5.3频数与频率

合集下载

5.3频数与频率2

5.3频数与频率2
141 154 149 154 162 165 144 171 145 145 158 150 157 150 168 168 155 155 169 157 157 157 158 150 150 160 152 152 159 152 159 144 155 157 145 160 160 160 158 162 155 163 155 163 148 163 168 155 145 172
第五章 数据的收集
频数与频率 ( 2)
复习
1,如何收集数据? ,如何收集数据? 普查和抽样调查 2.如何处理数据? 如何处理数据? 如何处理数据 什么叫频数?什么叫频率? 什么叫频数?什么叫频率?
抽样调查时应注意什么? 抽样调查时应注意什么? 时应注意什么
样本的代表性 1.样本的代表性 样本的广泛性 2.样本的广泛性
作业 P166 随堂练习 1

画数据的总体规 律,我们还可以 在得到的频数分 布直方图上取点, 布直方图上取点, 连线, 连线,得到频数 折线图
练习
1. P169 习题 习题2
2.某班全体同学在"献爱心"活动 某班全体同学在"献爱心" 某班全体同学在 中都捐了图书,捐书的情况如下表: 中都捐了图书,捐书的情况如下表:
每人 捐书 的册 数 相应 的捐 书的 人数 5 10 15 20 (1)该班有 ) 人 本书; (2)该班共捐了 ) 本书; (3)在捐书册数中频数最高 ) 的是 册; (4)画出频数分布直方图 )画出频数分布直方图.
填写下表, 填写下表,并将上述数据用适当的统 计图表表示出来
身高/cm 141 142 143 144 145 146 147 148 149 150 151 身高 学生数 身高/cm 152 153 154 155 156 157 158 159 160 161 162 身高 学生数 身高/cm 163 164 165 166 167 168 169 170 171 172 身高 学生数

示范教案一531频数与频率(一)

示范教案一531频数与频率(一)

5 .3 频数与频率[教学目标](一)教学知识点1.掌握频数、频率的概念.2.会求一组数据的频数与频率.(二)能力训练要求1.通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2.培养学生利用图表获取信息的能力,使学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.(三)情感与价值观要求培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.[教学重点]频率与频数的概念,选择数据表示方式.[教学难点]各种统计图表的绘制,识别各种图表所含的信息,各自优缺点.[教学方法]合作探讨法[教具准备]挂图或小黑板[教学过程]Ⅰ.导入新课上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性.使所抽取的样本尽可能准确地反映总体的真实情况.本节课我们继续学习统计初步中反映数据出现频繁程度的两个量频数与频率.Ⅱ.讲授新课1.例题讲解同学们,你们平时最喜爱的体育运动是什么?你最喜爱的体育明星是谁?下面是小亮式是什么?你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.出示挂图(二) [师]此种表示方式的优点是什么?[生]简单明了,一眼可以看出哪个最多、哪个最少.[师]此种表示方式的优点是什么?[生]直观,一目了然.不仅可以很快判断出哪个最多,哪个最少,还可比较出差别是否悬殊很大.[师]从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们出现的频繁程度不同.我们称每个对象出现的次数为频数。

.而每个对象出现的次数与总次数的比值为频率。

如:A 的频数为23,A 的频率为5023. B 的频数为8,B 的频率为254. C 的频数为13,C 的频率为5013. D 的频数为6,D 的频率为253. Ⅲ . 1、做一做:(课本 P186)2.议一议:(见课本 P186)小明、小亮从同一本书中分别随机抽取了6页,在统计了1页、2页、3页、4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率,并绘制了下图图5-1[生]频率在0.05至0.06之间变化的字是“的”字.“了”字的频率在0.005至0.015之间变化.[师]你认为该书中“的”和“了”两个字使用的频率哪个高?[生]我认为是“的”字.Ⅳ.课时小结本节课主要学习了如下内容.1.频数与频率两个基本概念.2.会求一组数据的频数与频率,并会选择合理的表示方式来表示数据.例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.Ⅴ.课后作业习题5.3 1.2.[联系拓广] P188 第 3、4 题[教学反思]。

