) 处,切线的斜率为 2 ,所以切线方程为 y 1 = 2(x 2) ,即 y = 2x 3 。
三、导数与函数的单调性通过导数可以判断函数的单调性。
若函数在某个区间内的导数大于零,则函数在该区间单调递增;若导数小于零,则函数在该区间单调递减。
以函数 f(x) = x³ 3x²为例,其导数为 f'(x) = 3x² 6x 。
令 f'(x) >0 ,解得 x < 0 或 x > 2 ,所以函数在(∞, 0) 和(2, +∞)上单调递增;令 f'(x) < 0 ,解得 0 < x < 2 ,所以函数在(0, 2) 上单调递减。
高中数学中的导数应用知识点总结

高中数学中的导数应用知识点总结导数是高中数学中的一个重要概念和工具,它在许多数学问题的研究中起着重要的作用。
本文将对高中数学中的导数应用知识点进行总结,包括导数的定义与性质、导数的计算方法以及导数在实际问题中的应用。
一、导数的定义与性质导数的定义是函数在某一点处的变化率,通常用极限来表示。
具体而言,给定函数y = f(x),在x点处的导数可以定义为:```f'(x) = lim(h->0) [f(x + h) - f(x)] / h```其中,f'(x)表示函数f(x)在x点处的导数,h表示一个趋近于0的实数。
导数的性质包括:1. 导数存在性:函数在某一点处存在导数,即函数在该点处可导;2. 导数的唯一性:函数在某一点处的导数唯一;3. 可导函数的连续性:函数在某一点处可导,则该点处连续;4. 常数函数导数为0:对于常数函数y = c,导数f'(x) = 0。
二、导数的计算方法导数的计算方法包括基本导数公式和导数的四则运算法则。
1. 基本导数公式:常见的函数导数计算公式如下:- 常数函数导数:f(x) = c,f'(x) = 0;- 幂函数导数:f(x) = x^n,f'(x) = nx^(n-1);- 指数函数导数:f(x) = e^x,f'(x) = e^x;- 对数函数导数:f(x) = loga(x),f'(x) = 1 / (xlna),其中a为底数;- 三角函数导数:f(x) = sin(x),f'(x) = cos(x)等。
2. 导数的四则运算法则:导数的四则运算法则包括求和、差、积和商的导数运算法则。
- 求和法则:(f(x) ± g(x))' = f'(x) ± g'(x);- 差法则:(f(x) - g(x))' = f'(x) - g'(x);- 积法则:(f(x) * g(x))' = f'(x)g(x) + f(x)g'(x);- 商法则:(f(x) / g(x))' = (f'(x)g(x) - f(x)g'(x)) / g^2(x),其中g(x) ≠ 0。
(word完整版)高中数学导数及其应用
高中数学导数及其应用、知识网络二、高考考点1导数定义的认知与应用;2、求导公式与运算法则的运用;3、导数的几何意义;4、导数在研究函数单调性上的应用;5、导数在寻求函数的极值或最值的应用;6、导数在解决实际问题中的应用。
三、知识要点(一)导数1导数的概念(1导数的定义(I)设函数」」■在点厂及其附近有定义,当自变量x在匸处有增量厶x (△ x可正可负),则函数y相应地有增量■' '■ -,L■' ■ ■■,这两个增量的比/(jr0+,叫做函数'■/ : '':|在点门到」二'这间的平均变化率。
如果Ay-时,丄.有极限,则说函数在点;巾处可导,并把这个极限叫做了(力在点■:处的导数(或变化率),记作'■I'-,即血mAx am Ax。
(H)如果函数匚在开区间(「)内每一点都可导,则说■''"-在开区间(「)内可导,此时,对于开区间)内每一个确定的值“,都对应着一个确定的导数「’ ' ,这样在开区间(■•')内构成一个新的函数,我们把这个新函数叫做■'-在开区间(「’)内的导函数(简称导数),记作■''-或『,即y = ^)=血空=陥f显垃-f①姑Ax AJt-jft Ax 。
认知:(I)函数的导数是以x为自变量的函数,而函数匚在点匸处的导数广(必)是一个数值;在点心处的导数广(心)是‘⑴的导函数广〔Q当工=可时的函数值。
(H)求函数- ■'在点’I 处的导数的三部曲:①求函数的增量-';Ay只奄(心)②求平均变化率一lim —=③求极限'■"亠上述三部曲可简记为一差、二比、三极限。
(2)导数的几何意义:函数丿J 在点。
处的导数,是曲线1在点处的切线的斜率。
(3)函数的可导与连续的关系函数的可导与连续既有联系又有区别:(I)若函数- ■'在点厂处可导,则在点匸处连续;若函数;■在开区间(“’)内可导9丿-在开区间(-')内连续(可导一定连续)。
高中数学 第4章 导数及其应用 4.2 导数的运算 4.2.3 导数的运算法则课堂讲义配套课件 湘教版选修2-2
答 利用导数的运算法则.
