高中数学(函数和导数)综合练习含解析
专题20 函数与导数综合-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见详解;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.专题20函数与导数综合(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.【母题原题2】【2018年高考全国Ⅲ卷理数】已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 【名师点睛】本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论0a ≥和0a <,当0a <时构造函数()()22f x axh x x =++时关键,讨论函数()h x 的性质,本题难度较大.【母题原题3】【2017年高考全国Ⅲ卷理数】已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值. 【答案】(1)1a =;(2)3【解析】(1)()f x 的定义域为()0∞,+.①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若a >0,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()f 'x <0;当(),+x a ∈∞时,()f 'x >0,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0∞,+的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->. 令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L .故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L . 而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.本专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要有以下几个角度:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.【命题意图】了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数不超过三次).主要考查考生的分类讨论思想、等价转化思想以及数学运算能力和逻辑推理能力.【命题规律】导数的综合应用一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在解答题的压轴位置,难度较大.【答题模板】1.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)由f'(x)>0(或<0)解出相应的x的取值范围,对应的区间为f(x)的单调递增(减)区间.还可以通过列表,写出函数的单调区间.2.证明或讨论函数的单调性方法一:求出在对应区间上导数的正负即得结论.方法二:(1)确定函数f(x)的定义域;(2)求导数f'(x),并求方程f'(x)=0的根;(3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f'(x)的正负,由符号确定f(x)在该子区间上的单调性.【知识总结】1.函数的极值设函数y=f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数y=f (x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),则f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.一般地,当函数f(x)在x0处连续时,(1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.注意:(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f'(x0)=0是x0为f(x)的极值点的必要而非充分条件.例如,f(x)=x3,f'(0)=0,但x=0不是极值点.2.函数的最值在区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.在区间[a,b]上连续的函数f(x)若有唯一的极值点,则这个极值点就是最值点.注意:极值与最值的区别与联系极值只能在定义域内部取得,而最值却可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.在指定区间上极值可能不止一个,也可能一个也没有,而最值最多有一个.3.利用导数解决函数单调性问题应该注意:(1)单调区间是函数定义域的子区间,所以求解函数的单调区间要先求函数的定义域;(2)求可导函数f(x)的单调区间,可以直接转化为f'(x)>0与f'(x)<0这两个不等式的解集问题来处理;(3)若可导函数f(x)在指定区间D上单调递增(减),则应将其转化为f'(x)≥0(f'(x)≤0)来处理;(4)涉及含参数的函数的单调性或单调区间问题,一定要弄清参数对导数f'(x)在某一区间内的符号是否有影响.若有影响,则必须分类讨论.4.函数的图象与导函数图象的关系理解导函数y=f'(x)的图象与函数f(x)图象的升降关系,导函数大于0对应原函数图象由左至右上升,导函数小于0对应原函数图象由左至右下降,在解题时要注意原函数的定义域,如判断定义域是否具有对称性等.5.由函数的单调性求参数的取值范围的技巧(1)由可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f'(x)≥0(或f'(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f'(x)>0(或f'(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f(x)在D上不单调,则f(x)在D上有极值点,且极值点不是D的端点.6.求函数f(x)在[a,b]上的最值的方法(1)若函数在区间[a,b]上单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值;(2)若函数在区间[a,b]内有极值,要先求出函数在[a,b]上的极值,再与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.注意:求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.7.已知函数的极值、最值求参数(1)已知函数的极值求参数时,通常利用函数的导数在极值点处的取值等于零来建立关于参数的方程.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.(2)已知函数的最值求参数,一般先求出最值(含参数),再根据最值列方程或不等式(组)求解.8.利用导数解决不等式问题(1)利用导数证明不等式的方法证明f(x)<(>)g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F'(x)<(>)0,则F(x)在(a,b)上是减(增)函数,同时若F(a)≤(≥)0,由减(增)函数的定义可知,x∈(a,b)时,有F(x)<(>)0,即证明了f(x)<(>)g(x).其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.(2)不等式成立(恒成立)问题①f(x)≥a恒成立⇔f(x)min≥a,f(x)≥a成立⇒f(x)max≥a.②f(x)≤b恒成立⇔f(x)max≤b,f(x)≤b成立⇔f(x)min≤b.③f(x)>g(x)恒成立F(x)min>0.④∀x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)min.∀x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)max.