5.3频数与频率

5.3频数与频率

3 正 6 正 9 正正正 16
正 正 50
9 5 2
(5)绘图
20
①画平面直角坐标系;
②在横轴上取与组数相同 的等分数;
学生人数 16
9 6 3 .
140
15 10 5
0
③将纵轴分成适当 的等分数; 9 5 ④以各组的频数为 高画矩形.
.
145
.
150
.
.
.
165
2 . .
170 175
155 160
条形统计图的两个指标:
雪糕的品种
200 180 160 140 120 平均每天卖出 100 的雪糕 80 60 40 20 0 A种 B种 C种 D种 E种
雪糕的品种
频率分布直方图通过等宽的小矩形的高表示各 组相应的频数,形象直观地反应了各组频数的多少, 是统计中表示量的一种常见形式.
200 180 160 140 120 平均每天卖出 100 的雪糕 80 60 40 20 0 A种 B种 C种 D种 E种
身高cm
这样的分布叫做正态分布.
为了更好的刻画数据的总体变化规律,可以 在得到的频数分布直方图的各个小矩形的宽上 取中点; 用折线将各点依次连接.
20 学生人数 这是频数折线图.
15
10 5 0 .
140 145
16 .
9 . 6 . 3 . . 150 . . 155 160 .
165
9. 5
.
141 165 144 171 145 145 158 150 157 150 154 168 168 155 155 169 157 157 157 158 149 150 150 160 152 152 159 152 159 144 154 155 157 145 160 160 160 158 162 155 162 163 155 163 148 163 168 155 145 172

5.3频数与频率(二)

5.3频数与频率(二)

5.3 频数与频率(二)学习目标:1、能通过统计活动收集数据,解决问题,体会统计对决策的作用;2、能绘制频数分布直方图和频数折线图一、课前预习:1、自学教材P189-190:1、像这样的统计图,称为2、请你为李大爷设计一个进货方案:二、合作探究:律,还可以在得到的频数分布直方图上取点、连线,得到频数折线图:2、你认为画一个频数分布直方图的一般步骤是什么?(1)、计算最大值与的差(极差),确定统计范围;(2)、决定与(数据在100以内时,一般以分组为宜);(3)、确定分点;(4)、列表(可用唱票法累计);(5)、绘制。

3、储蓄所太多必将增加银行的支出,太少又难以满足顾客需求,银行在在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位:min)如下:15 20 18 3 25 34 6 0 17 24 23 30 35 42 37 24 21 1 1412 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 2514 22 31 42 34 26 14 25 40 14 24 11(1)这组数据的极差是;(2)可以将数据分为组,组距为;(3)确定分点;(4)列频数分布表;(5)绘频数分布直方图。

学习小结:画频数分布直方图(折线图)要注意些什么?三、反馈练习1、一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是_________,最小的值是_________,如果组距为1.5,则应分成________组.(30′)2、某技校对所属文秘专业的90名学生进行打字速度测试,测试结果见表格与频数分布直方图.请补全表格与频数分布直方图(30′)3、某地区抽调了一部分市民进行了一次法制观念知识竞赛,竞赛成绩(得分取整数)进行整理后分成五组,并绘制成频率分布直方图,请解答下列问题:(40′)(1)抽取了多少人参加竞赛?(2)60.5-70.5这一分数段的频数、频率分别是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?.(4)根据统计图,请你提出一个问题,并回答你所提出的问题.四、反思:。

八年级数学下册 第五章 5.3 频数与频率学案(2)(无答案) 北师大版

八年级数学下册 第五章 5.3 频数与频率学案(2)(无答案) 北师大版

课题:§5.3频数与频率(二)【学习目标】1.了解频数分布的意义,会得出一组数据的频数分布2.会绘制频数分布直方图与频数分布折线图.3.初步经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力.【学习重点】学会绘制出一组数据的频数分布直方图、频数分布折线图.【学前准备】如何收集与处理数据.(1)(2)(3)(4)【师生探究、合作交流】看课本P189页你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?想一想: 小丽统计了近一星期李大爷平均每天能卖出的A、B、C、D、E五个牌子雪糕的数量。