[预习导引]
1.导数的运算法则
(1)(cf(x))′=cf′(x)
;
(2)(f(x)
f′(x)++g′(x)
=
f′(x)-g′(x)
跟踪演练3
已知某运动着的物体的运动方程为s(t)=
t-1 t2
+
2t2(位移单位:m,时间单位:s),求t=3 s时物体的瞬时速
度.
解 ∵s(t)=t-t21+2t2=tt2-t12+2t2=1t -t12+2t2,
∴s′(t)=-t12+2·t13+4t,
∴s′(3)=-19+227+12=32273,
即物体在t=3 s时的瞬时速度为32273 m/s.
再见
编后语
折叠课件作用 ①向学习者提示的各种教学信息; ②用于对学习过程进行诊断、评价、处方和学习引导的各种信息和信息处理; ③为了提高学习积极性,制造学习动机,用于强化学习刺激的学习评价信息; ④用于更新学习数据、实现学习过程控制的教学策略和学习过程的控制方法。 对于课件理论、技术上都刚起步的老师来说,POWERPOINT是个最佳的选择。因为操作上非常简单,大部分人半天就可以基本掌握。所以,就可以花
4.2.3 导数的运算法则
[学习目标]
1.理解函数的和、差、积、商的求导法则.
2.理解求导法则的证明过程,能够综合运用导数公 式和四则运算求简单函数的导数.
3.了解复合函数的概念,理解复合函数的求导法 则.
4.能求简单的复合函数的导数.(仅限于形如f(ax +b)的导数).
高中数学 第4章 导数及其应用 4.3 导数在研究函数中的应用 4.3.2 函数的极大值和极小值课堂讲义配套课件 湘
由①②③解得a=12,b=0,c=-32.
(2)由(1)知f(x)=12x3-32x, ∴f′(x)=32x2-32=32(x-1)(x+1), 当x<-1或x>1时,f′(x)>0, 当-1<x<1时,f′(x)<0, ∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数, ∴当x=-1时,函数取得极大值f(-1)=1, 当x=1时,函数取得极小值f(1)=-1.
要使函数f(x)只有一个零点, 只需4+k<0或-4+k>0(如图所示)
或
即k<-4或k>4. ∴k的取值范围是(-∞,-4)∪(4,+∞).
再见
编后语
折叠课件作用 ①向学习者提示的各种教学信息; ②用于对学习过程进行诊断、评价、处方和学习引导的各种信息和信息处理; ③为了提高学习积极性,制造学习动机,用于强化学习刺激的学习评价信息; ④用于更新学习数据、实现学习过程控制的教学策略和学习过程的控制方法。 对于课件理论、技术上都刚起步的老师来说,POWERPOINT是个最佳的选择。因为操作上非常简单,大部分人半天就可以基本掌握。所以,就可以花
(3)用函数的导数为0的点,顺次将函数的定义区间
分成若干个小开区间,并列成表格.检测f′(x)在
方程根左右两侧的值的符号,如果左正右负,那么
f(x)在这个根处取得极大值;如果左负右正,那么 f(x)在这个根处取得极小值;如果左右不改变符号, 那么f(x)在这个根处无极值.
跟踪演练1 求函数f(x)=3x+3ln x的极值. 解 函数f(x)=3x+3ln x的定义域为(0,+∞), f′(x)=-x32+3x=3xx-2 1. 令f′(x)=0,得x=1.