∃x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)min.∃x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)max.注意:不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f(a)≥g(x)(f(a)≤g(x))对存在x∈D能成立等价于f(a)≥g(x)min(f(a)≤g(x)max),f(a)≥g(x)(f(a)≤g(x))对任意x∈D都成立等价于f (a)≥g(x)max(f(a)≤g(x)min),应注意区分,不要搞混.9.导数在研究函数零点中的应用(1)研究函数图象的交点、方程的根、函数的零点,归根到底是研究函数的性质,如单调性、极值等. (2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.1.【四川省百校2019年高三模拟冲刺卷数学】已知函数()()()1ln 0,f x a x a g x x x=≠=-. (1)当2a =时,比较()f x 与()g x 的大小,并证明;(2)令函数()22F x fg ⎡⎤⎡⎤=-⎣⎦⎣⎦,若1x =是函数()F x 的极大值点,求a 的取值范围. 【答案】(1)见解析;(2)[)(]2,00,2a ∈-U . 【解析】(1)当2a =时,()()12ln f x g x x x x -=-+,令()12ln h x x x x=-+, 则()()222221212110x x x h x x x x x--+-=--=-'=≤, 所以函数()12ln h x x x x=-+在()0,∞+上单调递减,且()10h =, 所以当01x <<时,()0h x <,即()()f x g x >; 当1x >时,()0h x <,即()()f x g x <, 当1x =时,()0h x =,即()()f x g x =.(2)()22F x fg⎡⎤⎡⎤=-⎣⎦⎣⎦221ln 2,04a x x x x ⎛⎫=-+-> ⎪⎝⎭, 令202a m =>,则()2ln 1111ln x F x m m x x x x x x ⎛⎫=⋅-+=-+ ⎝'⎪⎭, 令()1ln G x m x x x =-+,则()222111m x mx G x x x x -+=--=-', ①当02m <≤时,()2210x mx G x x-+=-≤'恒成立, 所以()1ln G x m x x x=-+在()0,+∞上递减,且()10G = 所以01x <<时,()()0,F x F x '>在()0,1上递增,1x >时,()()0,F x F x '<在()1,+∞上递减,此时1x =是函数()F x 的极大值点,满足题意.②当2m >时,()()120,1,1,x x ∃∈∈+∞,使得当()12,x x x ∈时,()0G x '≥, 所以()1ln G x m x x x=-+在()12,x x 上递增,且()10G =, 所以11x x <<时,()()0,F x F x '<在()1,1x 上递减;21x x <<时,()()0,F x F x '>在()21,x 上递增,此时1x =是函数()F x 的极小值点,不合题意.综合得(]20,22a m =∈,解得[)(]2,00,2a ∈-U .【名师点睛】本题考查函数与导数的综合,函数极值与最值,转化化归思想,分类讨论,准确推理计算是关键,是中档题.2.【四川省乐山市高中2019届高三第三次调查研究考试数学】已知函数()()21ln 1f x a x x a =+--+(1)讨论函数()f x 的单调性;(2)若1a <,求证:当0x >时,函数()y xf x =的图像恒在函数()32ln 1y x a x x =++-的图像上方.【答案】(1)见解析;(2)见证明 【解析】(1)函数的定义域为()0,+∞,且()()121f x a x x =+-'()2211a x x+-=,当1a ≤-时,()0f x '<,函数()f x 在()0,+∞上为增函数; 当1a >-时,令()0f x '=,解得x =此时函数()f x 在⎛ ⎝⎭上递减,在⎫⎪+∞⎪⎝⎭上递增, (2)证明:若1a <,则当0x >时,问题转化为不等式()()32ln 1xf x x a x x >++-在()0,+∞上恒成立,只需要证明()()321ln 1ln 1x a x x a x a x x ⎡⎤+--+>++-⎣⎦在()0,+∞上恒成立,即证ln ln 1xx x a x-<-+在()0,+∞上恒成立, 令()()ln ln ,1xF x x x g x a x=-=--+, 因为()111xF x x x-=-=',易得()F x 在()0,1单调递增,在()1,+∞上单调递减,所以()()11F x F ≤=-, 又()221ln ln 1x x g x x x='--=-, 当0e x <<时,()0g x '<,当e x >时,()0g x '>, 所以()g x 在()0,e 上递减,在()e,+∞上递增,所以()()1e 1e g x g a ≥=--+, 又1a <,所以1111e ea --+>->-,即()()max min F x g x <,所以ln ln 1xx x a x-<-+在()0,+∞上恒成立, 所以当1a <时,函数()xf x 的图像恒在函数()32ln 1y x a x x =++-的图像上方.【名师点睛】本题考查函数的单调性质的讨论,考查不等式恒成立问题,是中档题,解题时要认真审题,注意导数性质和构造法的合理运用.3.【四川省内江市2019届高三第三次模拟考试数学】已知函数()21f x x ax =-+,()()ln g x x a a =+∈R . (1)若1a =,求函数()()()h x f x g x =-在区间1,e t ⎡⎤⎢⎥⎣⎦(其中1e et <<,e 是自然对数的底数)上的最小值;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 【答案】(1)见解析;(2)(],1-∞.【解析】(1)由题意,可得()221ln 1ln (0)h x x x x x x x x =-+--=-->,()2121'21x x h x x x x --=--=()()211x x x+-=, 令()'0h x =,得1x =.①当11e t <≤时,()h x 在1,e t ⎡⎤⎢⎥⎣⎦上单调递减, ∴()222min111e e 11e e ee h x h -+⎛⎫==-+= ⎪⎝⎭. ②当1t >时,()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在[]1,t 上单调递增, ∴()()min 10h x h ==.综上,当11e t <≤时,()22min e e 1eh x -+=,当1t >时,()min 0h x =. (2)设函数()f x 在点()()11,x f x 处与函数()g x 在点()()22,x g x 处有相同的切线, 则()()()()121212''f x g x f x g x x x -==-,∴211212121ln 12x ax x ax a x x x -+---==-, ∴12122ax x =+,代入21211221ln x x x ax x a x -=-+--,得222221ln 20424a a x a x x ++++-=. ∴问题转化为:关于x 的方程221ln 20424a ax a x x ++++-=有解,设()221ln 2(0)424a a F x x a x x x =++++->,则函数()F x 有零点, ∵()211ln 24F x a x a x ⎛⎫=+++- ⎪⎝⎭,当2e a x -=时,ln 20x a +-=,∴()2e 0a F ->. ∴问题转化为:()F x 的最小值小于或等于0.()23231121'222a x ax F x x x x x--=--+=, 设()20002100x ax x --=>,则当00x x <<时,()'0F x <,当0x x >时,()'0F x >.∴()F x 在()00,x 上单调递减,在()0,x +∞上单调递增,∴()F x 的最小值为()2002001ln 2424a a F x x a x x =++++-. 由200210x ax --=知0012a x x =-,故()20000012ln 2F x x x x x =+-+-. 