雪糕数量频数频率A 131 131 0.253B 182 182 0.351C 68 68 0.131D 39 39 0.075E 98 98 0.190合计518 518 1.000根据上表绘制一张频数分布直方图.(如下)分析:根据小丽的统计结果,A占总数的,B占总数的 ,C占总数的,D占总数的,E占总数的为李大爷设计一个进货方案,两种雪糕卖出的较多,可以多进些,种雪糕卖出的少,可以少进些。

确定进货的总数,还应考虑,当天气温情况.做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位 cm).如下:141 165 144 171 145145 158 150 157 150 154 168 168 155 155169 157 157 157 158 149 150 150 160 152152 159 152 159 144 154 155 157 145 160160 160 158 162 155 162 163 155 163 148163 168 155 145 172填写下表,并将上述数据用适当的统计图表示出来.小亮的做法.将数据分成一下几组,并得到相应各组的学生人数:144 cm以下 145~149 cm 150~154 cm 155~159 cm3 6 9 16160~164 cm 165~169 cm 170 cm以上9 5 2根据上表绘制出频数分布直方图:当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方图. 绘制连续型频数分布直方图的步骤:(1)计算极差(最大值与最小值的差);(2)决定组距(每个小组的两个端点之间的距离)与组数;当数据在100个以内时,通常分成5-12组,组距通常取整数(3)确定分点;(4)列频数分布表;(5)画频数分布直方图.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.比较一下各种统计图各自的优缺点.表一:.表二,优点. :.缺点:. .图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.【课堂小结】1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.【课后作业】P193页1, 习题5.4 2.。

北师大版初中八年级数学下册 5.3频数与频率课件1(优秀课件)

北师大版初中八年级数学下册  5.3频数与频率课件1(优秀课件)
(1)该班有多少名学生?(每个学生 均参加了测试)
(2)每个分数段的学生的频数、频 率分别是多少?
(3)本次测验学生成绩的及格率 为多少?(60分以上,含60分为 及格)
人数
16
12
10
8
4
16
12 10 8
4
0
49.5 59.5 69.5 79.5 89.5 99.5
分数
9
做一做
比一比看谁能行
3、如图是某企业中层管理人 员的年龄的调查统计图,根据 统计图提供的信息回答下列问 题:
人数
12 10
12
9
10
8
(1)在本次调查中哪个年龄
7
的人数最多?哪个年龄的人数
6
6
最少?它们的频数各是多少?
4
4
答:人数最多的是37岁,最少
2
的是40岁;它们频数分别是: 2
12和2 (2)在本次调查中年龄为36
0 34 35 36 37 38 39 40
的频数是多少?频率是多少?
答:年龄为36的频数是9;它的频率=9÷(4+7+9+12+10+6+2)=0.18
B:卡卡
C:鲁尼
D:小罗纳尔多
A AB CDABAAC
BA A CBCAABC
AA B ACDAACD
BDAAC
7
学生数
足球明星 学生数
A
正正正正
25 23 23 20
B

C 正正
D
正一
8 15
13
10 5
6 0A
13 8
6
B C D 明星
我们称每个对象出现的次数为频数;