当 a = 1 , b = 3 时 , f′(x) = 3x2 + 6x + 3 = 3(x +
2020学年高中数学第4章导数及其应用4.2.3导数的运算法则课件湘教版选修2_2
【解】 (1)y′=(x5-3x3-5x2+6)′ =(x5)′-(3x3)′-(5x2)′+6′ =5x4-9x2-10x. (2)法一:y′=(2x2+3)′(3x-2)+(2x2+3)(3x-2)′ =4x(3x-2)+(2x2+3)·3 =18x2-8x+9. 法二:因为 y=(2x2+3)(3x-2) =6x3-4x2+9x-6,所以 y′=18x2-8x+9.
1.曲线 y=-x3+3x2 在点(1,2)处的切线方程为( )
A.y=3x-1
B.y=-3x+5
C.y=3x+5
D.y=2x
解析:选 A.y′=-3x2+6x,当 x=1 时,切线的斜率 k=-3×12
+6×1=3,故切线方程为 y-2=3(x-1),即 y=3x-1,故选 A.
2.已知函数 f(x)=(2x+1)ex,f′(x)为 f(x)的导函数,则 f′(0)的值为 ________. 解析:由题意得 f′(x)=(2x+3)ex,则得 f′(0)=3.
答案:3
3.求下列函数的导数:
(1)y= x-ln x;
(2)y=(x2+1)(x-1);
(3)y=1+xc2os
x .
解:(1)y′=( x-ln x)′=(
x)′-(ln x)′=21x-1x.
(2)y′=[(x2+1)(x-1)]′
=(x3-x2+x-1)′=(x3)′-(x2)′+(x)′-(1)′
B.2x3-sin x
C.6x2+sin x
D.6x2-cos x
答案:A
3.设函数 f(x)=sinx x,f′(x)为函数 f(x)的导函数,则 f′(π)=
________.
答案:-π1
求导法则的直接运用 求下列函数的导数: (1)y=x5-3x3-5x2+6;(2)y=(2x2+3)(3x-2); (3)y=xx-+11;(4)y=x·tan x;(5)y=lgxx.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.3 三次函数的性质:单调区间和极值
基础达标
限时20分钟
1.三次函数f (x )=ax 3
+bx 2
+cx +d (a ≠0)的图象如下图,则它的导数f ′(x )\
的图象最可能是
( ).
答案 C
2.函数f (x )=x 3
-3x +3,当x ∈⎣⎢⎡⎦
⎥⎤-32,52时,函数f (x )的最小值是
( ).
A.338
B .-5
C .1 D.898
答案 C
3.已知函数f (x )=x 3-px 2
-qx 的图象与x 轴相切于(1,0)点,则f (x )的极值为
( ).
A .极大值为4
27,极小值为0
B .极大值为0,极小值为-4
27
C .极小值为-5
27,极大值为0
D .极小值为0,极大值为5
27
答案 A
4.已知函数f (x )=x 3
-12x +8在区间[-3,3]上的最大值与最小值分别为M ,
m ,则M -m =________.
答案 32
5.若函数f (x )=x 3
+ax 在R 上有两个极值点,则实数a 的取值范围是________.
解析 ∵f (x )=x 3
+ax ∴f ′(x )=3x 2
+a ,
由题意,得Δ=02
-4×3×a >0,∴a <0. 答案 a <0
6.已知函数f (x )=x 3
-ax -1
(1)若f (x )在实数集R 上单调递增,求a 的取值范围;
(2)是否存在实数a ,使f (x )在(-1,1)上单调递减,若存在,求出a 的取值范围;若不存在,说明理由;
(3)证明 f (x )=x 3-ax -1的图象不可能总在直线y =a 的上方.
(1)解 f ′(x )=3x 2
-a ,由3x 2
-a ≥0在R 上恒成立,即a ≤3x 2
在R 上恒成立, 易知当a ≤0时,f (x )=x 3
-ax -1在R 上是增函数, ∴a ≤0.
(2)解 由3x 2
-a <0在(-1,1)上恒成立,∴a >3x 2
. 但当x ∈(-1,1)时,0<3x 2
<3,
∴a ≥3,即当a ≥3时,f (x )在(-1,1)上单调递减.
(3)证明 取x =-1,得f (-1)=a -2<a ,即存在点(-1 ,a -2) 在f (x )=x 3
-ax -1的图象上,且在直线y =a 的下方. ∴f (x )的图象不可能总在直线y =a 的上方.
综合提高
限时25分钟
7.函数y =ax 3
-2x 在[2,8]上是减函数,则
( ).
