数学建模课件

合集下载

数学建模培训精品课件ppt

数学建模培训精品课件ppt
R具有丰富的统计函数库和图形库,可以进行各种统计分析 、数据挖掘和预测建模。R还具有开源的特性,用户可以自由 地使用和修改代码,同时也有大量的社区资源和教程可供参 考。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。

数学建模培训精品课件ppt

数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。

数学建模宣导ppt课件

数学建模宣导ppt课件

数学建模的软件工具
❖ 3.lingo的概况
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规 则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变 量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和 LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解 决的规划问题。
❖ Lingo的特色:模型建立语言和求解引擎的整合 A. Lingo是建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。 B. Lingo可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修 改。 C. LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求 解结果直接输出到数据库或工作表。 D. LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和 整数最佳化。 E.LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界 面可供使用者由撰写的程序中呼叫。 F.LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功 能定义。
Mathematica 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比
Matlab R13做得更快更好,提供业界最精确的数值运算结果。Mathematica不但
可以做数值计算,还提供最优秀的可设计的符号运算。
数学建模的软件工具
❖ B.丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函 数、数值分析、机率统计等等问题。 C.Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法, 结果呈现可视化。 4.Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成, 提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由 初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好 的兼容性。 D.可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高 级语言接口功能,使得程序开发更方便。 Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰 富的帮助功能,让使用者现学现卖。强大的功能,简单的操作,非常容易学习 特点,可以最有效的缩短研发时间。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

数学建模全套课件

数学建模全套课件
Cg t B (1 e W ),
( 2)
方程的解为
W v(t ) C
t 0
计算碰撞速度,需确定圆桶和海底的碰撞时间t0
分析 考虑圆桶的极限速度
W B 527.436 470.327 lim v( t ) t C 0.08
≈713.86(英尺/秒)>>40(英尺/秒)
汽车类型及车身长模拟原理分析 若随机变量X~U(0, 1),有
P{0பைடு நூலகம்X≤0.55}=0.55,
P{0.55≤X≤0.95}=0.4,
P{0.95≤X≤1.0}=0.05. 可用一串随机数(RND)来确定到达车辆的 车型与车身长.
RND 种类 RND 车长 列长
0.10 卡车 0.59 9.44 9.44
0.28 卡车 0.48 8.96 18.4
0.61 0.34 0.77 0.57 0.02 0.88 轿车 卡车 轿车 轿车 卡车 轿车 0.10 0.56 0.30 0.90 0.81 0.66 3.70 9.12 4.10 5.30 9.62 4.82 22.1 31.22 35.32 40.62 50.24 55.06
摩托车
(2) 确定随机到达车辆的身长车. 汽车类型及车身长模拟原理分析 (3) 关于车辆的排放.
甲板可停放两列汽车,可供停车的总长为 32×2=64米
排放原则:两列尽可能均衡。(怎样实现?) 结果分析:由一组特定随机数确定车型和车身 长度,仅得到一个解答.
将一组随机数模拟确定的结果,看成对一次 实际运载情况的“观察”,少数几次观察是无意 义的. 需多次重复模拟, 再进行统计分析
数学模型是现实世界与数学世界的理想桥梁
面对各类问题:
1. 世界的末日?

数学建模课件

数学建模课件

模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物. 模型集中反映了原型中人们需要的那一部分特征.
你碰到过的数学模型——“航行问题”
甲乙两地相距750km,船从甲到乙顺水航行需30h, 从乙到甲逆水航行需50h,问船的速度是多少? 用 x 表示船速,y 表示水速,列出方程:
数学建模的重要意义
―数学是一种关键的、普遍的、可以应用的技术”. 数学“由研究到工业领域的技术转化,对加强 经济竞争力具有重要意义”.
―计算和建模重新成为中心课题,它们是数学 科学技术转化的主要途径” .
数学建模的具体应用
• 分析与设计
• 预报与决策

控制与优化
• 规划与管理
数学建模
如虎添翼
计算机技术
评注和思考
建模的关键: 用表示椅子的位置 用 f(), g()表示椅脚与地面的距离 假设条件中哪些是本质的, 哪些是非本质的? 考察四脚连线呈长方形的椅子 (习题4). 证明过程的粗糙之处: 椅子的旋转轴在哪里,它在旋转过程中怎样 变化?
1.3.2 商人们怎样安全过河
问题(智力游戏) 随从们密约, 在河的任 一岸, 一旦随从的人数 比商人多, 就杀人越货. 乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 问题分析 多步决策过程
(ln 2) / 6 0.1155 (1 / h)
结果及分析
1200 1000 x(t) 800
胃肠道药量 x(t ) 1100 e 0.1386t
(e 0.1155t e 0.1386t ) 血液系统药量 y(t ) 6600 血液总量2000ml 血药浓度100μg/ml y(t) =200mg
认为血液系统内药物的分布,即血药浓度是均匀的, 可以将血液系统看作一个房室,建立“一室模型” . 血液系统对药物的吸收率 (胃肠道到血液系统的转移 率) 和排除率可以由半衰期确定. 半衰期可以从药品说明书上查到.

《数学建模》课件

《数学建模》课件

第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。

其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。

特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。

对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。

而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。

为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。

一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。

即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The definition means that the graph of y versus x lies along a straight line through the origin. This graphical observation is useful in testing whether a given data collection reasonably assumes a proportionality relationship.
7
Example 1
Testing for Proportionality
Consider a spring-mass system (Figure 1.2). We conduct an experiment to measure the stretch of the spring as a function of the mass (measured as weight) placed on the spring. Consider the data collected for this experiment, displayed in Table 1.1.
P. Fox
1
Chapter 1 Modeling Change
Introduction We often describe a particular phenomenon
mathematically (by means of a function or an equation, for instance).
Figure 1.2 Spring-mass
system
8
Mass
50 100 150 200 250
Elongation 1.000 1.875 2.750 3.250 4.375
300 350 400 450 500 550 4.875 5.675 6.500 7.250 8.000 8.750
Model
Verification
Analysis
Predictions/ explanations
clusions
Figure 1.1 A flow of the modeling process beginning with an examination of real-world data
5
Simplification
Most models simplify reality. Generally, models can only approximate real-world behavior. One very powerful simplifying relationship is proportionality.
These conclusions can be interpreted to help a decision maker plan for the future.
In this chapter we direct our attention to modeling change.
4
Real-world data simplification
Such a mathematical model is an idealization of the real-world phenomenon and never a completely accurate representation.
2
Mathematical Models
We are often interested in predicting the value of a variable at some time in the future. A mathematical model can help us understand a behavior better or aid us in planning for the future.
6
Definition Two variables y and x are proportional (to each other) if one is always a constant multiple of the other, that is, if
y = kx
for some nonzero constant k. We write y ? x.
Figure 1.3 Data from spring-mass system
10
The data appear to follow the proportionality rule that elongation e is proportional to the mass m, or symbolically,
Mathematical Modeling
数学建模(英文版) 机械工业出版社,
北京, 2003. 5 经典原版书库, 原书名:
A First Course in Mathematical Modeling
(Third Edition) by
Frank R. Giordano, Maurice D. Weir, William
Let's think of a mathematical model as a mathematical construct designed to study a particular real-world system or behavior of interest.
3
The model allows us to reach mathematical conclusions about the behavior, as illustrated in Figure 1.1.
Table 1.1 Spring-mass system
9
A scatterplot graph of the stretch or elongation of the spring versus the mass or weight placed on it reveals an approximate straight line passing through the origin.
相关文档
最新文档