5.3频数与频率上课课件

5.3频数与频率上课课件

议一议
体育明星 A 学生数 正正正正 23
正 8 B 正正 13 C 正一 6 D 从上表可以看出,A,B,C,D出现的次数有的 多,有的少,或者说它们出现的频繁程度不同 .
议议
学生数
A B C D 明星 从上表可以看出,A,B,C,D出现的次数有的 多,有的少,或者说它们出现的频繁程度不同 .
6.下表是某两个班级期中数学成绩的统计结 果: 优秀人数 及格人数 不及格人数 总人数 20 45 5 50 甲 18 38 2 40 乙 (1)甲乙两班中,哪个班级的优秀人数、及格 人数多?哪个班级的优秀率高?哪个班级的及 格率高? (2)你觉得哪个班级成绩好? 为什么?比较 两个班级的学习成绩是用频数还用频率好?为什 么?
×
总次数
频数 总次数= 频率
做一做(P186)
(1)你认为哪个汉字的使用频率最高? (2)看法相同的同学组成一个小组,设计一个 简单的调查方案,粗略地估计一下它的使用频 率,并将调查结果在全班交流.
做一做(P186)
频率
(1)随着统计页数的增加,这两 个字出现的频率是如何变化的?
“的” 字 “了” 字
2、从数据中获取信息,解决实际问题。
当堂练习
1.一个样本中共有50个数据,其中数据a出现 的频率为0.2,则这50个数据中,数据a出现的 次数应是 。 2.一组数据中共有40个数,其中53出现的频率为 0.3,则这40个数中,53出现的频数为 。 3.把50个数据分成六组,其中有一组的频数是14, 有两组的频数是10,有两组的频率是 0.14,则另 一组的频数是 ,频率是 。
组数 1 2 3 4 5 分组 频数 频率 1 4.45~4.95 a 0.05 0.10 4.95~5.45 2 e 5.45~5.95 6 0.30 0.30 6 5.95~6.45 b f 5 6.45~6.95 c 0.25 20 1 d g 合计 (1)填写出表中未完成部分: (2)长度在5.45~6.45cm的麦穗占总数的百 分之几?

八年级数学《5.3.1频数与频率》

八年级数学《5.3.1频数与频率》

《5.3.1频数与频率》问题导读—评价单1.知识与能力:①理解频数、频率等概念,并能读懂相应的频数分布直方图和频数折线图;②体会用样本估计总体的思想.2.过程与方法:①能根据数据处理的结果,作出合理的判断和预测.②进一步发展学生的统计思想3.情感态度与价值观:培养学生用科学的态度进行统计活动.(三)学习重、难点重点:理解频数、频率的概念并绘制出相应的统计图表,从而作出合理的判断和预测。

难点:正确列出统计图有。

(四)学习流程预习教材第 184 至 186 页内容后,完成下列问题。

1.频数的定义:频率的定义:频数与频率的关系:2.调查我们班每一位同学喜欢下列六门学科中的哪一门?并用枚举法表示出来,(如用P表示政治,C表示表示语文,M表示数学,E表示英语,Ph表示物理,S表示体育),这种数据表示方式好不好?如果让你直观的表现出哪科喜欢的人数多或少,有什么办法?3.想一想,你认为那个汉字的使用频率最高?设计一个简单的调查方案,粗略地估计一下它的使用频率,并将调查结果在全班交流。

4.设计“通过预习本节内容你未解决的问题有:自我评价:小组评价:教师评价:各位同学,请在预习的基础上,将生成的问题系统思考后,在小组内充分交流,并在单位时间内认真完成下列问题,经过合作探究后准备多元化展示. “问题”展示问题1:频数一般都有什么样的特征,那频率呢?问题2:东东连续记录了10天以来爸爸每天看报纸的时间,结果如下(单位:分)12,20,16,20,22,18,19,16,20,23,那么出现频率最高的时间是,它出现的频数是,频率是。

问题3:将一组数据分为5组,列出频数分布表,其中第一组的频数是2 0,频率是0.2,第二组的频率为0.3,那么这组数据共有数据个,第三、四、五组的频率之和为,第二组的频数为。