设()212ln 2(0)x x x x x x ϕ=+-+->, 则()211'220x x x xϕ=+++>,故()x ϕ在()0,+∞上单调递增,∵()10ϕ=,∴当(]0,1x ∈时,()0x ϕ≤, ∴()F x 的最小值()00F x ≤等价于001x <≤.又∵函数12y x x=-在(]0,1上单调递增,∴(]0012,1a x x =-∈-∞. 【名师点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.【广西桂林市、崇左市2019届高三下学期二模联考数学】设函数()()2e 1xf x a x x =---.(1)当1a =时,讨论()f x 的单调性;(2)已知函数()f x 在()0,+∞上有极值,求实数a 的取值范围.【答案】(1)()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减;(2)3,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)()()e 211xf x a x '=---.当1a =时()e 1xf x '=-.由()0f x '≥有e 10x -≥,解得0x ≥;()00f x x ≤'⇒≤. 所以函数()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减. (2)设()()()e 211xg x f x a x '==---,()()e 21xg x a ='--,因为函数()f x 在()0,+∞上有极值点,所以函数()g x 在()0,+∞上有零点.①当32a ≤时,0x >,∴e 1x >,∴()()e 210xg x a =-->', ∴()g x 在()0,+∞上单调递增,∵()00g =,所以当0x >时()()00g x g >=恒成立, 即函数()g x 在()0,+∞上没有零点. ②当32a >时,()211a ->,()ln210a ->, ()()e 210x g x a =-->'时,()ln21x a >-,()()e 210x g x a =--<'时,()ln21x a <-,∴()g x 在()(0,ln21a ⎤-⎦上单调递减,在())ln21,a ⎡-+∞⎣上单调递增, ∵()00g =,且()g x 在()(0,ln21a ⎤-⎦上单调递减,∴()()ln210g a -<. 对于0a >,当x →+∞时,()g x →+∞, 所以存在())0ln21,x a ⎡∈-+∞⎣使()00g x >. 所以函数()g x 在()()ln21,a -+∞上有零点.所以函数()f x 在()0,+∞上有极值点时,实数a 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.【名师点睛】本题主要考查利用导数研究函数的单调性,利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知函数1()ln f x x mx x=--在区间(0,1)上为增函数,m ∈R .(1)求实数m 的取值范围;(2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求a b +的最小值.【答案】(1)2m ≤;(2)a b +的最小值为–1. 【解析】(1)∵()1ln f x x mx x=--, ∴()211f x m x x =+-'.又函数()f x 在区间()0,1上为增函数, ∴()2110f x m x x=-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭,则当1x =时,()t x 取得最小值,且()min 2t x =, ∴2m ≤,∴实数m 的取值范围为(],2-∞. (2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭,则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()min 11h x h ==-, ∴a b +的最小值为1-.【名师点睛】本题考查导数的几何意义和导数在研究函数性质中的作用,其中在研究函数的性质中,单调性是解题的工具和基础,而正确求导并判断导函数的符号是解题的关键,考查计算能力和转化意识的运用,属于基础题.6.【贵州省2019届高三高考教学质量测评卷(八)数学】已知函数()()ln xf x ax a x=-+∈R ,'()f x 为()f x 的导函数.(1)当0a =时,求函数()f x 的极值;(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立,求实数a 的最小值. 【答案】(1)见解析;(2)211e 2-+. 【解析】(1)()f x 的定义域为(0,1)(1,)+∞U ,当0a =时,2ln 1()(ln )x f 'x x -=,令()0f 'x =,得e x =, 列表得所以当e x =时,()f x 取得极小值,且极小值为e ;无极大值.(2)若212,e,e x x ⎡⎤∃∈⎣⎦,使()()123'4f x f x a ≤++成立()()12min max 3'4f x f x a ⇔++≤. 由(1)知,2ln 1'()(ln )x f x a x -=-+,所以()()2222ln 133'44ln x f x a x -++=+, 令21ln t x =,则原式231,142t t t ⎛⎫⎡⎤=-++∈ ⎪⎢⎥⎣⎦⎝⎭的最大值为1,故存在21[e,e ]x ∈,1()1f x ≤,即1111ln x ax x -+≤,化为1111ln a x x ≥-+, 令11()ln h x x x=-+,2e,e x ⎡⎤∈⎣⎦, 则2222211(ln )'()(ln )(ln )x xh x x x x x x -=-=.对于函数()ln x x ϕ=,(0x >),1'()x x ϕ==, 当4x =时,()x ϕ取最大值为ln 420-<,所以ln x <2(ln )x x <,故()0h'x <恒成立,()h x 在2e,e ⎡⎤⎣⎦为减函数,最小值为211e 2-+, 所以211e 2a ≥-+,a 的最小值为211e 2-+.【名师点睛】本题主要考查了利用导数求函数的极值,利用导数研究不等式成立的问题,涉及存在性问题,构造函数利用导数求其最大最小值问题,换元法,属于难题.此类问题要注意理解存在性和恒成立的差别,结合具体问题实现正确转换为最大值和最小值是关键.7.【贵州省贵阳市2019年高三5月适应性考试(二)数学】已知函数()e xf x bx =+.(1)讨论()f x 的单调性;(2)若曲线()y f x =的一条切线方程为210x y -+=, (i )求b 的值;(ii )若210x x >>时,()()12f x f x -()()12121x x mx mx <-++恒成立,求实数m 的取值范围. 【答案】(1)见解析;(2)(i )1,(ii )e ,2⎛⎤-∞ ⎥⎝⎦.【解析】由()e xf x bx =+得()e xf x b '=+,若0b ≥,则()0f x '>,即()e xf x bx =+在(),-∞+∞上是增函数;若0b <,令()0f x '>得()ln x b >-,令()0f x '<得()ln x b <-,即()e xf x bx =+在()(),ln b -∞-上是单调减函数,在()()ln ,b -+∞上是单调增函数.