A .a =13
B .a =0
C .a ≤1
96
D .a <0
答案 C
8.直线y =a 与函数y =x 3
-3x 的图象有三个相异的交点,则a 的取值范围为
( ).
A .(-2,2)
B .[-2,2]
C .[2,+∞)
D .(-∞,-2]
解析 y ′=3x 2
-3,由y ′=0,得x =1或x =-1.
当x <-1时,y ′>0;当-1<x <1时;当y ′<0,当x >1时,y ′>0.
所以y =x 3
-3x 在(-∞,-1)上递增,(-1,1)上递减,(1,+∞)上递增. 当x =-1时,y 取得极大值(-1)3
-3×(-1)=2; 当x =1时,y 取得极小值13
-3×1=-2. 因此,a 的取值范围为-2<a <2. 答案 A
9.设函数f (x )=x 3
-x 2
2
-2x +5,若对任意的x ∈[-1,2],都有f (x )>m ,则实
数m 的取值范围为________.
解析 f ′(x )=3x 2
-x -2,由f ′(x )=0,得x =1或x =-23
.
f (-1)=112
,f ⎝ ⎛⎭⎪⎫-23
=
15727
,f (1)=72,f (2)=7,
∴f (x )的最小值为72,∴m <7
2.
答案 7
2
10.函数f (x )=x 3
-3a 2
x +a (a >0)的极大值为正数,极小值为负数,则a 的取
值范围为________.
解析 f ′(x )=3x 2
-3a 2
(a >0), 由f ′(x )>0,得x >a 或x <-a , 由f ′(x )<0,得-a <x <a .
所以f (x )在(-∞,-a )上递增,(-a ,a )上递减,(a ,+∞)上递增. 当x =-a 时,f (x )取得极大值f (-a )=2a 3
+a >0; 当x =a 时,f (x )取得极小值f (a )=-2a 3
+a <0. 又a >0,∴a >22
. 答案 ⎝
⎛⎭
⎪⎫
22,+∞ 11.(2011·重庆)设f (x )=2x 3
+ax 2
+bx +1的导数为f ′(x ),若函数y =f ′(x )
的图象关于直线x =-1
2对称,且f ′(1)=0.
①求实数a ,b 的值;②求函数f (x )的极值. 解 ①∵f (x )=2x 3
+ax 2
+bx +1, ∴f ′(x )=6x 2
+2ax +b .
由题意知,-2a 12=-12
且6×12
+2a ×1+b =0,
∴a =3,b =-12.
②由①知,f (x )=2x 3
+3x 2
-12x +1. ∴f ′(x )=6x 2
+6x -12=6(x +2)(x -1) 由f ′(x )=0,得x =1或x =-2.
由f ′(x )>0,得x >1或x <-2,由f ′(x )<0,得-2<x <1.
∴f (x )在(-∞,-2)上递增,(-2,1)上递减,(1,+∞)上递增.
∴当x =-2时,f (x )取得极大值f (-2)=21,当x =1时,f (x )取得极小值f (1)=-6.
12.(创新拓展)(2011·天津)已知函数f (x )=4x 3
+3tx 2
-6t 2
x +t -1,x ∈R ,其
中t ∈R .
①当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程; ②当t ≠0时,求f (x )的单调区间.
解 ①t =1时,f (x )=4x 3
+3x 2
-6x ,f ′(x )=12x 2
+6x -6,f ′(0)=-6,又f (0)=0.
∴曲线y =f (x )在点(0,f (0))处的切线方程为y -0=-6(x -0),即6x +y =0. ②t ≠0时,f ′(x )=12x 2
+6tx -6t 2
=6(2x 2
+tx -t 2
)=6(x +t )(2x -t ).若t >0,则由f ′(x )>0得x <-t 或x >t 2,f ′(x )<0得-t <x <t
2,
∴f (x )在(-∞,-t )上递增,在⎝
⎛
⎭⎪⎫
-t ,t 2上递减.
在⎝ ⎛⎭
⎪⎫t
2,+∞上递增,
若t <0,则由f ′(x )>0得x <t 2或x >-t ,由f ′(x )<0得t
2
<x <-t .
∴f (x )在⎝ ⎛⎭⎪⎫-∞,t 2上递增,⎝ ⎛⎭
⎪⎫t
2,-t 上递减,(-t ,+∞)上递增.。