问题4:学习拓展P61 1问题5:课本P187 1问题6:学习拓展P61 4从今天的课程中,你学到了什么知识?小组评价:教师评价:班级:姓名:基础演练1.在频数分布表中,各小组的频数之和()A 小于数据总数B 等于数据总数C 大于数据总数D 不能确定2.下列说法正确的有()A 频数越大,频率越大B 频数越小,频率越大C 总数一定的情况下,频数越大,频率越大D 总数一定的情况下,频数越小,频率越大3.已知样本18,20,20,18,16,23,21,20,22,19,17,18,22,19,21,22,19,20,20,21,那么频率为0.2的范围是()A 16~18B 18~20C 20~22D 22~244.在某校九年级的一次化学测试中,化学测试成绩在80—84分之间的同学有84人,在频率分布表中的频率为0.35,则全校九年级共有学生_______人5.某中学一位同学调查了八年级60名学生观看自己最喜爱的电视节目的情况,其中有10人爱看动画片,15人爱看连续剧,23人爱看体育节目,12人爱看新闻节目.在上面问题中,________分别为各节目出现的频数,其中爱看动画片的频率约为________能力拓展某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少小组评价:教师评价:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3 频数与频率
学习目标
1.掌握频数、频率的概念.
2.会求一组数据的频数与频率.
3.了解频数分布的意义,会得出一组数据的频数分布.
教学重点
频率与频数的概念,选择数据表示方式. 会得出一组数据的频数分布直方图、频数分布折线图.
教学难点
决定组距与组数.数据分布规律. 绘制各种统计图表,识别各种图表所含的信息,各自优缺点.
导学:
下面是小亮调查的八(1)班50位同学喜欢的足球明星,结果如下:(投影片)
根据上面结果,你能很快说出该班同学最喜欢的足球明星吗?他的数据表示方式是什么?
这些数据没有经过统计、整理,必须把A、B、C、D的个数全部数清,才能比较出哪位球星是该班同学最喜欢的.数据越多越不方便,所以我认为小亮的数据表示方式不太好.
[师]你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.
[生]我们小组用如下方式表示
[师]从上表能够看出,A、B、C、D出现的次数有的多,有的少,或者说它们出现的频繁水准不同.我们称每个对象出现的次数为频数(absolute,frequency).而每个对象出现的次数与总次数的比值为频率(relative frequency).
[师]分别计算A、B、C、D的频数与频率.
A的频数为23,A的频率为______B的频数为______,B的频率为______C的频数为______,C的频率为______D的频数为______,D的频率为______
练习
1.在对n个数据实行整理的频率分布表中,各组的频数与频率之和分别等于()
A.n,1
B.n,n
C.1,n
D.1,1
2.扇形统计图中,扇形A.B.C.D的面积之比为2∶1∶4∶5,则最大扇形的圆心角为()
A.80°
B.100°
C.120°
D.150°
3.某地上半年每月的平均气温是5℃,8℃,12℃,18℃,24℃,30℃,为了表示出气温变化的情况能够把它绘制成()
A.扇形统计图
B.折线统计图
C.条形统计图
D.以上都能够
4.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值
是_________,最小的值是_________,如果组距为1.5,则应分成________组.
5.在数据55,66,23,33,22,65,84,87,23,24,88中,大于等于50而小于等于70
的数共有_________个
6.在扇形统计图中,有两个扇形的圆心角度数之比为3∶4,且较小扇形表示24本课本书,
则较大扇形表示________本课本书.
7.一组数据共50个,分别落在5个小组内,第一.二.三.四组的数据分别为2.8.15.20,则第五小组的频数和频率分别为________._________.
8.如图是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教育支出占全年总
支出的百分比作出的判断中,准确的是()
A.甲户比乙户大
B.乙户比甲户大
C.甲.乙两户一样大
D.无法确定
哪一户大
9.某中学一位同学调查了八年级60名学生观看自己最喜爱的电视节目的情
况,其中有10人爱看动画片,15人爱看连续剧,23人爱看体育节目,12人爱
看新闻节目.在上面问题中,__________________________分别为各节目出
现的频数,其中爱看动画片的频率约为__________________________.
10.在扇形统计图中,其中有一个扇形的圆心角为108°,那么这个扇形所表示的
部分占总体的百分比是___________.
11.某市有5类学校,各类学校占总校数的百分比如下:
学校幼儿园小学中学特殊教育高等院校
百分比36%32%22%4%6%
(1)计算各类学校对应的扇形圆心角度数;
(2)画扇形统计图来表示上面的信息;
(3)哪两类学校较多?各占百分比是多少?
(4)若高等院校有42所,则该市共有学校多少所?中学有多少所?
小结与反思:
_______________________________________________________________________________ _______________________________________________________________________________。

相关文档
最新文档