(2)(i )设切点为()00,x y ,()e xf x bx =+得()e xf x b '=+由题意得000000e 2e 210x xb y bx x y ⎧+=⎪=+⎨⎪-+=⎩,消去b 与0y , 得000e e 10xxx -+=,令()e e 1x x g x x =-+,()e xg x x '=,0x <时,()0g x '<;0x >时,()0g x '>;0x =时,()0g x '=; ()g x ∴在(),0-∞上是减函数,在()0,+∞上是增函数,()()min 00g x g ∴==,即()e e +1x x g x x =-仅有一个零点0x =,即方程000e e 10xxx -+=仅有一个根0x =,02e 1b ∴=-=,(ii )由(i )知()e xf x x =+,()()12f x f x -<()()12121x x mx mx -++即为()2111f x mx x --<()2222f x mx x --, 由210x x >>知,上式等价于函数()()22e x xf x mx x mx φ=--=-在()0,+∞为增函数, ()e 20xx mx φ∴=-≥',即e2x m x≤,令()e xh x x =,()0x >,()()2e 1x x h x x='-, ()0h x '<时,01x <<;()0h x '>时,1x >;()0h x '=时,1x =, ()h x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 1e h x h ∴==,则2e m ≤,即e 2m ≤,所以实数m 的范围为e ,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题主要考查导数研究函数的单调性及切线方程,利用导数研究恒成立问题等知识,考查了转化能力和计算求解能力,属于较难题.8.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】已知221()ln ,02f x x a x a =->. (1)若()0f x ≥,求a 的取值范围;(2)若()()12f x f x =,且12x x ≠,证明:122x x a +>.【答案】(1)a 的取值范围是;(2)见解析.【解析】(1)()()()2x a x a a f x x x x+='-=-, 当()0,x a ∈时,()()0,f x f x '<单调递减; 当(),x a ∈+∞时,()0f x '>单调递增; 当x a =时,()f x 取最小值()221ln 2f a a a a =-.令221ln 02a a a -≥,解得0a <≤a 的取值范围是(. (2)由(1)知,()f x 在(0,)a 上单调递减,在(),a +∞上单调递增, 不失一般性,设120.x a x <<<,则22a x a -<,要证122x x a +>,即122x a x >-,则只需证()()122f x f a x <-, 因为()()12f x f x =,则只需证()()222f x f a x <-, 设()()()2,2g x f x f a x a x a =--≤<.则()()()22222022a a x a a g x x a x x a x x a x -=-+--'=-≤--, 所以()g x 在[),2a a 上单调递减,从而()()0.g x g a ≤= 又由题意得22a x a <<,于是()()()22220g x f x f a x =--<,即()()222f x f a x <-, 因此122x x a +>.【名师点睛】本题考查了利用导数求出函数单调性,解决不等式恒成立问题、同时也考查了通过函数值的大小来判断两个的变量的大小的问题.9.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知函数21()ln (1)()2f x x ax a x a =+-+∈R .(1)当1a ≥时,函数()f x 在区间[1,]e 上的最小值为–5,求a 的值;(2)设3211()()(1)22g x xf x ax a x x =-++-,且()g x 有两个极值点1x ,2x . (i )求实数a 的取值范围;(ii )证明:212e x x >.【答案】(1)8;(2)(i )1(1,1)e--;(ii )详见解析.【解析】(1)()()111()1a x x a f 'x ax a x x⎛⎫-- ⎪⎝⎭=+-+=, ∵1a ≥,[]1,e x ∈,∴()0f 'x ≥, 所以()f x 在区间[]1,e 上为单调递增.所以()()()min 111582f x f a a a ⎡⎤==-+=-⇒=⎣⎦, 又因为81a =≥, 所以a 的值为8.(2)(i )∵()()()232111ln 11222g x x x ax a x ax a x x ⎡⎤=+-+-++-⎢⎥⎣⎦()21ln 12x x a x x =-+-,且()g x 的定义域为()0,+∞,∴()()()ln 111ln 1g'x x a x x a x =+-+-=-+. 由()g x 有两个极值点1x ,2x ,等价于方程()ln 10x a x -+=有两个不同实根1x ,2x . 由()ln 10x a x -+=得ln 1xa x+=. 令()ln (0)xh x x x =>, 则21ln ()xh'x x-=,由()0e h'x x =⇒=. 当()0,e x ∈时,()0h'x >,则()h x 在()0,e 上单调递增; 当()e,x ∈+∞时,()0h'x <,则()h x 在()e,+∞上单调递减. 所以,当e x =时,()ln x h x x =取得最大值()max 1e eh =,∵()10h =,∴当()0,1x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >,所以101e a <+<,解得111e a -<<-,所以实数a 的取值范围为11,1e ⎛⎫-- ⎪⎝⎭.(ii )不妨设120x x <<,且()11ln 1x a x =+①,()22ln 1x a x =+②, ①+②得:()()()1212ln 1x x a x x =++③ ②–①得:()()2211ln1x a x x x =+-④ ③÷④得:()12122211ln ln x x x x x x x x +=-,即()12212211ln ln x x x x x x x x +=⋅-, 要证:212e x x >,只需证()12212211ln ln 2x x xx x x x x +=⋅>-.即证:212212121121ln 21x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⋅=++.令21(1)x t t x =>, 设()()214ln ln 211t F t t t tt -=-=+-++, ()()()221'01t F t t t -=>+.∴()F t 在()1,+∞上单调递增, ∴()()10F t F >=,即()21ln 1t t t->+,∴212e x x >.【名师点睛】本题考查利用导数研究函数的单调性,极值,最值问题,参变分离,数形结合讨论参数范围,构造函数等,比较综合,属于难题.10.【云南省昆明市2019届高三1月复习诊断测试数学】已知函数()ln f x x ax =-,a ∈R .(1)讨论()f x 的单调性;(2)若函数()f x 存在两个零点1x ,2x ,使12ln ln 0x x m +->,求m 的最大值. 【答案】(1)当0a ≤时,()f x 在()0,+∞单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(2)2.【解析】(1)函数()f x 的定义域为()0+∞,,()1=f x a x'-. 当0a ≤时,()0f x '>,()f x 在()0,+∞单调递增; 当0a >时,令()0f x '=,得10x a=>, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<. 所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.综上所述,当0a ≤时,()f x 在()0,+∞单调递增; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (2)因为11ln 0x ax -=,22ln 0x ax -=,即11ln x ax =,22ln x ax =.两式相减得()1212ln ln x x a x x -=-,即1212lnx x a x x =-. 由已知12ln ln x x m +>,得()12a x x m +>.因为10x >,20x >,所以12ma x x >+,即121212ln x x m x x x x >-+.不妨设120x x <<,则有()121212lnm x x x x x x -<+. 令12x t x =,则()0,1t ∈,所以()1ln 1m t t t -<+,即()1ln 01m t t t --<+恒成立. 设()()1ln (01)1m t g t t t t -=-<<+.()()()222111t m t g't t t +-+=+.令()()2211h t t m t =+-+,()01h =,()h t 的图象开口向上,对称轴方程为1t m =-, 方程()22110t m t +-+=的判别式()42m m ∆=-.当1m ≤时,()h t 在()0,1单调递增,()()01h t h >=,所以()0,g't >()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当12m <≤时,()420m m ∆=-≤,()0h t ≥在()0,1上恒成立,所以()0g't >,()g t 在()0,1单调递增,所以()()10g t g <=在()0,1恒成立.当2m >时,()h t 在()0,1单调递减,因为()01h =,()1420h m =-<, 所以存在()00,1t ∈,使得()00h t =当()00,t t ∈时,()0h t >,()0g't >;当()0,1t t ∈时,()0h t <,()0g't <, 所以()g t 在()00,t 上递增,在()0,1t 上递减. 当()0,1t t ∈时,都有()()10g t g >=, 所以()0g t <在()0,1不恒成立.综上所述,m 的取值范围是(],2-∞,所以m 的最大值为2.【名师点睛】本题考查了函数的单调性的判断和换元构造新函数求其最值的问题,求导后讨论函数的单调性是本题的关键,属于中档题.11.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】已知函数()1ln 1xf x x+=+.(1)求函数()f x 的单调区间;(2)若()()g x xf x mx =+在区间(0,e ]上的最大值为–3,求m 的值; (3)若x ≥1时,不等式()11kf x x ≥++恒成立,求实数k 的取值范围. 【答案】(1)见解析;(2)3e 1m =--;(3)(],2-∞ 【解析】(1)由题意得函数的()f x 的定义域为()0,+∞.∵()1ln 1xf x x +=+, ∴()2ln xf x x=-',由()0f x '>,得01x <<; 由()0f x '<,得1x >.∴函数()f x 的增区间为()()0,11,+∞,减区间为. (2)由题意得()1ln g x x mx x =+++, ∴()11g x m x=++',(]0,e x ∈, ①当10m +≥,即1m ≥-时,则()0g x '>,()g x 在(]0,e 上是增函数, ∴()()()max e 1e 20g x g m ==++≥,不合题意; ②当10m +<,即1m <-时,则由()0g x '>,得101x m <<-+, 若1e 1m -≥+,则()g x 在(]0,e 上是增函数,由①知不合题意; 若1e 1m -<+,则()g x 在10,1m ⎛⎫- ⎪+⎝⎭上是增函数;在1,e 1m ⎛⎤- ⎥+⎝⎦上为减函数, ∴()max 11ln 311g x g m m ⎛⎫⎛⎫=-=-=- ⎪ ⎪++⎝⎭⎝⎭,∴311e 1em -=<+, 解得3e 1m =--,满足题意. 综上可得3e 1m =--.(3)∵当1x ≥时,()11kf x x ≥++恒成立, ∴()()ln 111ln 1x k x f x x x x ⎡⎤≤+-=+++⎣⎦当1x ≥时恒成立, 令()ln 1ln 1x h x x x x =+++,1x ≥, 则()2ln 0x xh x x'-=>恒成立, ∴()h x 在[)1,+∞上为增函数, ∴()()min 12h x h ==, ∴2k ≤.∴实数k 的取值范围为(],2-∞.【名师点睛】(1)用导数解决函数的问题时,可先根据导函数的符号得到函数的单调性,进而得到函数的极值或最值.对于解析式中含有参数的问题,求解时注意分类讨论的运用.(2)解答恒成立问题时,常用的方法是分离参数法,通过分离参数将问题转化成求具体函数的最值的问题处理,体现了转化思想方法的运用.12.【四川省宜宾市2019届高三第三次诊断性考试数学】已知函数()()e 2,0axf x a x a =-+≠.(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点()1212,x x x x <,求证:12e e 2ax ax +>.【答案】(1)()f x 的增区间是[)0,+∞,减区间是(),0-∞;(2)证明见解析.【解析】(1)对函数求导可得'e e 1ax ax f x a a a =-=-()(),令'0f x =(),得0x = ①当0a >时,若0x >,则e 1ax >,即'0f x >(), 若0x <,则e 1ax <,即'0f x <(). ②当0a <时,若0x >,则e 1ax <,即'0f x >(), 若0x <,则e 1ax >,即'0f x <(). 综上,()f x 的单调递增区间是[0+∞,),单调递减区间是0-∞(,). (2)由(1)知,()f x 有两个零点时,()()01200e 020x x f a <<=-+<,,∴12a >.令11eax t =,22e ax t =,则1122ln ,ln ax t ax t ==∴12t t ,为方程ln 20t t a --=的两个根.令()ln 2g t t t a =--,则12t t ,为()g t 的两个零点,1201t t <<<. ∴()()()()121122g t g t g t g t --=--()()11112ln 22ln 2t t a t t a =------- ()11122ln 2ln t t t =---+,令()()()1111122ln 2ln ,0,1h t t t t t =---+∈,则()()()()()()21111111111112222111'20222t t t t t h t t t t t t t --++--=-++==>---. ∴1h t ()在01(,)上单调递增, ∴110h t h <=()(), ∴1220g t g t --<()(),即122g t g t -<()().∵()11'1t g t t t-=-=, ∴当1t ∈+∞(,)时,g t ()单调递增. ∵12211t t -∈+∞∈+∞()(,),(,),∴122t t -<,∴122t t +>,∴12e e 2ax ax +>.【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了极值点偏移的综合应用,是高考的常考点和难点,属于难题.。
高中数学函数与导数练习题及参考答案

高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
高中数学函数与导数复习 题集附答案

高中数学函数与导数复习题集附答案1. 函数的概念与性质1.1 函数的定义函数是一种具有对应关系的数学工具,它使得一个集合中的每个元素都与另一个集合中的唯一元素相对应。
一般来说,函数由输入和输出组成,输入称为自变量,输出称为因变量。
1.2 函数的性质函数有以下几个基本性质:- 定义域:函数的自变量能取的值的范围。
例如,对于函数f(x) =√x,定义域是非负实数集。
- 值域:函数的因变量能取的值的范围。
继续以f(x) = √x为例,值域是非负实数集。
- 单调性:函数的增减关系。
可分为严格单调递增、严格单调递减、非严格单调递增、非严格单调递减四种情况。
- 奇偶性:函数图像相对于y轴的对称性。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
- 周期性:函数图像的重复性。
周期函数满足f(x+T) = f(x),其中T为正数。
2. 常见函数类型及性质2.1 一次函数(线性函数)一次函数的一般形式为f(x) = kx + b,其中k和b为常数。
- 斜率 k 决定了函数图像的斜率和单调性。
- 截距 b 决定了函数图像与y轴的交点位置。
2.2 二次函数(抛物线函数)二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a ≠ 0。
- 抛物线开口方向由二次项系数a的正负决定。
- 顶点坐标为(-b/2a, f(-b/2a))。
- 对称轴方程为x = -b/2a。
2.3 幂函数幂函数的一般形式为f(x) = x^a,其中a为常数。
- 当a > 1时,函数图像在定义域上是递增的。
- 当0 < a < 1时,函数图像在定义域上是递减的。
- 当a < 0时,函数图像具有奇对称性。
2.4 指数函数指数函数的一般形式为f(x) = a^x,其中a > 0且a ≠ 1。
- 指数函数的图像都通过点(0, 1)。
- 当a > 1时,函数图像在整个定义域上递增。
高二数学高中数学综合库试题答案及解析

高二数学高中数学综合库试题答案及解析1.函数在处的导数等于()A.2B.3C.4D.5【答案】C【解析】解:2.若命题p:所有有理数都是实数,q:正数的对数都是负数,则下列命题中为真命题的是()A.B.C.D.【答案】D【解析】略3.函数在区间上的图像如图所示,则n可能是()A.1B.2C.3D.4【答案】A【解析】略4.一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是()A.米/秒B.米/秒C.米/秒D.米/秒【答案】C【解析】5.设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A.B.C.D.【答案】D【解析】略6.已知向量若则实数______,_______【答案】【解析】略7.与曲线共焦点,而与曲线共渐近线的双曲线方程为A.B.C.D.【答案】C【解析】略8.已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条渐近线,则的倾斜角所在的区间可能是:()A.B.C.D.【答案】D【解析】略9.为双曲线的右支上一点,分别是圆和上的点,则的最大值为()A.B.C.D.【答案】D【解析】略10.已知,,若向区域上随机投一点,则点落入区域的概率为( )A.B.C.D.【答案】D【解析】略11.已知抛物线C:过点。
(1)求抛物线的方程;(2)是否存在平行于OA(O为原点)的直线L,与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由。
【答案】解:(1)将代入得,所以,抛物线的方程(2)假设存在直线L,设其方程为:由得因为直线L与抛物线有公共点,所以得又因为直线OA与L的距离等于可得得所以存在直线L,方程为:【解析】略12.(12分)在四棱锥中,平面PAD⊥平面ABCD, AB=AD,∠BAD=60°,E、F 分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD【答案】略【解析】略13.一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是______________.【答案】3,9,15,21,27,33,39,45,51,57【解析】略14.(本题满分12分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
高中数学专题练习《数列、导数知识点》含详细解析

数列、导数知识点一、等差数列1.概念:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,即a n+1-a n =d(n∈N *,d 为常数).2.等差中项:由三个数a,A,b 组成的等差数列可以看成是最简单的等差数列.这时,A 叫做a 与b 的等差中项,且2A=a+b.3.通项公式:等差数列{a n }的首项为a 1,公差为d,则其通项公式为a n =a 1+(n-1)d.4.前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d(n∈N *).5.性质:(1)通项公式的推广:a n =a m +(n-m)d(m,n∈N *).(2)若m+n=p+q(m,n,p,q∈N *),则有a m +a n =a p +a q .(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn(A,B 为常数).(5)在等差数列{a n }中,若a 1>0,d<0,则S n 存在最大值;若a 1<0,d>0,则S n 存在最小值.二、等比数列1.概念:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,即a n a n -1=q(n≥2,n∈N *,q 为非零常数).2.等比中项:如果在a 与b 中间插入一个数G,使a,G,b 成等比数列,那么G 叫做a 与b 的等比中项.此时,G 2=ab.3.通项公式:等比数列{a n }的首项为a 1,公比为q,则其通项公式为a n =a 1q n-1.4.前n 项和公式:S n ={na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q,q ≠1.5.性质:(1)通项公式的推广:a n=a m q n-m(m,n∈N*).(2)若k+l=m+n(k,l,m,n∈N*),则有a k·a l=a m·a n.(3)当q≠-1或q=-1且n为奇数时,S n,S2n-S n,S3n-S2n,…仍成等比数列,其公比为q n.三、求一元函数的导数1.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数) f'(x)=0f(x)=xα(α∈Q,且α≠0)f'(x)=αxα-1f(x)=sin x f'(x)=cos xf(x)=cos x f'(x)=-sin xf(x)=a x(a>0,且a≠1)f'(x)=a x ln af(x)=e x f'(x)=e xf(x)=log a x(a>0,且a≠1)f'(x)=1xlnaf(x)=ln x f'(x)=1x2.导数的四则运算法则已知两个函数f(x),g(x)的导数分别为f'(x),g'(x).若f'(x),g'(x)存在,则有:(1)[f(x)±g(x)]'=f'(x)±g'(x);(2)[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);(3)[f(x)g(x)]'=f'(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).3.简单复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y'x =y'u ·u'x .四、导数在研究函数中的应用 1.函数的单调性与导数一般地,函数f(x)的单调性与导函数f'(x)的正负之间具有如下的关系: 在某个区间(a,b)上,如果f'(x)>0,那么函数y=f(x)在区间(a,b)上单调递增; 在某个区间(a,b)上,如果f'(x)<0,那么函数y=f(x)在区间(a,b)上单调递减. 2.函数的极值与导数条件 f'(x 0)=0x 0附近的左侧f'(x)>0,右侧f'(x)<0x 0附近的左侧f'(x)<0,右侧f'(x)>0图象极值 f(x 0)为极大值 f(x 0)为极小值 极值点 x 0为极大值点x 0为极小值点3.函数的最大(小)值与导数(1)如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值, f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值, f(b)为函数的最小值.(3)求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值.。
高三数学导数试题答案及解析

高三数学导数试题答案及解析1.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x)上单调递减D.若x0是f(x)的极值点,则f′(x)=0【答案】C【解析】若c=0,则有f(0)=0,所以A正确.由f(x)=x3+ax2+bx+c得f(x)-c=x3+ax2+bx,因为函数f(x)=x3+ax2+bx的对称中心为(0,0),所以f(x)=x3+ax2+bx+c的对称中心为(0,c),所以B正确.由三次函数的图象可知,若x是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(-∞,x)单调递减是错误的,D正确.2.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为。
②数列满足首项,,当且最大时,数列有2048个。
③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个。
④已知直线,其中,而且,则一共可以得到不同的直线196条。
【答案】②③④【解析】①令,,则,所以,故不正确.②由条件知数列是首项为,公差为2的等差数列,则,则当时,,所以各有两种可能取值,因此满足条件的数列有个,故正确.③根据条件可知满足条件的数列可分为四类:(1),且,有9种;(2),且,有5种;(3),且,有10种;(4),且,有9种,共有9+5+10+9=33种.④满足的选法有,其中比值相同重复有14种,因此满足条件的直线共有210-14=196.【考点】1、导数的计数;2、等差数列;3、计数原理.3.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为.②数列满足首项,,当且最大时,数列有2048个.③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个.④已知直线,其中,而且,则一共可以得到不同的直线196条.【答案】②③④【解析】对①,将求导得:,所以.故错.对②,是一个等差数列,都是互为相反数的两个值,所以数列共有个.对③,由得.法一、由于,,故将加4个2,再减3个2即可.由于故不能连续加4次,也不能连续减3次,所以共有个.法二、因为,所以或,注意到数列中的每一项都是集合M的元素,依次下去可得.由于,所以.由此我们可得以下树图:,所以符合这些条件的不同数列一共有14+19=33个.法三、由于或,,故可以分以下四种情况分别求解:.,共有9个;,共有5个;,共有10个;,共有9个.所以总共有33个.对④,从中取3个不同的数作为,因为,所以共有种取法.再排除其中重复的直线.与相同的有,多3条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条(注意这种情况在前面已经考虑了);与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条.一共可以得到不同的直线条.【考点】1、导数;2、数列;3、直线的方程;4、计数原理.4.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.5.设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)【答案】D【解析】根据和构造的函数在(0,+∞)上单调递减,又是定义在R上的奇函数,故是定义在R上单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(-∞,-2)∪(0,2).【考点】1.导数在函数单调性中的应用;2.复合函数的导数.6.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.7.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.8.已知函数,.(Ⅰ)若,求函数在区间上的最值;(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)【答案】(Ⅰ) 最大值;(Ⅱ)的取值范围是.【解析】(Ⅰ) 讨论去掉绝对值,利用导数求得最值; (Ⅱ) 对分,讨论:当时,,恒成立,所以;当时,对讨论去掉绝对值,分离出通过求函数的最值求得的范围.试题解析:(1) 若,则.当时,,,所以函数在上单调递增;当时,,.所以函数在区间上单调递减,所以在区间[1,e]上有最小值,又因为,,而,所以在区间上有最大值.(2)函数的定义域为.由,得.(*)(ⅰ)当时,,,不等式(*)恒成立,所以;(ⅱ)当时,①当时,由得,即,现令,则,因为,所以,故在上单调递增,从而的最小值为,因为恒成立等价于,所以;②当时,的最小值为,而,显然不满足题意.综上可得,满足条件的的取值范围是.【考点】绝对值的计算、函数的最值求法、利用导数求函数单调性.9.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直.(Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.10.设,曲线在点处的切线与直线垂直.(1)求的值;(2) 若,恒成立,求的范围.(3)求证:【答案】(1) 0. (2) .(3) 结合(2)时,成立.令得到,累加可得.【解析】(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.(3) 结合(2)时,成立.令得到,累加可得.试题解析:(1) 2分由题设,,. 4分(2) ,,,即设,即.6分①若,,这与题设矛盾. 8分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 9分当时,方程,其根,,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得14分【考点】导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.11.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。
高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)本题可以采用分析法来进行证明明即可得到所求答案.
试题解析:f′(x)=lnx+1(x>0),令f′(x)=0,得 .
(1)当 时,求过点 处的切线与坐标轴围成的三角形的面积;
(2)若 在(0,1)上恒成立,求实数 的取值范围.
参考答案
1.(1)1;(2)
【解析】
试题分析:(1)对 进行求导得到其导函数,因为 的一个极值点为1,所以 ,代入即可求出 的值;
(2)对 进行求导得到其导函数,判断出其在 上的单调性,从而可以判断出最大值在哪个点取得,求出其最大值 ;代入 ,分离参数 ,构造一个新函数 ,只需 小于等于其最小值即可.
21.如果一元二次方程 至少有一个负的实数根,试确定这个结论成立的充要条件.
22.已知c>0,设命题p:函数 为减函数,命题q:当 时,函数 恒成立,如果p或q为真命题,p且q为假命题,求c的取值范围.
23.某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
用煤(吨)
用电(千瓦)
产值(万元)
甲产品
A. B. C. D.
6.如果函数y 的图像与曲线 恰好有两个不同的公共点,则实数 的取值范围
是( )
A. ∪ B. C. D.
7.设函数 ,若 ,则实数 的取值范围是()
A. B. C. D.
8.函数 ,当 时, 恒成立,则实数 的
取值范围是( )
A. B. C . D .
9.曲线 在点 处的切线方程为( )
(2)由(1)和题意可知 ,即可求出 的值,代入导函数 ,令 ,得到其零点,列表即可判断出函数的单调性和极值.
试题解析:(1)对 求导得
函数 在 单调递增, 在 恒成立
, 的取值范围
(2)对 求导得 ,由 在点(1,f(1))处的切线垂直于直线 轴,
可知f′(1)=- -a=0,解得a=
由(1)知
则f′(x)= ,
8.D
【解析】
试题分析:由导函数 可知 是单调递增奇函数,所以在解不等式 时要充分利用这一条件. ,又函数 为奇函数,所以 ,即 ,又因为函数 在 上为单调递增的函数,所以必有 ,当 时,对任意的 不等式恒成立,当 时,有 ,当 时, ,所以 ,综上所述, 的取值范围是 ,故正确选项为D.
考点:利用函数的单调性,奇偶性解不等式.
(3)已知点 为曲线 上的动点,在点 处作曲线 的切线 与曲线 交于另一点 ,在点 处作曲线 的切线 ,设切线 的斜率分别为 .问:是否存在常数 ,使得 ?若存在,求出 的值;若不存在,请说明理由.
25.已知函数f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
考点:导数运算
【思路点睛】由题意可得 为定值,设为 ,代入即可得到 的值,从而可得函数的解析式,代入化简新构造函数,根据零点存在性定理即可得到零点所在范围,从而求出所得答案.此类题目一般都需要进行整体换元来做,进而可以求出函数的解析式,然后根据题意即可得到所求答案.
13.
【解析】
试题分析:联立方程 得到两曲线的交点 ,因此曲线 ,直线 及 轴所围成的图形的面积为 .
考点:1、等差数列的定义;2、等比数列的定义;3、指数函数.
【易错点晴】本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项:(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.本题构造出指数函数巧妙地将等差数列、等比数列结合起来.
18.设函数
(1)求函数 的最小值;
(2)设 ,讨论函数 的单调性;
(3)在第二问的基础上,若方程 ,( )有两个不相等的实数根 ,求证: .
19.已知函数 ,
(1)若 的一个极值点为1,求a的值;
(2)设 在 上的最大值为 ,当 时, 恒成立,求a的取值范围.
20.已知c>0,设命题p:函数 为减函数,命题q:当 时,函数 恒成立,如果p或q为真命题,p且q为假命题,求c的取值范围.
令f′(x)=0,解得x=1或x=3
1
3
+
—
↗
极大值
↘
极小值
↗
由此知函数 在x=1时取得极大值f(1)=-2
在x=3时取得极小值f(3)=-1-ln 3.
考点:导数的综合应用
18.(1) (2)单调增区间为 ,单调减区间为 (3)证明见解析
【解析】
试题分析:(1)求出其定义域,对 进行求导得到 ,令导函数等于0可以判断出在其定义域上的单调性,从而判断出其最小值;
的解集是.
16.已知 是定义在 上的周期为3的函数,当 时, .若函数 在区间[-3,4]上有10个零点(互不相同),则实数 的取值范围是.
三、解答题(题型注释)
17.已知函数 ,其中a∈R
(1)若函数 在 单调递增,求实数 的取值范围
(2)若曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,求函数f(x)的单调区间与极值.
试题解析:(1)a=1时, f(x)=x2-x-ln x,
在(1,+∞)上是增函数,
,
所以 在(1,+∞)上是减函数,
当 时, ,均有
(2)由由x∈[1,+∞)知,x+ln x>0,
所以f(x)≥0恒成立等价于a≤ 在 时恒成立,
令h(x)= , ,有h′(x)=
单调递增
所以 h(x)≥h(1)=1,所以a≤1.
由题得 ,当 时,
,此时 不是极值点,不合题意,经检验 符合题意,所以
考点:函数的极值
12.2
【解析】
试题分析:根据题意,对任意的 ,都有 ,又由 是定义在 上的单调函数则 为定值,设 ,则 ,又 ,可得 ,故 , ,又 是方程 的一个解,所以 是 的零点,分析易得 ,所以函数 的零点介于 之间,故
【思路点睛】本题主要考查利用导函数来判断函数的单调性,以及解有关复合函数的不等式.在解有关函数的不等式时,如果函数是高次的复合函数,则需要先利用导函数判断外函数在定义域上的单调性,将不等式转化为关于内函数的不等式,继续解不等式,从而求出参数的范围,在解不等式,要充分利用题中已知的函数性质.
9.A
【解析】
(Ⅱ)若在区间 上,f(x)>0恒成立,求a的取值范围.
26.已知函数 .
(Ⅰ)求 的值;
(Ⅱ)求函数 的单调区间和极值.
27.已知函数 .
(1)求函数 的单调区间和极值;
(2)若对任意的 ,恒有 成立,求 的取值范围;
(3)证明: .
28.已知函数 ,( 为常数).
(1)若 在 处的切线过点(0,-5),求 的值;
考点:利用导数研究函数的极值和最值
2.D
【解析】
试题分析:设 , 是定义在 上的奇函数, 是定义在 的偶函数,当 时, ,此时函数 单调递增. , , ,又 故选D.
考点:利用导数研究函数的单调性
【思路点睛】本题考察的是比较大小相关知识点,一般比较大小我们可以采用作差法、作商法、单调性法和中间量法,本题的题设中无解析式,所以我们无法采用作差法、作商法和中间量法,只能采用单调性法,经观察得需要进行构造函数,研究构造的函数的单调性,再利用函数的奇偶性进行转化到同一侧,即可判断出所给几个值的.
3.C
【解析】
试题分析:由题可得 ,所以 在 上单调递减,在 上单调递增,所以 在 处取得最小值,又 在 内有最小值,所以只需 ,即 ,故选C.
考点:函数的最小值
4.D
【解析】
试题分析:对于函数 上的点列 有 ,由于 是等数列差,所以 因此 ,这是一个与 无关的常数,故 是等比数列,所以 合题意,故选D.
A. B. C. D.
10.设 ,若 ,则 ( )
A. B. C. D.
二、填空题(题型注释)
11.函数 在 处有极值10,则 .
12.设定义域为 的单调函数 ,对任意的 ,都有 ,若 是方程 的一个解,且 ,则实数 .
13.由曲线 ,直线 及 轴所围成的图形的面积为.
14.设 ,若 ,则 .
15.已知函数 是定义在R上的奇函数, , ,则不等式
(2)设函数 的导函数为 ,若关于 的方程 有唯一解,求实数 的取值范围;
(3)令 ,若函数 存在极值,且所有极值之和大于 ,求实数 的取值范围.
29.已知函数 满足 ,且当 时, ,当 时, 的最大值为-4.
(1)求实数 的值;
(2)设 ,函数 .若对任意 ,总存在 ,使 ,求实数 的取值范围.
30.已知函数 ( 为自然对数的底数).
5.A
【解析】
试题分析:本题考查命题真假的判定与推理,若命题 为真命题,则 若命题 为真命题,则 且 即 由条件得: 真 假或 假 真,故正实数 的取值范围是 故选A.
考点:1、函数的单调性、值域;2、命题与逻辑联接词.
6.A
【解析】
试题分析:根据题意画出函数 与曲线 的图象,如图所示,当 与圆 相切时两函数图象恰好有两个不同的公共点,过 作 ,因为 , ,所以 ,此时 ,当圆 半径大于 ,即 时,两函数图象恰好有两个不同的公共点,综上,实数 的取值范围是 ,故选A.
考点:函数的单调性,奇偶性,以及导函数的运用.
【思路点睛】本题的关键在于能够根据 构造出一个对解题带来方便的新函数 ,因为题中只说明 是奇函数及一个零点,而解不等式 ,必须要知道 值域在那些区间上为正,那些区间上为负,而通过新构造的函数 ,结合其单调性及 的零点,刚好能解决这一难题.本题同时也考查了学生对公式 的逆运用.